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Abstract. We consider a monolithic phase-field description for fractures in nearly incompressible mate-
rials, i.e., carbon black filled ethylene propylene diene monomer rubber (EPDM). A quasi-static phase-
field fracture problem is formulated in mixed form based on three different energy functionals (AT2,
AT1 and Wu’s model) combined with two different stress splitting approaches (according to Miehe and
Amor). It leads to six different phase-field fracture formulations in mixed form. The coupled variational
inequality systems are solved in a quasi-monolithic manner with the help of a primal-dual active set
method handling the inequality constraint. Further, adaptive mesh refinement is used to get a sharper
crack zone. Numerical results based on the six different problem setups are validated on crack propa-
gation experiments of punctured EPDM strips with five different test configurations. As a quantity of
interest, the crack paths of experiments and numerical computations are discussed.

1 INTRODUCTION

The commonly used quasi-static phase-field fracture model in its classical displacement-based formu-
lation fails due to locking effects if the considered solid is nearly incompressible. To allow simulating
crack growth in rubber-like materials like EPDM rubber, this classical phase-field fracture model is ex-
tended to a mixed form of the solid-displacement equation resulting in two unknowns: a displacement
field and a hydro-static pressure variable [14]. To fulfill an inf-sup condition, Taylor-Hood elements
are employed for the displacement-pressure system. The fracture path is described with a phase-field
function defined as a smoothed indicator variable. The crack irreversibility constraint is handled with a
primal-dual active set method, see [11].
Considering finite element simulations of a test configuration with inclusion in the geometry as the pro-
posed punctured EPDM strips, the impact of holes on the crack behavior is not fully understood in the
literature. For example in [21], a pre-cracked sample with two holes is presented in a compressible solid
and very different crack path results are shown for the same test. Further, the need for further studies on
problems with holes is mentioned in [21, Section 8.2]. This led us to work in detail on results in EPDM
with a circular hole in the specimen and computing numerical simulations based on the different energy
functionals and stress splitting approaches. The main contributions of the work on hand are:

• Deriving stress splitting approaches along to Miehe et al. [15] and Amor et al. [4] for the elasticity
equation in mixed form.

1



Katrin Mang and Thomas Wick

• Formulating the incremental problem with three options for the energy functional along to Am-
brosio Tortorelli [2, 3] (AT2 or AT1) or Wu [20].

• Computing five test configurations in punctured EPDM strips based on six different model problem
formulations and comparing the crack paths.

The model problem formulation is given in Section 2. In Section 3, the results from conducted experi-
ments with five test configurations are presented. Numerical results to compare the computed crack paths
based on six different problem formulations and the experimental results are discussed in Section 4.

2 PHASE-FIELD FRACTURE IN MIXED FORM

We consider a two-dimensional, open and smooth domain Ω ⊂ R2 with boundary ΓD on which Dirich-
let conditions are prescribed. Let I be a loading interval [0,T ], where T > 0 is the end time value. A
displacement function u is given as u : (Ω×I )→R2. Further, a smooth indicator function named phase-
field is defined as ϕ : (Ω× I )→ [0,1] with ϕ = 0 broken and ϕ = 1 unbroken. Assuming naturally a
non-healing crack, irreversibility of the fracture has to be given, i.e., ϕ has to be monotone non-increasing
with respect to t ∈ I . Further, the L2 scalar-product is denoted as (a,b) :=

∫
Ω

a ·b dx for vectors a,b. The
Frobenius scalar product of two matrices of the same dimension is defined as (A : B) := ∑i ∑ j ai jbi j and
the L2-scalarproduct is given by (A,B) :=

∫
Ω

A : B dx for two matrices A,B of the same dimension.
To allow for a weak problem formulation, we subdivide the interval I into incremental steps 0 = t0 <
t1 < .. . < tN = T . In each time step, we define approximations (un,ϕn) ≈ (u(tn),ϕ(tn)) and the ir-
reversibility condition is approximated by ϕn ≤ ϕn−1 for all n = 1, . . . ,N. The phase-field space is
W := H1(Ω) with a convex subset K := {ψ ∈W | ψ ≤ ϕn−1 ≤ 1}. Further, we define the function
spaces V := (H1

0 (Ω))2 := {w ∈ (H1(Ω))2 | w = 0 a.e. on ΓD} and U := L2(Ω).
In the following, the critical energy release rate is denoted by Gc. To guarantee well-posedness of the
system of equations, a degradation function is defined as g(ϕ) := (1−κ)ϕ2 +κ, with a small regulariza-
tion parameter κ > 0. The stress tensor σ(u) is given by σ(u) := 2µElin(u)+λtr(Elin(u))I with the Lamé
coefficients µ,λ > 0. The linearized strain tensor therein is defined as Elin(u) := 1

