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Abstract. Tra�c congestion is a major issue that plagues many urban
road networks large and small. Tra�c engineers are now leaning towards
Intelligent Tra�c Systems as many physical changes to road networks
are costly or infeasible. Multi-Agent Systems (MAS) have become a pop-
ular paradigm for intelligent solutions to tra�c management problems.
There are many MAS approaches to tra�c management that utilise mar-
ket mechanisms. In market-based approaches, drivers “pay” to use the
roadways. However, a major issue with many of these solutions is that
they require technology that, as yet, does not exist or is not widely
available. For example, they rely on a special software agent that resides
within the vehicle. This “vehicle agent” is responsible for participating
in the market mechanism and communicating with the transportation
infrastructure. In this paper, an auction-based tra�c controller is pro-
posed which exploits all the benefits of market mechanisms without the
need for a vehicle agent. Experimental results show that such a controller
is better at reducing delay and increasing throughput in a simulated city,
as compared to fixed-time signal controllers.

1 Introduction

Tra�c congestion occurs when the volume of tra�c exceeds the capacity of the
infrastructure and causes tra�c flow to slow. Over 60% of commuters in England
and Wales drive to work [13]. In London, despite having access to an extensive
public transportation network, over a quarter of Londoners still choose to drive
to work [13]. During rush hours, tra�c volume often reaches levels that severely
strain current tra�c management systems. Tra�c volume and common work
hours are just two of the many factors that can grind tra�c to a halt. This
type of recurring congestion pattern is responsible for 86% and 32% of tra�c
congestion in France and Germany respectively [1]. The cost of tra�c congestion
can be measured both in time and money. According to a report put out by the
Centre for Economics and Business Research (CEBR), drivers in London waste
around 66.1 hours a year waiting in tra�c. All those hours add up and across
the UK close to e4.94 billion [2] are lost in the form of fuel and the increased
cost of delivering goods. Other European countries face similar monetary losses.



Tra�c congestion costs France, Germany, and Spain e5.55, e7.83, and e5.5
billion respectively [2, 8]. The estimated annual cost of congestion in the EU is
e111.3 billion [8]. The staggering cost of tra�c congestion and its complexities
make it an attractive problem to help solve.

There are many tools at the disposal of transportation departments to man-
age tra�c flow. Tra�c lights are probably the most prevalent means of con-
trolling tra�c. Other methods include stop signs and roundabouts. Although
many tra�c lights rely on simple fixed protocols, they are none-the-less a vital
component of tra�c management [4]. More advanced adaptive Urban Tra�c
Controllers (UTC), such as RHODES [17], OPAC [11] and SCOOT1, have been
developed in an e↵ort to improve the performance of tra�c lights [22, 18]. Adap-
tive UTC use information about current road conditions and determine, some
in real-time, the best signal settings. Adaptive UTC attempt to harmonise the
interplay between all aspects of tra�c (private cars, public transportation and
pedestrians) in areas ranging in size from a few city blocks to entire cities. The
majority of adaptive UTC employ optimisation algorithms which are costly to
develop, maintain and expand [22].

The fundamental nature of tra�c flow makes it an ideal problem for Multi-
Agent Systems (MAS). Tra�c control is geographically distributed, takes place in
a dynamic environment and the interactions amongst its components are highly
complex [7]. It is easy to see all the vehicles, pedestrians, cyclists and tra�c
control mechanisms as a collection of autonomous agents interacting in a large
space. The MAS paradigm o↵ers a flexible and inexpensive method for designing
tra�c control solutions [22]. There is a plethora of tra�c control solutions that
fall under the umbrella of MAS. Our work focuses on those solutions that utilise
market-based mechanisms.

Our approach for controlling tra�c signals has been greatly influenced by co-
ordination e↵orts in Multi-Robot Routing (MRR) [9, 12, 14, 19]. Auctions, which
are a form of market-based mechanism for resource allocation, can produce near
optimal results in some MRR scenarios [16]. Tra�c control can be viewed as a co-
ordination problem [5] where tra�c signals work together to maintain adequate
tra�c flow and minimise delays. A common theme in the existing literature on
auction-based tra�c controllers is the need for a vehicle agent, which refers to
a vehicle-borne software system responsible for tasks as simple as vehicle-to-
infrastructure communications to more demanding vehicle navigation and con-
trol.

