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Abstract. Cutting-edge methods in the computational analysis of structures have been 
developed over the last decades. Such modern tools are helpful to assess the safety of existing 
buildings. Multi-scale techniques have been proposed to combine the accuracy of micro-
modelling and the computational efficiency of macro-modelling. Machine-learning tools have 
been utilized successfully to train specific models by feeding big source data from different 
fields, e.g. autonomous driving, face recognition, etc. This research proposes a continuous 
nonlinear material law that can reproduce data from micro-scale analysis. The proposed 
method is based on a machine-learning tool that links the two scales of the analysis by 
training a macro-model smeared damage constitutive law through benchmark data from 
numerical tests derived from micro-models.  

 
 
1 INTRODUCTION 

Building with masonry is one of the oldest construction techniques and a majority of the 
building stock worldwide is constructed using this component material. Due to its social and 
cultural value the construction type and assessment tools for masonry must be preserved. 

Nowadays numerical methods are considered as a commodity in structural engineering. 
Computer analysis techniques have been proved successful in assessing the complex 
behaviour of masonry structures. Two main lines of research can be identified, each with 
benefits and drawbacks: macro-modelling and micro-modelling.  

Masonry is a heterogeneous material composed of brick units and mortar joints. Each 
material has different properties. Micro-scale modelling approaches, which are based on the 
idea of distinguishing between the masonry components, have been proved to be very 
accurate [1 - 3]. The associated modelling and computation cost is however too high in 
application to large structures. Macro-modelling [4 - 7] represents the masonry material as a 
homogenized continuum and thus offers wide applicability to real scale structures. The 
weakness of macro-modelling approaches is intrinsic to the idea of smearing the behaviours 
of the masonry components into a single continuum. The advantage is of course that the small 
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computational cost allows the modelling of large scale structures. 
Given both the advantages and disadvantages of the modelling techniques, multi-scale 

modelling approach has the aim to provide a direct relationship between both scales. This 
approach requires a homogenization technique to scale strain and stress states from the micro 
to the macro level. Petracca et al. [8] have analysed the classical first order computational 
homogenization as an advanced technique applied to the analysis of masonry structures.  

This approach consists of three steps, as defined in [8]. Down-scaling transfers the strains 
from the macro scale and applies them as boundary conditions to a representative volume 
element (RVE) at the micro-scale. Solution of the boundary value problem consists in solving 
the RVE analysis at micro-scale. Up-scaling transfers the stresses from micro-scale to macro-
scale by computing a volume average of the micro-scale stresses. The described procedure 
has been carried out successfully and gives accurate results when compared with experimental 
tests on masonry structures [8, 9].  

However, performing the homogenization at each gauss point of the macro scale model 
brings along a huge computational effort. Hence, an appropriate alternative to the classical 
computational homogenization that disconnects the above described steps must be found. A 
recent investigation presents the concept of smart constitutive laws trained by machine-
learning tools [10]. The outcome of such models is a constitutive model that can be applied 
for numerical analysis of heterogeneous materials in terms of macro scale analysis.     

The motivation of the present investigation is to train a machine-learning model that 
transfers the complex micro-structural behaviour of masonry to a macro model approach. 
Benchmark data for the machine-learning training procedure are derived from numerical 
nonlinear tests on masonry micro-models in a virtual laboratory.  

The paper is organized as follows. Section 2 presents the general homogenization 
procedure. Section 3 summarizes the constitutive model applied in the virtual laboratory and 
for the machine-learning model. Section 4 introduces the machine-learning model, the 
optimization procedure and application to the present constitutive law. Section 5 explains the 
idea of the virtual laboratory as a data factory for the machine-learning model. In Section 6 
the entire procedure is applied to an in plane loaded masonry wall. 

