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Abstract. The high demands on precision and quality of industrial sheet metal form-
ing processes are increasing steadily. Therefore, more and more effects concerning the
machines but also the material behaviour of the workpiece must be considered. Here,
we consider an automatic panel bender of Salvagnini Maschinenbau GmbH [1]. In this
application, it turned out that the speed of bending is a relevant influence factor.

Goal of this work is to estimate the influence of strain rate on bending forces and the
shape of the bent profile. In a previous work [2], an analytic model in the framework of
Bernoulli-Euler beam theory for the bending of a cantilever with elasto-plastic behaviour
has been presented, dimensionless influence parameters have been derived, and it has been
shown that the influence parameters obtained by linear beam theory are also relevant for
the nonlinear industrial application involving large deformations. To include the strain
rate dependency, the beam model now has been extended to elasto-visco-plastic behaviour.
Besides the plastic deformations also the elastic ones are important, since the springback
angle must be known exactly to achieve the required accuracy. To represent this effect,
Hollomon’s equation [3] was extended by an elastic term. Additionally, the strain rate
sensitivity is considered according to [9].

With this beam model, numerical studies have been performed, in which forces, and
deflections have been analysed for small deformations. Finally, the results of beam theory
have been compared with 3D-Finite Element computations. A very good coincidence
turned out. The results also show that the strain rate has a significant influence on
deformations and forces. The outcome of the present study will be used to consider the
strain rate as an additional parameter in the digital twin of the automatic panel bender
[1].
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1 INTRODUCTION

The high demands on the metal forming industry are steadily increasing. On the one
hand, the demand on precision is increasing, and on the other hand, production time has
to be reduced. For this purpose, more and more effects concerning the machine, but also
the material behavior of the workpiece must be taken into account. Here, we consider
an automatic panel bender from Salvagnini Maschinenbau GmbH [1] which enables the
fabrication of complete products from plane metal sheets. In this application it was shown
that an exact modelling of the material is necessary, and that the speed of the bending
process is an important influence factor.

In the literature, there are a lot of models for the description of the material behavior,
e.g. the models of Hollomon [3], Ludwik [4] or Voce [5] are well known and frequently
applied. All these material models describe the quasi-static flow, i.e they are obtained
by tensile tests with a very low speed. In a previous paper [2], the plastic behaviour of
the material was analysed in detail using a cantilever beam, representing the material
behaviour by the Hollomon equation

σ(ε) = a εn, (1)

which describes the relation between the Cauchy stress σ and the Hencky strain ε in
exponential form. In Eq. (1), a is the strength coefficient, and n the hardening exponent,
both to be determined by quasi-static tensile tests.

In this work, we additionally want to take into account the influence of the bending
speed on the final shape of the workpiece. Therefore, the influence of the strain rate
ε̇ = d

dt
ε must be considered in the material model. Several variants of rate-dependent

material laws can be found in the literature. Many of them are extensions of the quasi-
static models, e. g. the extended Hollomon equation [6], the model of Johnson Cook [7],
or also the model of Cowper Symonds [8].

For the selection of the appropriate material law, there are several aspects: First,
this study is performed in the framework of Bernoulli Euler beam theory according to
[2]. Secondly, the strain rates are moderate in the considered industrial bending process.
Considering both aspects, the model presented in [9] is used, extending the quasi-static
flow curve by a multiplicative rate-dependent term as

σ(ε, ε̇) = σ(ε, ε̇0)

(
ε̇

ε̇0

)m
, (2)

where m is the strain rate sensitivity, and ε̇0 is the reference strain rate underlying in
the quasi-static flow curve, Eq. (1). In Eq. (2) the Cauchy stress σ = σ(ε, ε̇) now is a
function of strain ε and the strain rate ε̇. Here, ε̇ ≤ ε̇0 is the quasi-static case, ie. the
strain rate is lower than the reference strain rate, such that σ(ε) = σ(ε, ε̇0). According to
[9], Eq. (2) holds for strain rates up to 1s−1 which is sufficient for the considered material
and process. Compared to more complicated material laws in the literature, the chosen
model is also beneficial for application in beam theory.

The aim of this work now is to estimate the influence of the strain rate on the bending
force and geometry of the bent sheet. For this purpose, a cantilever beam with rate
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dependent material behaviour according to Eq. (2) is considered in section 2. Using
Bernoulli Euler beam theory, a formal relationship between the load and the curvature of
the beam is derived. In section 3, the influence of the strain rate on curvature, bending
angle and deflection is discussed based on the beam theory results. A comparison with
the purely elastic and quasi-static elasto-plastic case is also included. Finally, in section
3.2, the theoretical results are verified by Finite Element (FE) computations in Abaqus:
The agreement between beam theory and FE model is analysed in detail for a specific
case. Subsequently, a parameter study is carried out, showing the parameter range for
application of the proposed beam theory.

