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Abstract. A new bilinear 4-noded quadrilateral element @GAIQLRZ) for the analysis
of composite laminated and sandwich plates/shebgdan the refined zigzag theory
(RZT) proposed by Tessler et al. [1] is presenidie element has seven kinematic
variables per node. Shear locking is avoided bgothicing an assumed linear shear
strain field. The performance of the element iglitd in several examples where the
reference solution is the 3D finite element analysing 20-noded hexahedral elements.
Finally, the capability for capturing delaminatiefiects is analyzed.
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transverse anisotropy.

More accurate models are given lbgyer-Wise Theoried . WT) [5, 7] in which the
thickness coordinate is divided into a number oflymis layers (that may be not
coincident with the number of laminate layers) asegnseparate displacement field
expansions within each ply. LWT yields high qualitedictions. However, the number
of unknowns is proportional to the number of anialyayers, which largely increases
the computational cost of the method.

An attractive alternative between the accuracy WTLand the computational
efficiency of FSDT and some HSDT are tB®Zag (ZZ) theories[5, 6, 8]. In ZZ
theories the in-plane displacement is a superposdf a piecewise linear displacement
function (the zigzag function) over a linear, quadr or cubic displacement field along
the thickness direction. It is important to notattthe number of kinematics variables in
ZZ theories is independent of the number of layelany of the ZZ formulations suffer
from their inability to model correctly a clampedubalary condition, which makes it
difficult to satisfy equilibrium of forces at a sugrt. In addition many ZZ theories
require C continuity for the deflection field, which is asdidvantage versus simple} C
continuity plate theories, such as RMT.



Tessler et al. [1, 9] have recently developeRedined ZigZag Theor{RZT) for
beams and plates that adopt Timoshenko and RMTadsment fields as the baselines
for beam and plate analysis, respectively. The &#yybutes of the RZT are, first, a
linear piecewise zigzag function that vanishesoptdnd bottom surfaces of the beam
and plate section. Second, it does not require tfathsverse shear stress continuity
across the laminated plate depth. Third, ®®ntinuity is only required for thénite
element methodFEM) approximation of the kinematic variables afudally, all
boundary conditions can be effectively simulate®L1].

Onate et al. [10] have taken the RZT as the basiddveloping a simple two-noded
C® beam element named LRZ. The accuracy of the LRirbelement for analyzing
composite laminated beams has been demonstratesinigge support and clamped
beams under different loads. The possibility of LiZ beam element for modeling
delamination effects has also been tested [10,M@te recently, anisoparametric two
and three-noded beam elements based in the RZT have been preseni@tierlone
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where the axial displacement functions are
uk=rfx ; k=, N
U =f (¥ (x Y (1b)

V=¥ (%)
and superscripk indicates quantities within thieh layer with z £ z£ z,,, z is

the vertical coordinate of thih interface andN is the number of layers. Thaiform
axial displacementalong the coordinate directiorsandy are u, andyv,, respectively;

g, and g, represent thaverage bending rotationf the transverse normal about the
positivey andx directions; andw, is thetransverse deflection/ " (i =X, y) denotes a

known piecewise lineatigzag functionandy; is a primary kinematic variable defining

the amplitude of the zigzag functiam the plate. Summarizing, the kinematic variables
are



T
a= uO v0 V\() qx qy yx .yy (10)

The zigzag displacement field of Eq.(1a) is a sppsition between the standard
kinematics of the first order Reissner-Mindlin thedRMT) and the linear piecewise
zigzag functions (Eqg.(1b)). Note that the zigzagsptiicement vanishes for
homogeneous materials leading to the displacenaddtdf the RMT.

The in-plane (s-rk,) and transverse sheag( strains are defined as

o
ix
y
e
k__Pk_ ’ _ﬂUk ﬂVk
= =gy = —+—
t — Ty 9Ix
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where , and _are the strain vectors duo to membrane, bendindrandverse
shear effects of the RMT, respectively. The in-pland transverse shear strains vectors
emanating from the RZT are denoted hy, and ,and”  and”, are the generalized

in-plane and transverse shear strains vectorsatbén

m?

PP LTy, (2b)
ss=s, S $ & %= 8 %

where(.) denotes the generalized strain vectors given by
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k- P — tx = p ¥ x P :Dk k 3a
) [—y 0 D, t (3a)
t,
with
1 E. U.Es 0
DY = ~E E, 0
Who g (2
- U,) G, (3b)
oF = G, O
tT 0 G

The resultant stress vectors are defined as
Membrane forces



NX
Am: Ny = ZSmT kde (3C)
ny
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N — T K
Dn= S. DSz
Doy = S DSl
Dotr = S DS
Bending moments
M

X
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s_\ z"’s lJt"’s"""} s'\ Z"’s“t"’s"‘ﬂ fs
As = f)s’\s-l-f)ssAfS
D, = SJD‘Sdz
Dy, = S/ DS.dz
Next, we define the additional pseudo-bending mdamemnd the pseudo-shear
forces emanating from the RZT, which are conjugatéhe new generalized strains

M (i,j =x,y) and the variablg’, , respectively.

fi
Thepseudo-bending momerae defined by
M,
M
~ vfy kK T k
= = S dz 3
mbf Mxyfx 2 mb p ( f)
Ileyfy



mif :( ZSl:ankaSngZ)A m+( ZSkmbTDk§ Q%A 6"( ZS If‘mbTD k%fkmbdé’\f m

mr =Dmpm mTD wob 68D amp £
- _ k Tk
Doym= Sm DSz
- _ k Tk
Do =St D' S¢z

A

Dy = ZSI;ankaSkadZ
and thepseudo-shear forcdsy

Qxa/ T
= = S dz (30)
an/ y z g t

«=( i Disdz) 4 siDisidd; .
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2.3PRINCIPLE OF VIRTUAL WORK (PVW)