There are two main problems with any system that relies on vehicle agents:
the development and deployment of vehicle agents and the transportation infras-
tructure. Car manufacturers will have to agree on international communication
protocols, physical specifications and the many other aspects of deploying ve-
hicle agents to the millions of vehicles that are currently in use. Second, the
communication infrastructure within the tra�c system itself currently does not
exist. Our overarching goal is to design a system that reaps the benefits of a mar-
ket mechanism but does not require wide deployment of futuristic technology.

1
http://www.scoot-utc.com



We demonstrate a simple approach to such as system here. Section 2 discusses
other auction-based approaches to tra�c control, focussing on the MAS litera-
ture. Section 3 presents our approach. Sections 4 and 5 describe our experiments
and results. Finally, we close with some discussion (Section 6) and conclusions
(Section 7).

2 Related Work

Dresner et al. [10] designed a reservation-based tra�c management system to
reduce tra�c congestion. In a reservation-based system, cars request time slots.
The time slots are time spans when the car is allowed to occupy the intersection.
The reservation-based system functions on a first-come, first-served basis. In the
reservation-based system, cars (or agents) request a space in the intersection.
The authors measured the delay experienced by vehicles passing through the
intersection. Dresner et al. [10] compared their reservation-based approach to two
other tra�c control schemes: overpass and tra�c light. Overpass simulates a road
with absolutely no signals. Tra�c light simulates how current signals functions.
Dresner et al. [10] found that their reservation-based system outperformed the
normal tra�c light.

Vasirani et al. [21] expanded on Dresner’s work and examined the perfor-
mance changes to a reservation-based system where time slots were allocated
via a combinatorial auction. And they also expanded [10] to include multiple in-
tersections to study the e↵ects of such a market-based reservation system would
have on drivers’ route choice. They viewed the space within an intersection as
a resource and managed that resource using a market-based system. Vasirani
et al. [21] looked at the delay experienced by drivers based on the amount they
were willing to “pay” to use the intersection under various tra�c densities. They
were interested in finding out if a driver was willing to pay more would they ex-
perience less delay. They also looked at the delay experienced as tra�c volume
increased across the intersection. Vasirani et al. [21] found that initially having
a willingness to pay does decrease delay, but eventually this levels o↵.

Carlino et al. [6] described a tra�c management system where auctions are
run at intersections to determine use. This solution assumes vehicles have an
embedded agent bidding on their behalf, which is referred to as the wallet agent.
A system agent also bids in a manner that facilitates tra�c flow beneficial to
the entire transportation system—while the wallet agent is solely concerned with
getting its occupants to their destination in the least expensive (and quickest
way). Carlino et al. [6] used a second-price sealed bid auction mechanism. They
tested four di↵erent modes: FIFO (this is how your typical intersection works),
Equal (every driver submits a bid of one, Static Wallet), Auction (drivers use
the Fair Wallet, and Fixed (drivers always bid the same amount based on the
value they’ve assigned for the trip). FIFO performed the worst.

Schepperle et al. [20] created a valuation-aware tra�c-control mechanism
which allows concurrent use of the intersection through an auction mechanism.
In a valuation-aware tra�c controller, the intersection takes into account the



driver’s value of time; but many of these systems do not allow concurrent use of
the intersection. Schepperle et al. [20] proposes two auction-based mechanisms:
Free Choice and Clocked. In Free Choice, the auction winner gets to select the
time slot it wants from an interval; while in Clocked, time slots are auctioned o↵.
Schepperle et al. [20] concluded that Free Choice reduced the average weighted
wait time by up to 38.1%. Clocked reduced the average weighted wait time for
only lower degrees of concurrency and high tra�c volume. Like other works of
this nature, [20] assumes that cars have a vehicle agent and that intersections
have an agent as well. Our approach, detailed in the next section, does not
involve a vehicle agent.