2 STRAIN-RATE-DEPENDENT BENDING OF A CANTILEVER BEAM

In the following, we consider a cantilever beam with length L, Figure 1. The cross
section of the beam is rectangular with the width B and height H. The left end of the
beam is clamped, and on the right side a time dependent force P (t) is acting. This force
causes the bending moment

M (x, t) = −P (t) (L− x) . (3)

z

y x

w(x,t)

P(t)

Figure 1: cantilever beam

In [2] an elasto-plastic material behavior according to Eq. (1) was analysed. In the
following an extension for the strain rate dependency according to Eq. (2) is considered, in
order to take into account the speed of load application, P (t). For strains lower than the
yield stress σY , we obtain the linear elastic case according to Hooke’s Law, σ = Eε, with
the Young modulus E. Since the strain rate in general is a function of location and time,
ε̇ = ε̇(x, z, t) and the yield stress depends on the strain rate, we obtain σy = σy(x, z, t).
For the uni-axial state of stress (tensile test) we write

σ =


−aεn

(
ε̇
ε̇0

)m
, ε ≤ −σY

E

Eε, −σY
E

≤ ε ≤ σY
E

aεn
(
ε̇
ε̇0

)m
, ε ≥ σY

E

. (4)

Note that at yield, σ = σY , ε = εY the flow curve must be continuous. Thus, yield
stress and strain are derived from Eq. (4) by equating line 2 (linear elastic section, Hooke)
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and line 3 (plastic section). Solving the obtained equation yields

σY (x, z, t) = EεY , with εY =

(
a

E

(
ε̇ (x, z, t)

ε̇0

)m) 1
1−n

(5)

Figure 2 shows the flow curves resulting from Eq. (2) for different strain rates. We
can observe an additional hardening with increasing strain rate. At small strains, Figure
3, the change in yield stress can also be seen. For these figures, the identical material
parameters a, n, m, ε̇0 and E were used as in the numerical studies in section 3.
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Figure 2: Theoretical dynamic flow curve model
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Figure 3: Theoretical dynamic flow
curve model, detail

2.1 Bernoulli Euler Beam Theory

According to beam theory [10] and [11], the internal bending moment is a resultant of
the stress,

M(x, t) = B

∫ H/2

−H/2
σ(x, z, t)zdz. (6)

For evaluation of this integral, symmetry is utilized, and the integral is divided into
two zones, a linear elastic one for z ≤ zY , σ ≤ σY , and a plastic zone for z > zY , σ > σY ,
where zY is denoted as yield height. Figure 4 schematically shows these zones. The
boundary of the plastic zone is specified by the yield height zY = zY (x, t), and the yield
length xY . Note, that for x > xY only an elastic zone exists.

Inserting Eq. (4) into (6) and considering that ε = ε(x, z, t), ε̇ = ε̇(x, z, t), we obtain

M (x, t) = 2B

∫ zY

0

Eεzdz︸ ︷︷ ︸
elastic zone

+ 2B

∫ H
2

zY

aεn
(
ε̇

ε̇0

)m
zdz︸ ︷︷ ︸

rate dependent elasto plastic zone

(7)
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Figure 4: Expected domains in the cantilever beam

So far, zY (x, t), ε(x, z, t) and ε̇(x, z, t) are unknown. A simplification is obtained by
Bernoulli Euler hypothesis [10] and [11], assuming that cross-sections remain plane and
normal to the beam axis. Thus, the strain is linearly distributed over the entire cross-
section, and can be expressed as

ε (x, z, t) = −w (x, t)′′ z, ε̇ (x, z, t) = −ẇ (x, t)′′ z. (8)

By substituting Eq. (8) into Eq. (5), and considering that w = w(x, t), ẇ = ẇ(x, t), an
additional condition for the yield height zY is obtained as

zY =

[
− a

w′′

(
−ẇ′′

ε̇0E

) 1
1−n

] 1−n
1−m−n

. (9)

Balancing the moment caused by the external force, Eq. (3), with the moment caused
by the internal stresses , Eq. (7), and inserting (8), and considering that zY = zY (x, t)
we obtain

−P (t) (L− x) = 2B

[∫ zY

0

−w′′zEzdz +

∫ H
2

zY

a (−w′′z)
n

(
−ẇ′′z
ε̇0

)m
zdz

]
(10)

Evaluating the integral yields

−P (t) (L− x) +
2

3
Bw′′Ez3Y =

aB (−w′′)n
(
H2+m+n − 22+m+nz2+m+n

Y

)
21+m+n (2 +m+ n)

(
−ẇ′′

ε̇0

)m
. (11)

Inserting Eq. (9) yields a non-linear differential equation for the curvature of the
cantilever, which can be solved numerically as shown in the following sections.