The virtual work principle for a distributed logdand point load$; can be stated as
npl
< kdv= algdAr At (4a)
i=1
where the |.h.s. of Eqg.(4a) expresses the intevitedal work performed by the
stresses and the r.h.s. is the external virtuakwbthe distributecand pointloads.V is
the volume of the platd, is the area of application of the distributed loaaldnpl is the
number of point loads. Substituting Eq.(2a) into(Ea) gives



kT

kdV = V( "mTSmT+ "bTSbT+ ATmhsl;foT) kpdV+
+ V( ASTSST+ As‘TSI)(ST) I’:dv

— AT T ky ~TeT k, ~T ok T K
- V( mSm p+ bSb p+ mbSrﬁb )dV+

+ V( ASTSST It(-l- Ad‘TS:;T I’[()dv
Using Egs. (3c), (3d), (3e), (3f), (3g) yields
de: A( AmTAm+ AbTAb+ AmbTA mfb) dA+ A( "0 + Af sTAf s) dA
The virtual work can be therefore written as

npl
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dispiacementsu”, for the x direction. A simiiar distribution IS found for tt\gzag
function f'y‘.
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Figure 1 — Thickness distribution of the zigzag functiéjfm a), zigzag displacemeﬂk b), and axial

displacement® ¢) in the RZT.



The slope of the zigzag function (Eq.(5)) givesamstant value for each layer
defined as
e _(FE-F)
b =—1 = 6a
B T (6a)
Because the zigzag function vanishes on the topbattdm surfaces, the through-

the-thickness integrals of the slope functidsisis equal to zero, i.e.

Zbi"dz: 0 (6b)
It is convenient to define a new different functianas
hi =9,V (7)
which leads to the following expression for Hik layer transverse shear strains and
stresses as
g=(1+4)a- #h (8a)
ty=Gi(L+b))g, - Gibh, (8b)

The average shear strains over the plate thickaes®btained by integrating the
transverse shear straig$ (Eq.(8a)) over the thickness and using Eq.(6bjs ives

1
g.=5 4z ©

The interfacial continuity of the first term, asmded with the average shear strain
g, ., is enforced in the transverse shear stresshiision (Eq.(8b)), i.e.

G (1+8%) =G (1+ 5 (10a)
which leads to a constant shear modulus acrogddtethickness defined by
G, =G (1+0f) (10b)
Then, from Eq. (10b)
G
bk =g 1 (11)
the explicit form ofG, is obtained by substituting in the integral of Eq.(6b), i.e.
N |k 1
Giz = h_k (12)
k=1 Giz
Finally, the zigzag function is obtained by reptacEq.(6a) into Eq.(5), this gives
_ hkbk
fh=fte—f k41 13
e ) (13)

with H“defined by Eq.(11).



4 QUADRILATERAL LINEAR REFINED ZIGZAG PLATE ELEMENT
(QLRZ)

The QLRZ element (figure AlL2) is a Lagrangian isgpmetric 4-noded finite
element derived from thefined zigzag theorgiescribed above.

4.1DISCRETIZATION OF THE DISPLACEMENT FIELD

The middle surface of a plate is discretized intnode 2D isoparametric finite
elements of quadrilateral shape. The kinematicabées (Eqg.(1c)) can be interpolated
within each element as

e)

al
NS a3 0
a= g, = Ng :[N1 N, N, N4] Xa(ge) Nél (14)

i=1

(e)
a,

where
N, =Nl ; ai(E): Uy % W% 4 g YV, yyiT
being N; (x,/7) (Eq.(21)) the €continuous shape function of noidle and 1, is the
7X7 unit matrix.

4.2 GENERALIZED STRAIN FIELD

The generalized in-plane strains are obtained rmgeof the nodal kinematic
variables by substituting Eq.(14) into the generaliin-plane shear strair?ﬁ(Eq.(Zb)),



AL N,

I o o
Mo N,
Ty Iy
Ty | v N, N
vox gy "
Tg. N,
x qu
: 99, N,
- o - iy :4 v " :4B.a1-(e)=Ba(E)
I U L L
m Ty X v
W N
o )
Iy, N,
r— e
Ty v
W TN
Ty Ty~
v, N
X %=’ i

(15a)

where B and B are the in-plane generalized strain matricesterelement and

theith node, respectively. The matri; can be splitted into membranm{, bending

(b) and zigzag nbf ) contributions. This leads to

Bm
Bpi: Bb
mefi
with
N, w;
~1 0o 00000 000" o0
X x
w; N
Bjy= 0 — 0000 O0B;=000 0 "
Ty Ty
N; N:
ﬂ—'ﬁooooo oooﬂ—'ﬁ
Ty Ty
N.
oooooL 0
1
N
oooo0oo0 0 —!'
B - Ty
mbfi ~ IN;
000O0O0-—-" o0
Ty
™
ooooo0 0 —'
x

(15b)

(15c¢)

Replacing Eq.(14) into (Eq.(2b)) the generalizeah$verse strains are obtained as

10



M' q, MWo' N, g,

x x
A L' « IN e .
= Asf = Ty q, :i:l Ty Wo Niqy :i:1 Btiai() :Bta() (163)
Yy Ny,
Y, Ny i

where B, and B, are the transverse generalized strain matriceshioe element
and theith node, respectively. MatriB, can be split into shearsf and zigzag ¢ )

contributions as

B, = B, 16b
[ Bsf | ( )
where
OO0 M -N, 0O OO
Bsi= ﬂﬂlil(
00— 0 -N 00O
1y (16c)