2(∇u+∇uT ). By I, the
two-dimensional identity matrix is denoted. Let a hydro-static pressure p ∈U be defined as

p := λtr(Elin(u)) ,

such that the pure elasticity equation in weak form reads as:
Assume ϕ ∈K to be given. Find u ∈ V and p ∈U such that

g(ϕ)2µ(Elin(u),Elin(w))+g(ϕ)(∇ ·w, p) = 0 ∀w ∈ V , (1)

g(ϕ)(∇ ·u,q)− 1
λ
(p,q) = 0 ∀q ∈ U. (2)

Remark. To avoid non-physical pressure values in the inner fracture zone, the degradation term g(ϕ)
is added as a coefficient in the first term of Equation (2). This yields, that even for large λ values, the
pressure values tend to zero in the fracture, where g(ϕ) = κ and κ is sufficiently small.
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2.1 Choice of Underlying Energy Functional

Three different energy functionals and two different (and commonly used) stress splitting approaches
are proposed in the following. This in turn leads to six combinations of energy functionals and splitting
approaches.

Wu’s Unified Energy Functional. We refer to Wu [20] for a unified phase-field fracture model with
the energy functional

Wu : Eε(u,ϕ) =
∫

Ω

g(ϕ)
2

σ(u) : Elin(u)dx+
∫

Ω

Gc

π

2(1−ϕ)− (1−ϕ)2

ε
dx+

∫
Ω

Gc

π
ε|∇ϕ|2 dx, (3)

where ε > 0 describes the bandwidth of the transition zone between broken and unbroken material.

Ambrosio-Tortorelli Functional AT2. Ambrosio and Tortorelli [2, 3] proposed an elliptic functional
defined on Sobolev spaces to approximate the Mumford-Shah functional [17]. The key idea was to
replace a sharp lower-dimensional crack with a smoothed indicator function. In 2000, Bourdin et al. [8]
proposed a regularized energy functional for brittle fracture. The so-called AT2 functional (named as in
[18]) is defined as

AT2 : Eε(u,ϕ) =
∫

Ω

g(ϕ)
2

σ(u) : Elin(u)dx+
∫

Ω

Gc

2
(1−ϕ)2

ε
dx+

∫
Ω

Gc

2
ε|∇ϕ|2 dx. (4)

Ambrosio-Tortorelli Functional AT1. Later in 2014, Bourdin et al. [9] introduced a very similar
functional with a stress-softening behavior and where the damage model remains purely elastic without
damage until the stress reaches the critical value [13]. This AT1 functional is defined as

AT1 : Eε(u,ϕ) =
∫

Ω

g(ϕ)
2

σ(u) : Elin(u)dx+
∫

Ω

3Gc

8
1−ϕ

ε
dx+

∫
Ω

3Gc

8
ε|∇ϕ|2 dx. (5)

Wu’s energy functional in Equation (3) uses a combination of a linear and a quadratic part in the second
crack energy term, which has the advantage of a finite support for a localized phase-field [20].

2.2 Choice of Stress Splitting Approach

The model formulations from the previous section do not distinguish between fracture behavior in tension
and compression. The most popular approaches of stress splitting are given by Miehe et al. [15, 16] and
Amor et al. [5].

Stress splitting along to Miehe et al. As in [15, 16], we distinguish between compressive and tensile
loading. This energy split is important to catch shear stresses in the material. By only applying the
phase-field parameter to the tensile part of the elastic energy density, we prohibit crack propagation
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under compression [7]. For this reason, the positive part of the pressure p+ ∈ L2(Ω) has to be defined as
p+ := max{p,0}, such that the tensile and compressive parts of the strain tensor can be defined as:

σ
+(u, p) = 2µE+

lin(u)+ p+I,
σ
−(u, p) = 2µ

(
Elin(u)−E+

lin(u)
)
+
(

p− p+
)

I.
(6)

Remark. A detailed description on the spectral decomposition and its implementation can be find in
[11, Appendix A].