2.2 Numerical solution strategy

In rate-dependent plasticity the time dependency of the applied load is essential. In
the following, we consider P (t) as a ramp with amplitude P̂ and loading time T,

P (t) = P̂
t

T
, (12)
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For computing the solution for the curvature we must consider two zones as schemat-
ically shown in Figure 4: For x ≥ xY , the well-known elastic relation , Eq. (13), is
valid:

w (x, t)′′ =
12P (L− x)

BH3E
(13)

In the plastic zone, x < xY , the curvature is given by a nonlinear differential equation
following from Eqs. (9) and (11). Only a numerical solution is possible. For this purpose,
the time-related change of the curvature is approximated by the difference quotient.

ẇ (x, t)′′ ≈ ∆w (x, t)′′

∆t
(14)

In order to estimate the curvature correctly, the load must be applied incrementally.
In each step, it must be checked whether elastic or plastic deformation occurs at the point
under consideration. Since the time function of the load is known, this can be done by
computing the yield time tY , i.e. the time at which first plastification occurs.

Solving w′′ from Eq. (9) and substituting into Eq. (11) results in an equation depending
on zY . Plasticity occurs in the cross-section as soon as the yield height is zY = H

2
. Inserting

furthermore Eq. (12) gives

tY =
BH2ET

6P (L− x)

a
(
−ẇ′′
ε̇0

H
2

)m
E


1

1−n

. (15)

The complete numerical procedure can be summarized as follows:

1. Iterative force application

2. Check for plasticity using Eq. (15)

(a) t ≤ tY : If not, calculation of curvature by means of Eq. (13)

(b) t > tY : calculation of curvature by means of the differential equation following
from Eqs. (9) and (11)

3. Check for correct choice (elastic/plastic)

4. Increase load

Once the curvature is determined, the bending angle can be calculated by numerical
integration. With a further numerical integration, also the vertical deflection can be
determined. For this purpose, a Python code has been written using the toolbox Scipy.
The results are presented in the following section.
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3 Numerical results

In this section the curvature, bending angle, vertical deflection, plastic zones and dis-
tribuation of the strain rate are analyzed. To find out a reasonable range for the load to
be analysed, the force level causing first yield under quasi-static condition is determined.
This force PY,qs follows by substituting P = PY,qs, tY = T , x = 0 and ε(z=H/2)

ε̇0
= 1 = −ẇ′′

ε̇0
H
2

into Eq. (15). The solution is

PY,qs =
BH2Y

(
a
E

) 1
1−n

6L
. (16)

Furthermore we introduce the non-dimensional force λ as the relation of applied force
and the quasi-static yield force.

λ =
P

PY,qs
(17)

The process parameters have been chosen according to Table 1, and the material pa-
rameters according to Table 2.

Table 1: process parameters

process parameter Value
length L 20 mm
height H 1mm
width B 1mm
total time T 0.3s
reference strain rate ε̇0 0.0011

s

Table 2: material parameters

material parameter Value
Young’s modulus E 210 000 N

mm2

scaling factor a 600 N
mm2

hardening exponent n 0.2
strain rate sensitivity m 0.02

3.1 Beam theory results for λ = 1.75

In this first analysis the solutions for curvature, bending angle and the deflection of the
cantilever for different material behavior are discussed. The following cases are analyzed:

• Purely elastic case, Eg. (13)

• Elasto-plastic case, solution from [2] (without strain rate sensitivity)

• Rate dependent plasticity

Figure 5 shows the curvature, angle and displacement of the fully loaded beam for the
different cases

In the purely elastic case, the curvature is linear along the axis. In the elasto-plastic
case, and also in the rate-dependent plastic case, the curvature is nonlinear in the elasto-
plastic zone, and linear in the elastic region (x > xY ). In all cases, the highest curvature
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Figure 5: Curvature, angle and deflection of different material behavior

occurs at the clamped end (x = 0). With a purely elastic material behavior, the curvature
is lowest. For the rate-dependent case, three values for the loading time T are compared.
The lower T , the higher are the strain rates in the beam. This leads to an additional
hardening of the beam. The bending angle and the vertical displacement show a very
similar behavior. These results are maximum at the free end of the cantilever in all cases.

With the results in Figure 5 the boundaries of the elastic and the plastic domain can
be evaluated. The results are shown in Figure 6. With increasing strain rate (decreasing
loading time T ) the elasto-plastic zone decreases. With the difference quotient it is also
possible to calculate the distribution of stress, strain and the strain rate for the whole
domain. Results are shown in the next chapter as contour-plots, compared to Finite
Element results.