B_oooool
“""00 000 O N

4.3ELEMENT STIFFNESS MATRIX
The equilibrium equations relating nodal forces displacements are obtained by
substituting the discretized equations (15a) asa)into the virtual work principle
npl
A( R AtTAt): . aquA+'_l a,'f, (17a)

Substituting Eq.(3h) into the |.h.s of Eq.(17a)egv

A( L )= A( D, ,+ "D, dA) (17b)

pp t

Considering that
4
~T (eT T — e)T, T
- a” B, = a”B,

= (17¢)

4
AT eT T — eTn T
[ a1 Bti = a BI
i=1

and substituting Eqgs.(15a), (16a), (17c) into Edpjlyields

( D+ AID[t) dA= A( a‘e)TBpTDpoa(e)) dA
+ (a”B’DBa")dA=

A

a” (B, 'D,B,+B/DB,)dA a*

a®TK €9

11



Finally Eqg.(17a) is reduced to
npl
K JqdA- f,=0 (18)

i=1
whereK @ is the sought element stiffness matrix. This matén be expressed as
K® =K ¥+ {9 (19a)
being K(pe) and K the in-plane and transverse stiffness matricespetively.
These are given by
KY= B,DpdA

(19b)
K®= B, 'DB,dA
A
To facilitate subsequent shear locking studiesrimat ® is split as follows
K =K 000K Gk (20a)
with
K®= B./DBdA
K= B,D4B,dA (20b)

K9 = B,DB.JA
4.4BOUNDARY CONDITIONS
The boundary conditions are:
A. Clamped side:
w=0
u= qx :yx =0
V= qy :yy =0
B. Simply supported side:
Hard support: w=u,=¢g,=y =0
Soft support: w=0
where “s” is the direction of the side.
C. Symmetry axis:
u,=gq,=y, =0
where “n” is the orthogonal direction to the symmeitxis.

4.5SHEAR LOCKING

The original form of the QLRZ element suffesisear lockingfor slender composite
laminated plates. In order to remove this defed different alternatives are analyzed

in Annex |: 1) by using aeduced integratiorof the transverse stiffness matri®

(Eq.(20a), and 2) by using assumed transverse shear strain fi¢l®d]. The study
showed that the assumed transverse shear strdimiqae is a more consistent
alternative for avoiding the shear locking problem.

MatricesB,,, B, , B, from Eq.(15c) anB, (Eq.(16c)) are computed using bi-
linear shape functions (Eq.(21)) while matix (Eqgs. (16b) and (Al.16.b)} replaced
by thesubstitute transverse shear strain matBx of Eq.(Al.18).

12



The bi-linear shape functions, are

N, =—(1+xx)(1+hh,) (21)
Node i i

1 1) -1

2 1] -1

3 1 1

4 101

Table 1— Values of ; and ; for each node.
%

Ni= 0.25(1-£)(1-7)

No= 0.25(1+£)(1-7))
Ns= 0.25(1+£)(1+7)
Nu= 0.25(1-6)(1+7)

Figure 2 — Bilinear shape functions.

The stiffness matrice& ® andK & of K (Eq.(20a)) are computed as
K®= BDB dA
© - U (22)
K& = B/DB,dA
4.6“A POSTERIORI” COMPUTATION OF TRANSVERSE SHEAR STBEBES
While in-plane stresseésx,sy and Xy) are well predicted by equation (3a), the
transverse shear stress(e!s(Z andt yZ) are not. The reason is that the constitutive Eq.

(3a) yields a constant value into each layer, legadio a discontinuous thickness
distribution of £, andf ,. An useful alternative is to computg, andt |, a posteriori

from the in-plane stresses using the equilibriunmagigns,

ﬂsX+ﬂl‘xy+‘ﬂfXZ:O

x Ty 19z (23a)
‘Hz‘xy+‘ﬂsy+‘ﬂ‘y2=0

> Ty 1z

from which, the transverse shear stresses at at pBih across the thickness
coordinategz are computed by

z ﬂs z ﬂ[
t =- * 12« ¢ > dz
xz(z)|p JA X P z 2 iy P ‘ (23b)
@] = 2 g P X g,
e Ty, % X |,

13



The in-plane stresses at point “P” in the QLRZ edatrare approximated by

s,@L= NJ.s(2

sy(z)\P= _ NI s1(2 (23c)

4 .
[xy(z)‘p = o Ni|P X I><y( Z)
where N, is the shape function (Eq.(21)) andienotes théth node. Finally, the
transverse shear stresses are obtained by repB&gi(@2B3c) into Eq(23b),

1IN [ 2 * 1IN [
to(2), =- —xsi(d - %! (3
w2 o X L |
O Wl (24)
_oz AN 2 YN
t,(2), =- o i:lﬂ—ypxsy(a s i:lﬁpxxy(z)

5 VERIFICATION STUDIES
The accuracy of th@LRZ elementor isotropic homogeneous material is studied in
this section. The aim is to evaluate the behavibthe QLRZ element wherr,

(i =X, y) vanishes which leads p, =0 and the kinematics of Eq.(1a) coincide with
that of RMT.
This study consists in analyzing a SS and a clangop@re plate of side length

L =2 and thicknes$h=0.05 (/ = % =40) under a uniformly distributed load =1
and a point load® =4 acting at the center (Figure 3). Isotropic homagers material
properties are assumed with:=0.219, /7=0.25, andG = E/2(1+m) .

a)

F a——

Figure 3 — Square plate/( = 40) for verification and convergence analysis. SSeplander uniformly
distributed load a) and point load b). Clampedeplatder uniformly distributed load ¢) and pointdad).

14



Assuming symmetry along both axes, only one quaiténe plate is analyzed. Five
different meshes of QLRZ elements (figure 4) whps®perties are listed in table 2 are
employed.

a) b) c) d) e)

Figure 4 — Meshes of NxN QLRZ elements employed for veatfien and convergence analysis. a) N =
2;b)N=4;c)N=8;d) N=16;e) N =32.