2 THE MACHINE-LEARNING COMPUTATIONAL HOMOGENIZATION 
TECHNIQUE 

“Classical” computational homogenization techniques like first order computational 
homogenization allow representing the microscopic behaviour of the heterogeneous masonry 
material very accurately. Such techniques are based on utilizing representative volume 
elements (RVEs) in order to analyse the material’s micro mechanical behaviour. However, 
they still do not disconnect the micro and the macro-scale at the solving stage. When used 
together with the Finite Element Method, the procedure transforms strains at the gauss point 
of the macro-scale into a boundary value problem of the RVE at the micro scale. Thus, a 
boundary value problem of an entire RVE is solved in order to obtain stress results for only 
one gauss point at the macro-scale. The computational cost becomes tremendous, the larger 
the macro-scale models are.  

Researches made in [11] introduce an off-line technique to avoid solving the RVE at each 
analysis step. The strains at the macro scales are not sent to a micro model RVE, but to a large 
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database. The creation of this database includes the strain and stress results of previously 
performed analyses on a RVE. Thus, the strains coming from the macro-scale can “choose” 
their corresponding stress state from the database by comparing the incoming strains with the 
ones of the database. The works made in [11] contribute substantially to the approach of the 
present investigations, since a virtual laboratory is used to construct the database. However, 
the method still implies jumping away from the macro-scale at the solving stage. 
The idea of the present research is to avoid hopping around at multiple scales. The key issue 
is then finding a single homogeneous continuum damage model for the macro scale analysis 
of masonry that takes into account the masonry’s heterogeneity. This research focuses on 
utilizing a machine-learning model to train the parameters of such a homogeneous continuum 
damage model for masonry structures. The following sections give an overview of the novel 
homogenization technique that consists of the following main steps. First, the derivation of a 
machine-learning model including a homogeneous constitutive law. Second, the construction 
of a virtual laboratory as a training data factory by running multiple tests on a representative 
volume element. Third, training and evaluation of the machine-learning model parameters. 
The fundamental ideas behind and the proper application of each step is presented in the 
following three sections.  

3 CONSTITUTIVE MODEL  

3.1 Constitutive Law  
According with the theory of Continuum Damage Mechanics, an effective stress definition 

is adopted to distinguish between damaged/undamaged/loading and unloading stages. It is 
based on the principle of strain equivalence that assumes the comparison between damaged 
and undamaged configurations by strain consideration with reference to the elastic material 
behaviour [12].  

𝝈𝝈� = 𝑪𝑪 ∶ 𝝐𝝐 (1) 

Where 𝝈𝝈� is the effective stress tensor, 𝝐𝝐 the strain tensor and 𝑪𝑪 is the fourth order elasticity 
tensor. The works of [13 - 15] introduce separated internal damage variables to use damage 
scalar models for tensile and compressive stress contributions and define the stress tensor 𝝈𝝈 as 
follows  

𝝈𝝈 = (1 − 𝑑𝑑+) 𝝈𝝈�+ + (1 − 𝑑𝑑−) 𝝈𝝈�− (2) 

The internal damage variables 𝑑𝑑+ and 𝑑𝑑− indicate the grade of damage in tension and 
compression, respectively (𝑑𝑑± ∈ [0,1]). The tensors  𝝈𝝈�+ and  𝝈𝝈�− are the positive and negative 
parts of the effective stress tensor and account for different nonlinear behaviours in tension 
and compression. The decomposition of the effective stress tensor 𝝈𝝈� is performed according 
to [15, 16].  

3.2 Yield Criteria 
Lubliner et al. [17] proposed a proper yield criterion that considers two scalar values that 

reflect different material behaviours in tension and compression. The values 𝜏𝜏+(tension) and 
𝜏𝜏−(compression) indicate the equivalent uniaxial stress. This research includes a modified 
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Lubliner yield criterion [8] in compression and a Rankine yield criterion in tension. The 
scalars are then defined as follows  

𝜏𝜏+ =  〈𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚〉 (Rankine) 
(3) 

 

𝜏𝜏− =  𝐻𝐻(−𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚) �
1

1 − 𝛼𝛼
 �𝛼𝛼𝐼𝐼1̅ + �3𝐽𝐽2̅ +  𝜅𝜅𝜅𝜅〈𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚〉�� (4) 

The constant 𝜅𝜅 aims to better control the effect of the compression surface on the shear 
strength of the model. It leads from 0 (→ Drucker-Prager surface) to 1 (→ Lubliner surface). 
To better understand the meaning of each entity in the equations, the authors advise to read 
carefully the explanations made in [3]. 