Stress splitting along to Amor et al. Amor et al. [4] proposed a volumetric-deviatoric decomposition
of the elastic energy density, because the regularized formulation does not distinguish between fracture
behavior in tension and compression [1]:

σ
+(u, p) := µmax

{
0, tr

(
E+

lin(u)
)}

I+2µ
(

E+
lin(u)−

1
3

tr
(
E+

lin(u)
)

I
)
+ p+I,

σ
−(u, p) := µ

(
tr
(
E+

lin(u)
)
−max

{
0, tr

(
E+

lin(u)
)})

I+(p− p+)I.
(7)

2.3 Variational Mixed Problem Formulation

In combination with the mixed form of the elasticity equation in Equations (1) and (2), we formulate the
incremental problem which is solved numerically in the next section.
Problem 1 (Mixed Phase-field Formulation). Let the initial data ϕn−1 ∈ K be given. Find u := un ∈
{uD +V }, p := pn ∈U and ϕ := ϕn ∈K for the loading steps n = 1,2, . . . ,N such that

g(ϕn−1)
(
σ
+(u, p),Elin(w)

)
+
(
σ
−(u, p),Elin(w)

)
= 0 ∀ w ∈ V ,

g(ϕn−1)(∇ ·u,q)− 1
λ
(p,q) = 0 ∀ q ∈U,

and further, depending on the underlying energy functional, the variational inequality has to be fulfilled

Wu: (1−κ)
(
ϕσ

+(u, p) : Elin(u),ψ−ϕ
)
+

2Gc

π

(
−1

ε
(ϕ,ψ−ϕ)+ ε(∇ϕ,∇(ψ−ϕ))

)
≥ 0 ∀ ψ ∈K .

AT2: (1−κ)(ϕσ
+(u, p) : Elin(u),ψ−ϕ)+Gc

(
−1

ε
(1−ϕ,ψ−ϕ)+ ε(∇ϕ,∇(ψ−ϕ))

)
≥ 0 ∀ψ ∈K ,

AT1: (1−κ)(ϕσ
+(u, p) : Elin(u),ψ−ϕ)+

(
−1

ε
(
3Gc

8
,ψ−ϕ)+

3Gc

4
ε(∇ϕ,∇(ψ−ϕ))

)
≥ 0 ∀ψ ∈K ,

Remark. In the elasticity part, time-lagging is used in the phase-field variable ϕ to obtain a convex
functional. See [19] for further details.

The definition of the terms σ+(u, p) and σ−(u, p) depends on the choice of the splitting approach from
Section 2.2. As previously mentioned, this yields in total six different models.
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3 EXPERIMENTS WITHIN PUNCTURED EPDM RUBBER

Five different experiments are conducted1 four to six times for each notch height: from 6 to 18mm notch
height measured from the bottom boundary, punctured EPDM strips with the initial notch on the left side
are stretched with a speed of 200mm/s until total failure. In Figure 1, the averaged crack paths of the
tested puncture EPDM strips are shown.

Figure 1: Evaluation of the averaged crack paths (4 to 6 experiments) of the tested punctured EPDM strips with
given notches at a height of 6,10,12,14 and 18mm measured from the bottom boundary (left to right). We refer
the reader to [13] for more details on the experiments.

In all experiments, the hole has a high impact on the crack path. For an initial position from 6 to 10mm
the crack path is diverted towards the hole. While for 6 and 10mm the crack propagates below the hole
towards the right edge, for 12, 14, and 18mm the crack is stopped for a short time by the hole, propagating
afterward nearly at the middle right inner edge of the hole towards the boundary edge of the specimen.

4 NUMERICAL RESULTS

In comparison to the observed crack paths in the experiments from Section 3, the numerically achieved
crack paths in punctured EPDM strips are discussed in the following.

4.1 Numerical Solution

The numerical solving of the variational phase-field fracture problem follows the approach of [10].
Therein, the crack irreversibility is enforced with a primal-dual active-set method, see [11] for further
details. For the spatial discretization, we employ a Galerkin finite element method in each incremen-
tal step, where the domain Ω is partitioned into quadrilaterals. Stable Taylor-Hood elements with bi-
quadratic shape functions (Q2) for the displacement field u and bilinear shape functions (Q1) for the
pressure variable p and the phase-field variable ϕ are used [10, 14]. The implementation is embedded

1Experiments were conducted at DIK (Deutsches Institut für Kautschuktechnologie e.V.) by Nils Hendrik Kröger and An-
dreas Fehse. We also refer to [13].
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in the finite element library deal.II [6]. Further details on the underlying implementation are given in
[12]. For adaptively refined meshes, a predictor-corrector scheme is used along to [11] with a threshold
ρ = 0.5 for the phase-field variable.