Meshes Properties
Mesh | N | Elements| Nodes| DOFs
1 2 4 9 45
2 4 16 25 150
3 8 64 81 405
4 |16 256 289 1445
5 |32 1024 1089 | 5445

Table 2— QLRZ meshes properties.

In order to asses the element accuracy, the fallgwelative error is defined as

W - W

=— 25
& (25)
where w is the vertical deflection at the center point pomed with theth mesh

(i=1,2,...,5 andw, is theanalytical Kirchhoff solutiordefined as

Fx" E K
W, =g %—— Wlth D=—F——— 26
K D 12>(1-/ﬁ) (26)

whereF denotes the load amds a coefficient dependent on the boundary
conditions and the load. The analytical solutionthefproblem are shown in Table 3.

Analytical Kirchhoff solutions

Boundary Load F | n | w (Kirchhoff)
Ss Distributed | 0,00406f q 4 0.02671101
Point 0,01160f B 2 0.07627397
Distributed | 0,00122) q 4 0.00828493

Clamped -
Point 0,00560f P 2 0.03682192

Table 3— Analytical Kirchhoff solutions.

The QLRZ solution of the problem and the relativeoeare presented in Table 4.
Figure 5 shows the behavior of the error. LabelsPSSS-qg, C-P, and C-q in Figure 5

15



refer to simply-supported-point-load, simply-sugpedrdistributed-load, clamped-point-
load, and clamped-distributed-load, respectively.

Relative error (&%) of w at center point
Load Mesh SS Clamped
w er (%) w er (%)
3 2x2 0.026150| -2.100 0.0080239 -3.140
= 4x4 0.026638| -0.273 0.0082998 0.17p
= 8x8 0.026744| 0.123] 0.0083747 1.083
.g 16x16 0.026770, 0.2200 0.0083939 1.315
32x32 0.026776| 0.243 0.0083988 1.374
2x2 0.076049| -0.294 0.0322470 -12.4p4
= 4x4 0.076392| 0.154f 0.0360900 -1.9§47
'é__: 8x8 0.076767| 0.646f 0.0371910 1.00p
16x16 0.076966/ 0.907] 0.0375650 2.018
32x32 0.077097, 1.0790 0.0377400 2.493

Table 4 Relative errore, of w at center point.

FXCK

e (%)
A

0O B O e
o
0

12 I

14
10" 10° 10° 10*
DOFs

Figure 5— Relative errore, of central deflectionv values.

Table 5 shows that the converged solution is obthfor the 8x8 mesh (N° 3). Good
accuracy is obtained already for the 4x4 meghegs than 2.5%). Results for the SS

case (error 1.0%) are better than for the clamper ®he worst result is obtained for
the clamped plate under central point load forzk2 mesh ¢ =-12.42%).

6 CONVERGENCE STUDIES

We study next the influence of the heterogeneityhef composite material on the
convergence and accuracy of the QLRZ element, ariSclamped square plates of

length sideL =2m and thicknessh :O.Jm(/ = 20) under uniformly distributed load
q :1N/m2 (Figures 3a and 3c). Three different compositeinated materials, whose

16



properties are shown in Table 5, are consideredefmh example. The degree of
heterogeneity increases from composite C1 to C3.

Properties L?.lygg)l Layer 2 (I_Bez)};i)rrﬁ)
h [m] h/3 h/3 h/3
Composite C1| E [MPa] 0.219 0.219 x10" 0.44
0.25 0.25 0.25
h [m] h/3 h/3 h/3
Composite C2| E [MPa] 0.219 0.219 x10° 0.219
0.25 0.25 0.25
h [m] h/10 h/1.25 h/10
Composite C3 | E [MPa] 0.219 0.725x18 | 0.73E x10'
0.25 0.25 0.25

Table 5— Composite material properties.

Taking advantage of symmetry only one quarter efteplis analyzed using the
QLRZ meshes described in section 5 (Figure 4).r€ference solution was obtained by
a 3D finite element analysis using a mesh of 1091(& elements per ply) 20-noded
hexahedral elements involving 4499 nodes and 189Fs (Figure 6).

a)

L L.

Figure 6 — 10x10x9 HEXA20 meshes employed to compute tfegeace solution for composite C1 and
C2 a), and composite C3 b).

Convergence is quantified by the relative erroirdef as
e = m- my

(27)
My,

17



where m and m,, are the magnitudes of interest obtained withith€LRZ mesh
(i =1,2,...,5) and the 3D reference solution, respectively. Tregmtudes studiedh
are: the vertical deflectiow at the center point C (Figure 3), the axial stresson the
top surface of ply 1 at point E, apd, at point E. Sincg/, does not appear in 3D finite
element analysis;n and m,; are the values of this magnitude obtained usimgtth
QLRZ mesh(i =1,...,4 and the finest mesh (32x32), respectively. Thaltesbtained

are shown in Tables 6-7, and Figures 7-8.

It is clearly seen that convergence is always stoiwe the more heterogeneous
material and for the clamped plate.

For the clamped plate and the three materials €T@pkrrors are less than 10% for
the 16x16 mesh for all variables. For the SS [aable 7) errors are less than 2.3% for
the 8x8 mesh in all cases.

For composite C1 (the more homogeneous one) ererkess than 2.9% for the 8x8

mesh in all cases and less than 6.3% for the 4x¢hnmeall cases except far, in the

clamped plate.

For the more heterogeneous material (composite 1@8)difference in the results
between the SS and the clamped plate is largethed8S plate (Table 7) errors are less
than 2.3% for the 8x8 mesh in all variables. Far ¢tamped plate (Table 6) errors are
less than 23% for the 8x8 mesh and less than 10%hddl6x16 mesh in all cases.