3 Our Approach: Auction-based Tra�c Signalling

In this section, we describe our auction-based mechanism for tra�c signalling
which does not employ vehicle agents. Instead, we use an intersection agent (as
an auction manager) and tra�c signal agents that represent the tra�c signals at
each intersection—one per pair of opposing-direction tra�c flows (i.e., opposing
tra�c light phases). Thus, at every crossroads, there is an intersection agent
working in concert with two tra�c signal agents to adapt the signal timing to
meet tra�c demands. This scheme is illustrated in Figure 1. Each intersection
functions on a two-phase tra�c light programme: one light phase for north/south
bound tra�c and the other phase for west/east bound tra�c. Figure 2 illustrates
one tra�c light phase.

τ

v

u

Fig. 1: Tra�c Signalling Scheme. The magenta rectangles represent the pre-existing
induction-loop sensors for the west/east tra�c signal agents; cyan rectangles for the
north/south tra�c signal agents. Brown circles indicate intersection agents (though
they have no physical embodiment in the simulated system). In addition, the following
parameters are indicated: v is the volume of tra�c as measured by an induction-loop
sensor; u is the occupation level between consecutive intersections; and ⌧ is the occu-
pation level between the sensor and the intersection. (See text for further explanation.)



Our tra�c signal control mechanism employs a first-price, single-item auc-
tion. As tra�c flows through the intersection, auctions take place at fixed inter-
vals (auction frequency). The two tra�c signal agents bid against each other to
increase the amount of green time in their respective phases. The winner is the
tra�c signal agent with the highest bid. The winning agent gains 5 additional
seconds of green time, while the loser’s green time decreases by the same amount.
The cycle length remains the same, but the amount of green time changes.

Note that the auction frequency does not (have to) match the cycle length. An
auction may occur in the middle of a cycle or after a series of cycles have passed.
Green time is only updated after the current tra�c light phase has completed.
As a safeguard against starvation, tra�c signal agents are prevented from having
less than 10 seconds of green time. Starvation is defined as the situation where
tra�c is prevented from flowing in a particular direction. Gridlock is defined as
the situation where starvation occurs in both directions.

Tra�c signal agents use road sensors to assess road conditions and generate
an appropriate bid. Road sensors include, but are not limited to, inductive-loop
vehicle detectors and cameras. The former are loops of wire buried in the road
with a current running through it. Vehicles are detected via disruptions in the
magnetic field of the wire loop caused by the metal body of the vehicle. Each
induction-loop sensor (the magenta and cyan rectangles illustrated in Figure 1)
computes v, the number of vehicles that have crossed the induction-loop in a
fixed time period. The induction-loop sensors are located 20 meters from the
intersection.

time
A1: green time

A2: green time

cycle length

A1: traffic signal

A2: traffic signal

Fig. 2: Tra�c signal sequence. Two tra�c signal agents are shown (A1 and A2), repre-
senting opposing light phases. In our experiments, the overall cycle length is fixed. The
two tra�c signal agents bid for green time; and the winning agent, by default, controls
not only the length of time that its light phase is green, but also the subsequent green
time for the opposing agent.

We have defined two methods of tra�c control: Auction and Auction+q.
These are detailed below.



Auction. In the Auction method, the tra�c signal agents use the saturation of
their road segment as a bidding rule. The saturation of a road segment is the ratio
of the volume of tra�c (here, represented as v and measured by the induction-
loop sensors) to its estimated capacity c (defined by the physical road network).
In the experiments conducted here, the tra�c signal agents are only concerned
with the single block preceding the junction they manage. For example, the
west/east signal agent collects volume data one block west and one block east
of its location. Equation 1 defines the bidding rule for the tra�c signal agents.

bid = v/c (1)