3.3 Damage Evolution  
A threshold value must be introduced to distinguish between an undamaged and a damaged 

state of the material. At the same time, the threshold must indicate if the model undergoes 
loading/unloading or reloading, since the damage is an irreversible process. Thus, two 
additional scalar values are introduced. The actual threshold 𝑟𝑟𝑚𝑚± is defined as follows   

𝑟𝑟𝑚𝑚±  = max �𝑟𝑟0
±, max

𝑡𝑡0≤𝑚𝑚≤𝑡𝑡𝑒𝑒
𝜏𝜏𝑚𝑚±� (5) 

Further information on the damage criteria can be found in Petracca et al. [3]. This 
research also introduces a combination of an exponential softening law in tension and a 
quadratic hardening and softening law in compression that fits very well for the numerical 
analysis of masonry structures. Figure 1 displays the tensile and compressive constitutive 
behaviours of the law described in [3]. Equations (7) and (8) provide the mathematical rules 
for damage in tension and compression. 

 

 
(a) 

 
(b) 

Figure 1: Uniaxial damage laws for (a) exponential softening and (b) quadratic hardening and softening 

𝑑𝑑−(𝑟𝑟−) = 1 −
𝛹𝛹(𝜉𝜉−)
𝑟𝑟−

 (6) 

𝑑𝑑+(𝑟𝑟+) = 1 −
𝑟𝑟0+

𝑟𝑟+
𝑒𝑒𝑒𝑒𝑒𝑒 �2𝐻𝐻𝑑𝑑𝑚𝑚𝑑𝑑 �

𝑟𝑟0+ − 𝑟𝑟+

𝑟𝑟0+
�� (7) 

Where 𝛹𝛹(𝜉𝜉−) depends on the damaged state (hardening or softening) and on a strain-like 
counterpart 𝜉𝜉−. A detailed description of 𝛹𝛹(𝜉𝜉−), and the energy regularization in tension and 
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compression can be found in reference [3]. 

4 THE SUPERVISED MACHINE-LEARNING MODEL  

4.1 Fundamentals 
Machine-learning tools are very useful to support computations when a certain task is 

extremely difficult to program. The general idea is to collect data and utilize them to train a 
model to solve a task. This way of learning connects a set of inputs 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and a set of outputs 
𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 by searching a function F so that 𝐹𝐹(𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The function aims to fit the inputs 
to the outputs.  

The goal of such a fitting is to adjust the machine-learning model parameters 𝚯𝚯 so that the 
given inputs 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 fit to the given outputs 𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as accurately as possible. The given outputs 
𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are compared with predicted outputs 𝑂𝑂𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑 in a loss function ℒ(𝚯𝚯). If the loss function 
does not fulfill a predefined loss minimum, an adjustment of the models parameters 𝚯𝚯 is 
carried out to approximate the outputs 𝑂𝑂𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑 of the model to the given outputs 𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.  

The most popular algorithms to perform such optimizations are gradient descent operators. 
A detailed overview is given in [18]. The present research applies the Adam optimizer [19]. 

The loss function counts the machine-learning prediction error. A classical computation of 
the loss is the ℒ2 loss function that computes a mean square error. The entire loss function 
applied to the gradient descent optimization for a batch of inputs and outputs of size 𝑚𝑚 can be 
written as follows:  

ℒ(𝚯𝚯) =  
1
𝑚𝑚
��𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑂𝑂𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑(𝚯𝚯, 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�

2
𝑚𝑚

𝑚𝑚=1

 (8) 

4.2 Present Application Procedure 
This Section presents the construction of the specific machine-learning model applied in 

this research. In order to apply the machine-learning approach its procedure must be mapped 
to the present scientific issue. Thus the fundamental questions are what are the coupled input 
and output items, and which mathematical formulation connects them.  
• The function 𝐹𝐹(𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡): This research aims to find a correlation between strains and 

stresses for a homogenized material. For any material, constitutive laws can define such a 
correlation. Thus the here considered mathematical formulation for the machine-learning 
model is derived from a constitutive law and is defined as function 𝜞𝜞(𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). 