The quality of the results obtained for the comi@st2 are between that of
composites C1 and C3.

Relative error e (%) in clamped plate

w at point C x at point E x at point E
Cil C2 C3 Cil C2 C3 Cl Cc2 C3
2x2 | 11,71 50,28 60,99 99,99 100 100 26{13 80,09 488
4x4 4,65 30,16] 43,47 20,86 44,14 45p3 -6/28 43,54,80
8x8 1,60 12,32 22,44 2,9( 1435 17p4 -1,47 13,68,58
16x16| 0,29 3,67 9,25 -1,21 -0,40 -1, -0,30 2,58 22
32x32| -0,14 0,69 2,85 -2,22 -4,70  -4,62 0,00 0,00 0,00
Table 6— Clamped square platé (= 20) under uniformly distributed load. Relative er@r(%) forw,

Mesh

)

S.,andy .

Relative error e (%) in SS plate

w at point C x at point E « at point E
C1 C2 C3 C1 C2 C3 C1 C2 C3
2X2 2,69 | 19,36 2583 26,98 32,89 334 -901 4106 51,9
4x4 | 0,68 6,50 | 10,14 4,86 7,7( 90p -3,99 895 1367
8x8 | 0,25 1,54 2221 -030 -0,79 04 -0,71 -0,40 -1|84
16x16] 0,15 0,38 0,35 -155 -3,04 -192 0,07 -045 -1}44
32x32] 0,12 0,12 | -0,02] -1,86 -349 -207 0,00 0,00 0,p0

Table 7— SS square plate/ (= 20) under uniformly distributed load. Relative ergi(%) forw, S,

Mesh

andy .
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@) (b) (c)

Figure 7 — Clamped square platé (= 20) under uniformly distributed load. Relative ermi(%) forw
a), S, b),andy  c).

(@) (b) (©)

Figure 8 — SS square plate/ (= 20) under uniformly distributed load. Relative er@r(%) forw a),
S, b),andy, c).

7 COMPARISON STUDIED FOR SS SQUARE AND CIRCULAR
COMPOSITE LAMINATED PLATES

In order to show the performance of the QLRZ eletnien highly heterogeneous
composite material, a square SS plate of lerigth2m and thicknesdh=0.1m, and a
circular SS plate of diametet=2m and thicknes$ =0.1m are studied. The structures

are loaded under a uniformly distributed load; 10000N/m2 (Figure 9).

Each plate is studied for different composite laael materials with properties
shown in Tables 8 and 9. The square plate is aedlfar composites C4-7 and the
circular plate for composites C6-7.

Do to symmetry only one quarter of plate is analiyasing the QLRZ meshes
shown in Figure 10 whose properties are listedahld@ 10. The reference solution is the
3D finite element analysis using HEXA20 elementse Tifferent 3D meshes for each
case are shown in Figure 11. Details of each meshigen in Table 11.

The RMT results for the square plate of compos#ea also shown in Figure 12.
The RMT solution was obtained by using a mesh ofl66four-noded QLLL plate
element [13, 14]
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a) b)

Figure 9 — Square SS plate a) and circular SS plate b)rundéormly distributed load.

Layer material properties
A B C D

E: 157.9x16 19.15

E, 9.58 x106 19.15 | 0.104 x16 | 104.1 x18
Es 9.58 x106 191.5

12 0.32 6.58 x10
13 0.32 6.43 x18 0.30 0.31
23 0.49 6.43 x10
G 5.93 x16 | 42.3 x10
12 X X 0.04x16 | 39.73x18
Gz | 5.93x16 36.51

Gz | 3.23x16 124.8
Table 8— Layer material properties. E and G are givekii®a.

Composite laminated materials

Composite| Layer distribution hk / h
C4 (A/CIA) (0.1/0.8/0.1)
C5 (A/B) (0.5/0.5)
C6 (A/B/C/D) (0.1/0.3/0.5/0.1)
C7 (A/C/AICIBICIAICIA) | (0.1/0.1/0.1/0.1/0.2/0.1/0.1/0QL1)

Table 9-Layer distribution of the composite materials.
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a) b)

Figure 10— QLRZ meshes. Square plate: 8x8 a) and 16x16egleh). Circular plate: 40 ¢) and 168 d)
elements.
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c) d)

e) f)

Figure 11— HEXA20 reference meshes. Square meshes for @tapd4 a), C5 b), C6 c), C7 d), and
circular meshes for composites C6 e) and C7 f).
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QLRZ meshes properties
Meshes |\, | Numberof | 4es | DOFs
(Figure 10) elements
a 8x8 64 81 567
b 16x16 256 289 2023
c -- 40 53 371
d -- 168 193 1351
Table 10— QLRZ mesh properties.
HEXA20 mesh properties
Mesh . Number
(Figure 11) Composite of elements Nodes | DOFs
a C4 640 3285 9855
b C5 512 2673 8019
C C6 768 3897 | 11691
d C7 1728 8487 | 25461
e C6 602 3094 9282
f C7 1161 5824 | 17473

Table 11- HEXA20 mesh properties.

Figures 12-17 show the computed vertical deflection(a), the thickness
distribution of the axial displacemeunt(b), the axial stress, (c), the transverse shear

stresst,, (d) for each plate under study.

The vertical deflection is accurately captured.ti#d¢ center of plate, the maximum
error (14%) is given by the circular plate of compo€£6 using the 40-element mesh
(Figure 16a). For the finest mesh (168 elementsttdmputed errors are less than 10%.