4.2 Test Setup

The geometry, the boundary conditions as well as the material and numerical parameters are given in
Figure 2. In the frame of this study, we assume to have a Poisson ratio of ν = 0.49 and a critical energy
release rate Gc = 0.97 N/mm. The elongating with a speed of 200mm/s is transferred in the quasi-static
phase-field model with the help of an incremental step size δt = 10−3s. The punctured EPDM strips are
fixed on the top and bottom boundary and the strips are elongated on the bottom boundary downwards.

�8mm

notch 1mm

28mm

20mm Γforce

Parameter Description Value
λ Lamé’s first parameter 60 N/mm2

µ Shear modulus 1.22N/mm2

ν Poisson’s ratio 0.49
Gc Critical energy release rate 0.97 N/mm
ε Bandwidth 3h
δt Incremental size 10−3s
κ Regularization parameter 0.01h

Figure 2: Left: Geometry and boundary conditions of punctured strips for the numerical simulation. Right:
Material and numerical parameters.

4.3 Crack Paths via Finite Element Simulation

In Figures 3 to 8, the numerically achieved crack paths are presented for five different initial notch heights
from 6 to 18 mm from the bottom boundary in comparison to the experimentally observed crack paths,
see Figure 1. Further, in the six Figures 3, 4, 5, 6, 7, and 8, the crack paths results differ due to different
energy functionals from Section 2.1 and stress splitting approaches from Section 2.2.

The crack path results based on the AT2 functional from Equation (4) for both stress splitting approaches
have - compared to the other energy functionals - a more smeared crack zone. In other, words, the
AT2 functional with a quadratic term has a less steep gradient in the phase-field function as AT1 or
Wu’s approach. Aside from this, for all five notch heights in Figures 3 and 4, the crack does not start
propagating from the initial crack on the left side but from the hole to the left and the right.

The crack paths in Figures 5 and 6 have a thinner zone where the phase-field variable ϕ has values be-
tween 0 and 1, which means, the AT1 functional allows a sharper crack area. Anyway, aside from the
third test in Figure 5 and the fourth test in Figure 6, the computed crack paths do not match the experi-
mentally achieved crack paths from Figure 1. A high sensitivity around the circular hole is observed for
all AT2 and AT1 tests.

Based on Wu’s functional and Miehe splitting, the crack paths for all five test configurations look promis-
ing in Figure 7, but no convergence of the nonlinear solver within 100 Newton steps was achieved in the
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Figure 3: Crack paths in punctured EPDM strips based on AT2 functional in Equation (4) and Miehe splitting in
Equation (6) with a given notch at 6,10,12,14 and 18mm from left to right.

Figure 4: Crack paths in punctured EPDM strips based on AT2 functional in Equation (4) and Amor splitting in
Equation (7) with a given notch at 6,10,12,14 and 18mm from left to right.

Figure 5: Crack paths in punctured EPDM strips based on AT1 functional in Equation (5) and Miehe splitting in
Equation (6) with a given notch at 6,10,12,14 and 18mm from left to right.
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Figure 6: Crack paths in punctured EPDM strips based on AT1 functional in Equation (5) and Amor splitting in
Equation (7) with a given notch at 6,10,12,14 and 18mm from left to right.

Figure 7: Crack paths in punctured EPDM strips based on Wu’s energy functional in Equation (3) and Miehe
splitting in Equation (6) with a given notch at 6,10,12,14 and 18mm from left to right.

Figure 8: Crack paths in punctured EPDM strips based on Wu’s energy functional in Equation (3) and Amor
splitting in Equation (7) with a given notch at 6,10,12,14 and 18mm from left to right.
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first two tests with a notch height of 6 and 10mm at the time point of the displayed snapshots. A reason
for this could be the observed sensitivity on the incremental step size or the mesh size around the inclu-
sion. In Figure 8, the crack paths for all five test cases look very similar to the experimentally observed
crack paths. It can be inferred that the Wu functional with Amor splitting fits best to this experimental
setup and possibly more general to configurations with holes as already mentioned in [21].

5 CONCLUSIONS

Phase-field fracture modeling in mixed form can be used to simulate cracks in nearly incompressible
materials [14]. The work on hand focuses on the crack paths in punctured EPDM strips where the
underlying phase-field fracture model differs in terms of three different energy functional definitions
(Ambrosio-Tortorelli functionals AT2 and AT1 and the model of Wu [20]) and two different stress split-
ting approach (Miehe et al. [15] and Amor et al. [4]). In total, six possible combinations are used for
tests in punctured EPDM strips. The crack path profiles of Wu’s functional and Amor’s stress splitting
look most promising compared to the experimentally achieved crack paths for all five test cases. In future
work, further quantities of interest such as crack energy, bulk energy, and load-displacement curves will
be compared for all six presented model problem formulations.
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