• The input 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and output 𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: The constitutive law presented in Section 3 is based on 
strain equivalence. Then the input 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of the function is a set of strain states 𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. In 
order to perform the supervised learning, the model requires the reference true output 
stresses 𝝈𝝈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

• The parameters 𝜣𝜣: The strains 𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 run through the model and are adjusted by the 
constitutive law material parameters which act as the trainable variables of the machine-
learning model. 

• The predicted output 𝑂𝑂𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑: The predicted output 𝑂𝑂𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑 of the machine-learning model 
are the stresses 𝝈𝝈𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑 computed by the constitutive law. 



P. Kalkbrenner, L. Pelà and R. Rossi 

 6 

After having introduced the machine-learning model’s participating entities, the general 
mathematical formulation of the optimization process can be stated as follows: 

𝜞𝜞(𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝜣𝜣) ≈  𝝈𝝈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (9) 

The model searches a modification of the parameters 𝜣𝜣 of the constitutive model 𝜞𝜞, so that 
by inputting strain states 𝜺𝜺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 an accurate approximation to the reference stresses 𝝈𝝈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 can 
be achieved. A predefined learning criterion checks the error value of the actual optimization 
state. If the error value is less or equal to the learning criterion, the optimization finishes and 
stores the actual modification of the parameters 𝜣𝜣 as the optimized model parameters 𝜣𝜣∗. 
Then the model can be utilized to predict stresses 𝝈𝝈𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑 by entering any strain state 𝜺𝜺�. It 
follows: 

𝜞𝜞(𝜺𝜺� ,𝜣𝜣∗) =  𝝈𝝈𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑 (10) 

The implementation of the machine-learning model takes place in the python-based open 
source framework TensorFlow [20]. It offers a variety of already implemented optimizers 
including the above mentioned. The machine-learning model flow inside TensorFlow is based 
on a computation graph consisting of nodes where each node performs a mathematical 
operation.  

5 VIRTUAL LABORATORY 
The here presented technique targets the homogenization of a heterogeneous material. 

Thus, the material’s heterogeneity must be represented in a carefully constructed micro-
model. Such a model takes into account the constitutive behaviour of the material’s 
components. It is called a representative volume element (RVE). RVEs can be exposed to 
boundary conditions, in order to analyse the heterogeneous material’s behaviour. Catching 
this behaviour is essential for any homogenization technique. The here investigated technique 
necessitates a space where boundary conditions can be applied to a properly micro-modelled 
RVE in order to determinate its behaviour. This space is called virtual laboratory (VL). 

The accuracy of the machine-learning homogenization technique is based on two 
operational needs: a) a large amount of data and b) a broad data representation. Need a) is 
crucial for any machine-learning model: the more input data in learning, the more accurate its 
prediction. Need b) is crucial for the homogenization technique. The data should represent the 
nonlinear and heterogeneous behaviour of the RVE in order to be able to consider it in the 
homogenization technique. This can be achieved by performing the virtual experiment up to 
failure and by carrying out multiple virtual experiments on the same RVE, each taking into 
account a different boundary condition. This leads to a variety of deformations of the RVE.  