The thickness distribution of the axial displacemisnaccurately predicted in all
cases. The ability to capture the complex kinersaifdaminated composite materials is
a key feature of the QLRZ plate element. The swgfaksxial displacement prediction
leads to accurate axial stress values as showigimes c). Figures d) display the good
results for the thickness distribution of transeesfiear stresses computegosteriori
using Eq.(24).

Results demonstrate the good performance of theZ@l&ment.

Figure 12 shows the inaccurate results when maglalicomposite laminated plate
using QLLL elements based on RMT. The deflectiothatplate center is three times
stiffer than the reference solution (Figure 12d)e RMT solution also yields an
erroneous linear thickness distribution of the bdisplacement (Figure 12b), which
leads to a distorted distribution of the axial s¢réFigure 12c¢). Finally, the RMT is
unable to capture the correct transverse sheasdlistribution (Figure 12d).
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a) b)

Figure 12— SS square plateunder uniformly distributed loacComposite C4 a) Vertical deflection
along central line BC. Thickness distribution of:axial displacement at point B, c) axial stress_ at

the center point C, and d) transverse shear strgss point E.
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a) b)

Figure 13— SS square plateunder uniformly distributed loa€Composite C5 a) Vertical deflection
along central line BC. Thickness distribution of:axial displacement at point B, c) axial stress_ at

the center point C, and d) transverse shear strgss point E.
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a) b)

Figure 14— SS square plateunder uniformly distributed loacComposite C6 a) Vertical deflection
along central line BC. Thickness distribution of:axial displacement at point B, c) axial stress_ at

the center point C, and d) transverse shear strgss point E.
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a) b)

Figure 15— SS square plateunder uniformly distributed loacComposite C7 a) Vertical deflection
along central line BC. Thickness distribution of:axial displacement at point B, c) axial stress_ at

the center point C, and d) transverse shear strgss point E.
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a) b)

Figure 16 —SS circular plateunder uniformly distributed loa€Composite C6 a) Vertical deflection
along line BC. Thickness distribution of: b) axii$placement at point D, c) axial stress, at the

center point C, and d) transverse shear strgsat point D.
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a) b)

Figure 17— SS circular plateunder uniformly distributed loa€Composite C7 a) Vertical deflection
along line BC. Thickness distribution of: b) axii$placement at point D, c) axial stress, at the

center point C, and d) transverse shear strgsat point D.

8 MODELING OF DELAMINATION WITH THE QLRZ ELEMENT

Delamination, i.e. interlaminar cracks, is a commamd dangerous source of
damage in laminated composite materials [15], heaheehigher interest of scientific
community in its modeling. The simulation of delaiadion in plate and shell structures
is still a challenger in computational solid medean Among the most popular
techniques to model the delamination phenomenontlaeVirtual Crack Closure
Technique(VCCT) [16], the Cohesive Finite Elementd7-19] and the @Gntinuous
Mechanicsusingdamage modelf20]. All of them need a "3D discretization" arak
mentioned above, this may lead to expensive cortipntd costs for laminated
composites of hundred of plies. Therefore, the afsplate models able to simulate
delamination is a motivating alternative.
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In this section, the capability of the QLRZ elemet®t model effectively
delamination effects in laminated composite plaseshown. The delamination model
chosen here simply implies introducing a very thiynbetween adjacent material layers
in the laminated composite section. Delaminatiocucg when the material properties of
the added ply are reduced due to interlaminar ailoy using a continuous damage
model. The QLRZ element with this simple delamioiatmodel can take into account
the reduction of the plate stiffness do to therlatainar failure. Moreover, the QLRZ
element can also accurately represent the jumipeirmxial displacement field across the
layers.

Next we present an example where the SS square @idtigure 9a L =2m and
h=0.1m) is analyzed under uniformly distributed Ioamlzloooa\l/nf. The C7
composite laminated material is employed (Tablea®) its material properties are
shown in Table 8. The objective is to simulate awfeation between layers 3 and 4 by
introducing a very thin layeri(=0.001m) between these two layers (Figure 18), whose
initial properties coincide with those of the layerThe delamination is progressively
induced by reducing the shear modulus of the iaterflayer up to 5 orders of
magnitude fromG,, =0.04x10 MPa (model 1) to G, , =0.04x10* MPa (model 6)

(Table 12). This reduction is applied over the vehplate surface. The QLRZ solution
is obtained by using the 16x16 mesh of Figure 1 feference solution employed is
obtained by a 3D finite element analysis using ahma 8x8x28 HEXA20 elements (3
elements per layers L1-9, and 1 element for thexfate layer).

Figure 18— Laminated composite C7 to which a thin interfleger between layers 3 and 4 is added.

Shear modulus values for interface layer

Model | G. [MPa] | Model | G [MPa]
1 0,04x18 4 0,04 x16
2 0,04 x16 5 0,04 x10
3 0,04 x16 6 0,04 x1G

Table 12— Induced shear modulus values of the interfagerltor delamination study.
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Figure 19 shows the evolution of the vertical deften at the plate center in terms
of the shear modulu§,; (i =1,...,6 of the interface layer (Table 12). Note that the

deflection increases as the shear modulus decreAtsrs it is interesting that the
deflection does not change after modelQ, { = 0.04x10"* MPa). This may mean that

after this value ofG, ; the composite C7 is separated into two completsgonnected

parts (layers 1-3 and layers 4-9), and, therefiereinable to transmit the shear stress
across the section. The relative error for the re¢nleflection, between the QLRZ and
the HEXAZ20 solutions, is near to 25% for model 6.

Figure 20 shows the thickness distribution of thealadisplacement along
direction measured at point E (Figure 9a). As canobserved, the jump of axial
displacement between layers 3 and 4 during delammma well captured. Note that the
jump remains stationary after model 5 accordingh® no change in the deflection
value.