3.2 Verification by Finite Elements

For the following analyses, the parameters of tables 1 and 2 are used. To verify the
results of beam theory, a Finite Element (FE) model of the cantilever beam has been
implemented in Abaqus, using 3D continuum elements and considering geometric non-
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Figure 6: Elastic and rated dependent elasto plastic domain

linearity. Since inertial forces can be neglected in the considered process, a quasi-static
analysis is sufficient. In Abaqus, the material behaviour including strain rate sensitivity
can be defined in form of tables, [12].

Figure 7 shows the calculated deflection from beam theory and the FE model. If the
deflection of the purely elastic beam is considered, a high agreement between theory and
FE calculation is obtained. With the elasto-plastic material behavior, according to [2],
there is still a high agreement with the FE simulation results. Comparing the results for
the rate-dependent cases, there are also only minor deviations. With increasing strain
rate, the deviations increase slightly.
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Figure 7: Comparison of the deflection theory and FEM

In the next step, contour plots of strain, strain rate and stress are shown in Figures
8 to 13, comparing the results of the FE model and the theoretical analysis. For the
strain field, Figures 8 and 9, a high agreement is observed. Only near the boundary there
are discrepancies. The reasons are deviations from the uniaxial state of stress due to the
clamped boundary which are not considered in Bernoulli Euler beam theory. This is also
a reason for the deviations in the deflection between FE and theory. The strain rate is the
time derivative of the strain. Accordingly, Figures 10 and 11 show also a good agreement
between theory and simulation for the strain rate. Finally, there is also a high level of
agreement for the stress as shown in Figures 12 and 13.

Finally, a parameter study has been performed varying B, T and λ to estimate the
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Figure 8: Calculated strain FEM
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Figure 9: Calculated strain theory

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x (mm)

0.4

0.2

0.0

0.2

0.4

z (
m

m
)

0.024
0.018
0.012
0.006

0.000
0.006
0.012
0.018
0.024

 (1 s
)

Figure 10: Calculated strain-rate FEM
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Figure 11: Calculated strain-rate theory
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Figure 12: Calculated stress FEM
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Figure 13: Calculated stress theory

valid range of the theoretical considerations. The relative deviation between FEM and
Theory can be expressed as follows

Ψ =
wTheory (L, T ) − wFEM (L, T )

wFEM (L, T )
. (18)

Table 3 shows the results of the parameter study. In general, there is a good agreement.
For shorter beams the agreement between FEM and theory is reduced, as it is the case
if the width is increased. This behaviour was expected because the conditions for a
Bernoulli-Euler beam are less accurate in this cases. All in all the coincidence of beam
theory and Finite Element method is very good.
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Table 3: Results parameter study (elasto-visco-plastic material behavior)

L H B T λ Ψ
[mm] [mm] [mm] [s] [1] [%]

20 1 1 0.3 1.25 0.13
20 1 1 0.03 1.25 0.17
20 1 1 0.003 1.25 0.04
20 1 1 0.3 1.75 -0.44
20 1 1 0.03 1.75 -1.37
20 1 1 0.003 1.75 -1.80
20 1 1 0.3 2.5 3.96
20 1 1 0.03 2.5 1.61
20 1 1 0.003 2.5 -0.74

L H B T λ Ψ
[mm] [mm] [mm] [s] [1] [%]

10 1 1 0.3 1.75 0.93
10 1 1 0.03 1.75 -0.06
10 1 1 0.003 1.75 -0.81
5 1 1 0.3 1.75 2.50
5 1 1 0.03 1.75 0.64
5 1 1 0.003 1.75 -0.76
20 1 3 0.03 1.75 2.42
20 1 5 0.03 1.75 5.07

4 CONCLUSIONS

In this work, a rate-dependent material behavior in the framework of Bernoulli-Euler
beam theory has been investigated for the example of a cantilever with a transverse tip
force. The theoretical analyses show a very high agreement with FE solutions, especially
for slender beams for which Bernoulli-Euler assumption holds.

As expected, and also observed on an industrial panel bender, the results show that
an increasing strain rate causes an increase of the beam stiffness, having influence on the
curvature of the beam. With the outcome of this paper, i.e the implemented simulation
models, the influence of highly rate-sensitive materials on the geometric dimensions of the
final product and the process forces can be computed.

Future possible extensions of the theory work concern a refinement of the proposed
beam model for a better coincidence with the industrial panel bending process, e.g. ex-
tension of the theory for plates, and higher deformations. Furthermore, it is also planned
to extend the models of the digital twin in [1] to consider strain rate sensitivity in the
adaptive bending strategy.
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