5.1  The Boundary Value Problem of the Representative Volume Element 
This Section explains the fundamental part of the VL: the representative volume element 

(RVE) and the solution of its boundary value problem. It is illustrated for a two dimensional 
RVE but can analogously be applied to a three dimensional one. This work applies the Finite 
Element (FE) method as numerical tool. Figure 2 shows the schematic view of a micro model 
RVE of a masonry wall.  
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Figure 2: Example of a micro-scale modelled representative volume element 𝜴𝜴𝑹𝑹𝑹𝑹𝑹𝑹 for the virtual laboratory 
with boundary 𝝏𝝏𝜴𝜴𝑹𝑹𝑹𝑹𝑹𝑹 

In order to solve the boundary value problem of the RVE, boundary conditions must be 
defined. This can be done by applying a displacement fluctuation field to the RVE. The 
research done in [8] summarizes several fluctuation fields that can be implemented to RVE 
analyses. In the present monotonically increasing displacements are applied to the RVE’s 
boundary 𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅𝑅𝑅 as follows: 

𝑑𝑑𝑚𝑚 =  �𝜀𝜀𝑚𝑚𝑚𝑚 ⋅ 𝑒𝑒 +  𝜀𝜀𝑚𝑚𝑥𝑥 ⋅ 𝑦𝑦� ⋅ 𝑡𝑡,                      𝑑𝑑𝑥𝑥 = �𝜀𝜀𝑥𝑥𝑥𝑥 ⋅ 𝑦𝑦 +  𝜀𝜀𝑚𝑚𝑥𝑥 ⋅ 𝑒𝑒� ⋅ 𝑡𝑡 (11) 

Where 𝑑𝑑𝑚𝑚 and 𝑑𝑑𝑥𝑥 are the displacements applied to the FE nodes of the RVE’s boundary in 
x- and y-direction, respectively. The factor 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑡𝑡] describes the time instance of the 
actual analysis step and increases monotonically. The constants 𝜀𝜀𝑚𝑚𝑚𝑚, 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑚𝑚𝑥𝑥 are the 
components of a previously defined strain state 𝜺𝜺 in Voigt’s notation. Modifying them allows 
performing a variety of virtual experiments. Investigations made by Zaghi et al. [11] show 
that all possible strain states can be defined as the coordinates of a three dimensional sphere in 
a Cartesian coordinate system with each component being an axis: 

𝜺𝜺 =  �
 𝜀𝜀𝑚𝑚𝑚𝑚
 𝜀𝜀𝑥𝑥𝑥𝑥
 𝜀𝜀𝑚𝑚𝑥𝑥

� =�
𝜆𝜆 ⋅ cosΘ

𝜆𝜆 ⋅ sinΘ ⋅ cosφ
𝜆𝜆 ⋅ sinΘ ⋅ cosφ

�,    𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝜆𝜆 = ‖𝜺𝜺‖ =  �𝜀𝜀𝑚𝑚𝑚𝑚2 + 𝜀𝜀𝑥𝑥𝑥𝑥2 + 𝜀𝜀𝑚𝑚𝑥𝑥2  (12) 

Where 𝜆𝜆, Θ and 𝜑𝜑 are parameters that define the coordinates of the sphere. By modifying 
angles Θ and 𝜑𝜑 in interval [–𝜋𝜋,𝜋𝜋], all possible strain configurations can be obtained.  

A numerical non-linear finite element analysis solves the boundary value problem for each 
virtual experiment. The open source framework KRATOS Multiphysics [21] is utilized. It 
enables to program a loop over all the considered cases in the virtual laboratory.  

While solving the boundary value problem, a procedure ensures to store the stresses at 
each gauss point of the analysis. The transition from micro to macro-scale takes place by 
computing an average of the saved RVE stresses at each step. The applied general 
computation of the up-scaled stress 𝝈𝝈� for two-dimensional elements is as follows:  

𝝈𝝈� =
1

𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅
��

𝐴𝐴𝑚𝑚
𝑘𝑘𝑚𝑚
�𝝈𝝈𝑚𝑚,𝑗𝑗

𝑘𝑘𝑖𝑖

𝑗𝑗=1

�
𝑚𝑚

𝑚𝑚=1

 (13) 

Where 𝑛𝑛 is the total number of elements of the RVE, 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 is the area of the total RVE, 𝐴𝐴𝑚𝑚 
is the area of the i-th element, 𝑘𝑘𝑚𝑚 is the number of gauss points of the i-th element, 𝝈𝝈𝑚𝑚,𝑗𝑗 is the 
stress vector of the i-th element at its j-th gauss point. The corresponding up-scaled strain 𝜺𝜺� 
can be derived by transforming the applied boundary strain 𝜺𝜺 to the engineering notation.  
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5.2 Isotropic Mapping of Up-scaled States 
The introduced homogenization technique includes the training of an isotropic constitutive 

law. Thus an isotropic relation between the up-scaled strain 𝜺𝜺� and the up-scaled stress 𝝈𝝈� must 
be ensured. This is not the case if stresses of a non-isotropic RVE are averaged. In this 
research the assumption holds, that the elasticity between both the up-scaled entities from the 
RVE follows an orthotropic relation. 