Figure 19— Vertical deflection at center of plate for th#atent shear modulus values of the interface
layer.
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a) b)

c) d)

Figure 20— Thickness distribution of axial displacementngla direction at point E for each model.
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9 CONCLUSIONS

A simple, robust, shear locking free and accurateded plate element (called
QLRZ) based on theefined zigzag theorlgas been presented. The shear locking defect
was overcome by introducing assumed linear shear strain fieldhe element has
only seven unknowns per node which are interpoldtgdstandard & linear shape
functions. The thickness distribution of the tramseeshear stresses is accurately
reproduced by posterioricomputational process. The verification analysis Shown
that the element is able to accurately model platesromogeneous material for
different loads and boundary conditions. The inficee of the heterogeneity of
composite laminated material on the convergenceaandracy of QLRZ solution has
been studied. An important feature of the QLRZ apins its ability to capture the
zigzag distribution of axial displacement and thbsequent complex strain and stress
distribution across the thickness with the simgdpraximation chosen. This property
makes possible to predict delamination effects tahas been shown in a simple
demonstrative example.
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ANNEX'|

SHEAR LOCKING SOLUTION

It is known that the standard four node plate el@nbased on thReissner-Mindlin
theory (RMT) exhibits shear locking for thin platds]. Taking into account that the
kinematic of RZT is a sum between the RMT and tigeag displacement, we assume
that the QLRZ element also suffers this defectsHssumption will be later evidenced
in this section.

In the next we present two alternatives to overctimsedrawback. The first is based

on areduced integratiorof the transverse stiffness matt (Eqg.(20a)). The second is
based on aassumed transverse shear strain figld].

Al.1 REDUCED INTEGRATION

It is well known that shear locking can be elimathby using reduced integration of
the transverse shear stiffness matrix. Let us remeenthat K, has second-order

polynomials for rectangular elements, this mearsiactintegration is obtained using
a 2x2 Gauss quadrature. Tieelucedintegration implies using a 1x1 Gauss quadrature.
Let us retake the previous matt from Eq.(20a)

]
K, =K +K, +K , +K (AL.1)

In order to assess the influence of the reduceepration of the matrix, , the
following integration combinations are selected.
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INTEGRATION COMBINATIONS
Combinations Exact Reduced

C1 Ky & Kg K,

C2 Ky K 7 Ky

C3 - K,

Table Al-1 — Integration combinations used to assess theandle of the reduced integrationof .

The two key attributes of the reduced integrati@ehhique are, first, easy
implementation in a finite element code, and secangéduced computational cost. As a
drawback, the reduced integration can originate nechanisms (in addition to the
rigid body motions) incompatible with the boundagnditions, which can propagate
within the mesh. This problem is shown in the exi®pf section Al.3.

Al.2 ASSUMED TRANSVERSE SHEAR STRAIN FIELDS

A thin plate element must satisfy Kirchhoff condrti of zero transverse shear
strains, that is

e=g+e =0 (AL2)
where g, and g, contain the average transverse shear strains df @) and g,, )
and the primary kinematic variablgs, andy , (Eq.(1b)), respectively. Although the
condition (Al.2) impliese, + ¢, =0, we know that shear locking in a 4-noded Reissner-
Mindlin element is due tog, [13], therefore, we consider that this effect ihRZ
elements is also due to the RMT transverse sheainst,. Taking into account that
e, = &, the condition (Al.2) can be reduced to

A

e =0 (AL3)
With the aim of demonstrate the origin of the lokieffect in the QLRZ element,
€. is explicitly developed by using Eqgs.(16a) and)(Fbr simplicity, we considey,,
only.
From Eqg.(16a),

w, ¢ ‘HN-X
1, =—2- g= —xw - N xq, (Al.4.a)
TR L “
Substituting Eq.(16a) into Eq.(Al.4.a)
M ¢ 1 xh h X xh
= 1w + 2Tlw- Lgxht g xx- 1L g xxh
gXZ 1 4 QI 4%I Q QI

o da 2% T T4
(Al.4.b)
Factoring Eq.(Al.4.b)

9.= a(Ww,q,)+a,(w.q,)% a,q,) x a,q,) Xk (Al.4.c)
The Kirchhoff condition (Al.3) impliesz, =0(i=1,2,3,4. a,=0 anda, =0 are
physically possible and they impose a relationdlepveeng, and w. However, the
element is unable to satisfy naturally the condgia, =0 anda, =0, unlessg,, =0,
which leads tow, =0 (shear locking effect). Identical conclusion canfound forg,,
simply by replacingx by # andg, by g, .
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Hence, it is possible to avoid the shear lockinigcteby imposing a transverse shear
strain field (figure Al-1) like
gxz _ %(Wi'qxi)-'-az(vvi’qxi)v7 -D (e)
= =B. &
9, a?,(Wi’qyi)+a4(\Ni’qyi)>¢7

éS = S
where B, is thesubstitutive shear strain generalized matbhis matrix is used

(AL5)

instead of the originaB, for computing the shear stiffness matridg¢s and K, of
Eq.(20b), i.e.
K.= BJxD B, 0A
Ao (AL.6)
Kssf = ABST>DSS fs dA
These matrices can now be integrated exactly wsZx Gauss quadrature.
Summarizing, the idea of this technique is to ingpte priori" a transverse shear
strain field, which allowing the vanishing of, in the thin limit. The assumed

transverse shear strain interpolation is

m

&= Nyxg N, % (Al.7.3)

where g, are the average trl;l_;sverse shear strain values @ints within the
element andN, are the shear interpolating functions. By comhantégs. (16a)and
(Al.7.a) is obtained
&= N, 8,38 B & (AL7.b)
and the new interpolations ai;e

a=Nxd” ; & =N, ¥° (Al.8)

Figure Al-1 — Imposed transverse shear strain field.