Auction+q. The Auction+q method functions similarly to the Auction method,
except that its bidding rule is augmented with road occupation, u, which is an
indication of how “full” the road is. This provides a better picture of road con-
ditions (e.g., whether there is a queue of vehicles leading up to the road sensor)
than the induction-loop sensor alone. A tra�c camera could be used to obtain
this data. The modified bidding rule employed by the Auction+q method is
defined in Equation 2.

bid = (v/c) + u (2)

4 Experiments

We evaluated our auction-based methods using the Simulation of Urban MObility
(SUMO) tra�c simulator [15]. SUMO is an open source microscopic tra�c sim-
ulator and is often used in vehicular communications (either vehicle-to-vehicle or
vehicle-to-infrastructure) research but it is also used to study route choice and
tra�c control algorithms [15]. Although it has a GUI front-end, for our experi-
ments we treated it as a back-end server. We developed a client application to
control the simulation using SUMO’s Tra�c Control Interface (TraCI) through
a TCP socket.

As a benchmark for evaluating the e↵ectiveness of our auction-based meth-
ods, we also tested a Fixed method of controlling tra�c signals.

The Fixed method represented traditional, non-adaptive, tra�c lights that
display the same light sequence in every cycle. The cycle lengths ranged from
80 to 90 seconds (varying across di↵erent intersections), with each tra�c signal
spending at least 68% of their phase showing green.

For the purpose of experimentation, to determine the e↵ectiveness of the pro-
posed tra�c controller, a simulated “Grid” city was used, following a Manhattan-
style road network (shown in Figure 3). Although simple, similar networks have
been used in other tra�c experiments [3, 4]. A single Grid City block measures
200 meters. Grid City contains 25 tra�c lights, but only 21 are four-way junc-
tions (the four corners do not have opposing tra�c flows). In the simulation,
there are four induction-loops at each intersection, one for each tra�c flow en-
tering the intersection.



During each simulation run, 2, 000 vehicles entered Grid City and trav-
elled across the network. The four corners of Grid City were designated as
entrance/exit points. Vehicles entered at one of four entry points and exited
at another. For each of the four entry points there was a 90% probability of
generating a new vehicle at any given time step. Table 1 presents the vehicle
specification settings used. Each simulation run lasted a maximum of 15, 000
seconds (4 hours and 10 minutes); simulations could terminate early if all vehi-
cles reached their destination before the maximum time passed. For each tra�c
control method tested, 50 simulation experiments were executed.

In addition to comparing the Fixed, Auction and Auction+q methods for
tra�c signal control, we experimented with varying the auction frequency. We
ran fifteen sets of experiments, varying the auction frequency from 1 to 15 min-
utes. Note that the auction frequency remained constant throughout an experi-
ment, and that all auctions occurred synchronously (i.e., all bidding and match-
ing took place at the same time). Future work will explore variable auction
frequencies within a simulation, as well as asynchronous auctions.

The results from the experiments are presented in Section 5.

Parameter Value

acceleration 0.8m/s2

deceleration 4.5m/s2

size of vehicle (length) 5m
maximum velocity 16.67m/s
minimum gap between vehicles 2.5m

Table 1: Vehicle specifications

Performance was measured in three ways. The first was in terms of total trip
duration: on average, how long did it take for all the vehicles to complete their
trips, measured in seconds. The second was throughput (p) which was measured
in terms of vehicles/hour. Throughput is the estimated number of vehicles that
could pass through the road network in an hour. This was calculated using
Equation (3), where: n is the number of cars participating in the simulation and
t is the total amount of time (in seconds) it took for all cars to complete their
journeys.

p =
n

t
⇥ 3600 (3)

The third metric was completion rate: the percentage of the 2000 vehicles en-
tering the system were able to complete their journeys before the maximum
simulation time had elapsed.



Fig. 3: Grid city junctions

5 Results

The results of our experiments are presented in Figures 4 and 5. Although Auc-
tion sometimes produced results comparable to Auction+q, Figure 4 clearly
shows that Auction+q outperformed the other two tra�c control methods. Some
runs ended in gridlock, as illustrated in Figure 6. On average, Fixed performed
the worst of the three methods; but Auction, at times, performed just as poorly
if not worse than Fixed. Figure 5 further supports the conclusion that Auc-
tion+q was the best control method. In terms of throughput, Auction+q had a
statistically significant advantage over the other two methods. Auction+q was
able to handle nearly 50% more tra�c than Fixed.