Pelà et al. [6] apply a concept of mapped stress tensor to the nonlinear damage analysis of 
masonry structures. The idea is that a linear mapping can be found which transforms an 
initially anisotropic behaviour into an isotropic one. Provided such mapping is known, one 
can map the input strain onto the isotropic space, operate onto it to obtain an isotropic stress 
and then inverse map the obtained stress to obtain an equivalent anisotropic behaviour.  

This is best explained in symbols, by providing a technique for the construction of the 
mapping operator. Let 𝑪𝑪 be a generic elasticity tensor and 𝑪𝑪∗ the closest isotropic tensor (see 
e.g. [22] for a discussion on the determination of 𝑪𝑪∗). Provided that 𝑪𝑪 is Symmetric Positive 
Definite (SPD), something that should be guaranteed for any elasticity tensor. A linear 
operator T can be found such that C= 𝑻𝑻𝒕𝒕𝑪𝑪∗𝑻𝑻. A simple constructive proof of this can be 
found in [23]. Since 𝝈𝝈 = 𝑪𝑪: 𝝐𝝐 it follows that 𝝈𝝈 = 𝑻𝑻𝒕𝒕𝑪𝑪∗𝑻𝑻𝝐𝝐. Premultiplying by 𝑻𝑻−𝒕𝒕 we obtain 
𝑻𝑻−𝒕𝒕𝝈𝝈 = 𝑪𝑪∗(𝑻𝑻𝝐𝝐 ). If we now define the “mapped” quantities 𝝈𝝈∗ = 𝑻𝑻−𝒕𝒕𝝈𝝈 and 𝝐𝝐∗ = 𝑻𝑻𝝐𝝐 we can 
observe that the relation 𝝈𝝈∗ = 𝑪𝑪∗𝝐𝝐∗ is isotropic, that is, that the matrix 𝑻𝑻 defines the mapping 
operator we were looking for. 𝑪𝑪 can be approximated by taking into account the results from 
the RVE analysis. Values are extracted from the linear range at the first analysis step 𝑡𝑡0 of 
each virtual experiment. The stress and strain states are then stored in a matrix, respectively. 

𝜺𝜺�𝒕𝒕𝟎𝟎 =  [  𝜺𝜺�𝟏𝟏,𝒕𝒕𝟎𝟎 𝜺𝜺�𝟐𝟐,𝒕𝒕𝟎𝟎     ⋯ 𝜺𝜺�𝒏𝒏,𝒕𝒕𝟎𝟎  ],              𝝈𝝈�𝒕𝒕𝟎𝟎=  [  𝝈𝝈�𝟏𝟏,𝒕𝒕𝟎𝟎 𝝈𝝈�𝟐𝟐,𝒕𝒕𝟎𝟎     ⋯ 𝝈𝝈�𝒏𝒏,𝒕𝒕𝟎𝟎  ] (14) 

Where 𝒏𝒏 is the number of virtual experiments. The approximated orthotropic elasticity 
matrix for the two dimensional case can then be computed by applying  

𝑪𝑪 =  𝝈𝝈�𝒕𝒕𝟎𝟎 ∶  𝜺𝜺�𝒕𝒕𝟎𝟎
+ (15) 

Where 𝜺𝜺�𝒕𝒕𝟎𝟎
+ is the Moore-Penrose Inverse of 𝜺𝜺�𝒕𝒕𝟎𝟎. The application of Equation (12) requires 

that the number of virtual experiments 𝒏𝒏 > 1, by definition the Moore Penrose Inverse is 
supporting the least squares solution to the problem 𝝈𝝈�𝒕𝒕𝟎𝟎 = 𝑪𝑪 𝜺𝜺�𝒕𝒕𝟎𝟎 . 