Al.2.1 Computation of substitutive shear strain generalimetrix
The natural transverse shear strain fieldvergby [13, 14]

al

. B a,+ta 1 2~ 0 0 a
= %o atah 22 A & (AL9)

g, astax 0 0 1x a,

a
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The transverse shear straigsin the cartesian coordinate system are expressed a

é, = Fa =J' g (Al.10.3)
gyz
whereJ is the 2D Jacobian matrix
=x Ty
3= W W (A.10.b)
™ Ty
T Yh

The coefficientsa, are obtained by sampling the natural shear st{&q<gAl.9)) at
the four points shown in Figure Al-2, with
g, =(a+ah)cod {a, ax) si@, ;i - (Al.11)
where d is the angle betweer direction and the naturat axis. Combining Egs.
(Al.9) and (Al.11) gives

9% 1 -10 0 a
9. 0 01 1 a,
9. = = X =
9. 1 1.0 0 a (Al.12)
g; 0 0 1 -1 a,
a=Phy.
where the straing.. are related tg, andg, by
9,
9
% 10000000 %
g 0 00100O0O0UQgG N
g = 7 = x SN (ALL13)
g, 00001000 g
g. 000O0O0O0O01g
g,
9,

Combining Egs. (Al.9), (Al.12) and (Al.13) gives
& =A% X K (Al.14)
The cartesian transverse shear strajnat the sampling points are related to the
natural transverse shear straijpsby
J 0 0 0 g
0 5 00 % ¥ . 7 e (Al.15)
0 0 F 0 g 9y,
o 0 0JF g
The relationship between the cartesian shearnstr@i at the four sampling
points (figure Al-2) and the nodal displacemeaf? is

g =
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g=B_x=® (Al.16.a)

with
B.=[By B, Bg By (Al.16.h)
where B (i =1 2,3,1) is the original transverse generalized strain méiEq.(16c))

at theith sampling point.
Combining Egs. (Al.10.a), (Al.14), (Al.15) and (A6.a) gives

& =J"xA P! &K CxBxa xB=¢ (Al.17)
where ES Is the sought substitute transverse shear strairixwgiven by
B, =J'xA RP* & CxB, (Al.18)

Figure Al-2 — QLRZ plate element.

AlL3 STUDY OF ALTERNATIVES

In order to show the efficacy of the two selectdetraative and to show the
mechanisms creation when the reduced integratidn§able Al-1 are used, are
analyzed tow case.

A simply supported square plate of length slde 2 under a uniformly distributed
load of unit value ¢ =1) is analyzed in the first example (Figure Al-3B)e analysis is
performed for four span-to-thickness ratids= L/h =5,10,50,10(. A clamped square
plate of length sidd. =2 and thicknesdh=0.2 (/ =10) under a center point load of
value P =4 is studied in the second example (Figure Al-3bjthBstructures have
using a composite laminated material whose prageedre listed in Table Al-2. Only
one quarter of the plate is studied due to symm(&igure Al-3) using a mesh of 16x16
QLRZ elements (Figure Al-4a) whit 289 nodes and5LBOFs. The reference solution
is obtained by a 3D finite element analysis usingesh of 10x10x9 (3 elements per
ply) of 20-noded hexahedral elements (HEXAZ20) imuny 4499 nodes and 13497
DOFs (Figure Al-4b).

€Y (b)
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Figure Al-3 — Simply supported square plate under uniformjritiuted load a). Clamped square plate

under center point load b).

Composite material properties
. Layer 1 Layer 3
Properties (top) Layer 2 (bottom)
h 0,254/, | 0,504/ | 0,254/
E 2,19E5 2,19E4 4,4E5
G 0,876E5 | 0,876E4 1,76E5

Table Al-2 — Material properties for shear locking study.

a) b)

Figure Al-4 — Meshes used for the analysis of one quartdre8S plate. 16x16 QLRZ elements a) and

10x10x9 HEXA20 elements b)

Figure Al-4 shows the ratio defined as

_ Worrz

r =
W3D
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where w, ., andw,, are the middle deflection at the plate centerinbtawith the
QLRZ element and the 3D finite element analysispeetively. The QLRZ element
results have been obtained usiegact integration of matrixK, (exact), areduced
integration of matriceX, K, and K, for the three combinations of table Al-1 (C1,

C2, and C3), and finally using theessumed transverse shear strain figdthnique
(QLRZ).

(@) (b)

Figure Al-5 —r ratio vs. span-to-thicknegs Simply supported square plate under uniformlyridisted
load. Figure a):xactintegration (exact) and the three integration corations (C1, C2, and C3) of table
Al-1. Figure b): eactintegration andssumed transverse shear strain figl@dRZ2).

Figure Al-5 clearly shows the shear locking defedten exact integration df © is
used. However, this defect disappears by using teatimiques.

Figure Al-6 shows the distribution of the verticflectionw along the plate central
line BC (Figure Al-3b) obtained witexactintegration of matrixK, , by usingreduced
integration (Table Al-1) andassumed transverse shear stragchnique, and 3D
analysis (HEXAZ20). Figure Al-6a reveals the exisemf mechanisms in mesh when
reduced integration is used. These mechanisms dappear if theassumed transverse
shear strairtechnique is used.
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€Y (b)

Figure Al-6 — Vertical deflectiorw along BC. Clamped square plate£10) under a center point load.
Figure a): gactintegration (exact) and the three integration corations (C1, C2, and C3) of table Al-1.
Figure b): &actintegrationassumed transverse shear strain figl@sRZ), and 3D analysis (HEXA20).

The results show that tressumed transverse shear stré@chnique is adequate to
develop a robust shear locking free plate element.
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