The best results were achieved when the auction frequency was set to 8
minutes. Future work will investigate the relationship between auction frequency,
road configuration, tra�c level and cycle length.

6 Discussion

Auction+q produced superior results as compared to a single fixed cycle. In
order to get a better picture of how well Auction+q worked, we compare it
to the overpass benchmark employed by Dresner et al. [10]. Table 2 shows the
average travel times of the control methods.

In the case of the tra�c patterns used in our experiments, the minimum av-
erage travel time for all vehicles to complete their trip would be 301.30 seconds
versus Auction+q’s 818.17. The vehicles using the Fixed method required 3.7
times more time (compared to the the lower bound) to complete their trip, while
Auction+q required 2.7 times more time. This in itself is impressive consider-
ing that no e↵ort was made to optimise any global parameters. In this initial



Fig. 4: Average time to complete travel plan

implementation, tra�c signal agents behaved rather selfishly: they were con-
cerned with improving travel time solely at their junction. These results support
our contention that an appropriately designed market-based MAS can improve
tra�c flow. Future work will investigate tra�c signal agents that consider a
neighbourhood of intersections, not just their immediate junction.

The most likely reason as to why Auction+q outperformed Auction has to
do with queue formation and how inductive-loop detectors work. If and when
a queue formed at an intersection and that queue surpassed the position of the
induction-loop it would register tra�c flow as zero. The issue with returning a
zero count is that it has two meanings, either there is no tra�c on the road
at all or tra�c is so backed up that a vehicle is sitting directly over the sensor.
Unfortunately, one meaning suggests the signal requires less green time while the
other suggests it requires more green time. The u term (Equation 2) clarifies this
ambiguity. If the detector returns zero because a queue has formed, then u � ⌧ ,
where ⌧ is the percentage of the road that would be occupied by vehicles if the
queue has reached the position of the inductive-loop detector. So, the u term
supports the agent’s bid for more green time when a queue of su�cient size has
formed. If it returns zero because there is no tra�c, then u = 0. Interestingly,
the performance gap between Auction and Auction+q is a great example of how
multiple sources of road data can be used in tandem to improve a tra�c control
mechanism.

7 Conclusion

The work presented in this paper demonstrates how an auction-based tra�c con-
troller could be implemented without the use of vehicle agents. Our approach



Fig. 5: Estimated throughput

Control Method Average Travel Time (std)

Overpass 301.30
Fixed 1108.52 (23.84)

Auction 1054.23 (293.24)
Auction+q 803.27 (96.90)

Table 2: Average travel time for all vehicles to complete trip (in seconds)

takes advantage of road sensor devices that are currently available. We imple-
mented two versions of our mechanism: Auction and Auction+q. We tested their
e↵ects on tra�c flow in a fictitious road network, Grid City. The results show that
our mechanism is capable of outperforming a fixed-time signal system. Although
acting locally, our intersection agent and signal agents were able to minimise the
delay and increase the throughput of the road network. If one considers that the
majority of adaptive UTC use complex and time-consuming optimisation tech-
niques, then our method is even more interesting. Our preliminary implemen-
tation, although simple, produced results that were quite an improvement on
average travel time and throughput. Our mechanism exhibited traits that make
it ideal for a real-time adaptive tra�c light controller: it had minimal commu-
nications overhead, it was highly reactive to changing tra�c conditions and its
design was uncomplicated.

Future work will focus on the auction mechanism parameters and tra�c test-
ing scenarios. We would like to examine how including tra�c signal agents from
multiple connected intersections in a single auction might e↵ect performance.



Fig. 6: Completion Rate: percentage of runs where all the vehicles reached their desti-
nation by auction frequency

We would also like to test our mechanisms in a simulation of an actual city with
more intersections and real-world tra�c flows.
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