In order to define 𝑪𝑪∗ as the isotorpic matrix, the research presented here considers a 
optimization procedure that finds the closest isotropic matrix to an orthotropic one by 
searching the minimum of the Frobenius norm of both the isotropic and the orthotropic 
matrix. This optimization includes the modification of the isotropic elastic constants E and 𝜈𝜈. 

The machine-learning procedure is then performed according to the following steps: i) 
computation of the anisotropic elasticity matrix 𝑪𝑪 by Moore Penrose; ii) computation of the 
closest isotropic matrix 𝑪𝑪∗; iii) computation of the transformation matrix 𝑻𝑻; iv) mapping of 
the training data to the isotropic level; v) train the isotropic constitutive damage model. 

Once then isotropic constitutive model is trained, in order to use it, one would follow the 
steps: i) given the anisotropic strains 𝝐𝝐 compute the isotropic strains 𝝐𝝐∗; ii) apply the trained 
constitutive law to obtain the isotropic stress 𝝈𝝈∗; iii) map 𝝈𝝈∗ onto  𝝈𝝈 into the real anisotropic 
space.  
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6 APPLICATION 

This Section presents the application of the machine-learning homogenization technique to 
a two dimensional masonry wall. Figure 3a shows the RVE of the virtual laboratory and its 
boundary. The wall is build up by bricks of size 0.309 𝑚𝑚 × 0.1475 𝑚𝑚 × 0.045 𝑚𝑚. The 
thickness of the vertical and horizontal mortar joints is 0.012 m. These dimensions allow a 
spatial allocation of the bricks and mortar equal to the “Flemish Bond”. The RVE’s total 
dimensions are 0.53 𝑚𝑚 in x- and y-directions, respectively. 

  

  
a) b) 

Figure 3:  Virtual laboratory: a) Micro model of the representative volume element showing the brick units, the 
mortar joints and the boundary; b) generated strain database for the boundary displacement application 

The FE modelling was carried out by utilizing the program GiD Pre- and Postprocessor 
[24]. The average element size counts 0.006 𝑚𝑚 so that the mortar layer is modelled by two 
elements in its thickness direction. Exceptionally quadrilateral elements with 4 gauss point 
integration have been used for the FE mesh. The total number of elements counts 6160. 

The FE mesh is passed to the python based FE program KRATOS Multiphysics. Both the 
brick units and mortar joints are assigned with the strain driven 𝑑𝑑+/𝑑𝑑− damage constitutive 
model introduced in Section 3. Table 1 shows the properties assigned to both the materials. 

 
Table 1: Material data for the brick units and the mortar joints applied to the masonry RVE 

 
𝑹𝑹 𝝂𝝂 𝒇𝒇𝒑𝒑+ 𝑮𝑮+ 𝒇𝒇𝟎𝟎− 𝒇𝒇𝒑𝒑− 𝒇𝒇𝒌𝒌− 𝒇𝒇𝒓𝒓− 𝑮𝑮− 𝜺𝜺𝒑𝒑− 𝒄𝒄𝟏𝟏− 𝒄𝒄𝟐𝟐− 𝒄𝒄𝟑𝟑− 𝒌𝒌𝒃𝒃 𝜿𝜿 

 [𝐺𝐺𝐺𝐺𝐺𝐺] [−] [𝑀𝑀𝐺𝐺𝐺𝐺] �𝑁𝑁 𝑚𝑚� � [𝑀𝑀𝐺𝐺𝐺𝐺] [𝑀𝑀𝐺𝐺𝐺𝐺] [𝑀𝑀𝐺𝐺𝐺𝐺] [𝑀𝑀𝐺𝐺𝐺𝐺] �𝑁𝑁 𝑚𝑚� � [10−2] [−] [−] [−] [−] [−] 

Brick 7.0 0.2 1.5 48.0 2. 6.0 4.6 2.0 3600.0 1.0 0.65 0.5 1.5 1.2 0.16 

Mortar 1.8 0.2 0.15 20.0 2.0 6.0 4.6 2.0 3600.0 1.0 0.65 0.5 1.5 1.2 0.16 

 
For the generation of boundary conditions 26 cases are considered. Figure 3b displays the 

database of strain states 𝜺𝜺 for the virtual laboratory (generated from Equation (10)). A single 
virtual experiment then consists of a nonlinear analysis of the RVE by monotonically 
increasing the displacement configuration.  

By applying the mapping procedure of Section 5 the transformation matrices and the 
isotropic linear elastic material data for the homogenized material can be derived. The linear 
elastic isotropic constants are 𝐸𝐸 = 4.46 𝐺𝐺𝐺𝐺𝐺𝐺 and = 0.187 . 

After having finalized the entire procedure explained in Section 5, the training of the 
machine-learning model starts. In order to simplify the machine-learning procedure the entire 
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training set is split into three sets. Then a 3 phased optimization can be performed by only 
training selected variables that correlate to the material behaviour represented in each set. 
Each set trains selected variables only in its assigned training set. Figure 4 shows the training 
progression of each variable during the optimization, furthermore it shows the training loss. 
Table 2 shows the optimized results for the parameters of a homogenized material model for 
masonry.  

 
 

Figure 4: Example of a micro-scale modelled representative volume element 𝜴𝜴𝑹𝑹𝑹𝑹𝑹𝑹 for the virtual laboratory 
with boundary 𝝏𝝏𝜴𝜴𝑹𝑹𝑹𝑹𝑹𝑹 

 
Table 2: Values obtained from the machine-learning optimization technique at the isotropic level for a 

masonry wall with bricks allocated according to the Flemish bond 
Homogenized 
Constitutive 

Model 

𝑓𝑓𝑝𝑝+ 𝐺𝐺+ 𝑓𝑓0− 𝑓𝑓𝑝𝑝− 𝑓𝑓𝑏𝑏𝑚𝑚− 𝑓𝑓𝑡𝑡− 𝜀𝜀𝑝𝑝− 𝑐𝑐1− 𝑐𝑐2− 𝑐𝑐3− 
[𝑀𝑀𝐺𝐺𝐺𝐺] [𝑁𝑁/𝑚𝑚𝑚𝑚] [𝑀𝑀𝐺𝐺𝐺𝐺] [𝑀𝑀𝐺𝐺𝐺𝐺] [𝑀𝑀𝐺𝐺𝐺𝐺] [𝑀𝑀𝐺𝐺𝐺𝐺] [−] [−] [−] [−] 
0.28 0.30 1.0 6.62 6.95 2.45 0.0095 0.5 0.06 7.53 

 

7 CONCLUSIONS 
This research has presented a novel homogenization technique for heterogeneous 

materials. The method deviates from classical homogenization procedures by utilizing a 
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machine-learning model. Machine-learning model can detect the link between coupled inputs 
and outputs by searching it in a mathematical formulation. In this work, the mathematical 
formulation is constricted to be a strain driven non-linear constitutive law.  

This research has introduced a virtual laboratory for training data production. In the virtual 
laboratory a representative volume element (RVE) of the considered heterogeneous material 
is built up. While running a large amount of different nonlinear numerical analyses on the 
RVE, data are stored as coupled strain and stress states in order to train the parameters of a 
machine-learning model. The procedure also respects the orthotropic material behaviour by 
applying a mapping transformation from an orthotropic to an isotropic state. The presented 
procedure is applied to a two dimensional masonry wall. A properly constructed micro model 
RVE of the wall was constructed as a finite element model. A large amount of different 
boundary conditions were applied to the nonlinear analysis of the RVE in the virtual 
laboratory. The machine-learning model of the application case is a properly defined 
nonlinear 𝑑𝑑+/ 𝑑𝑑− damage constitutive law that has shown to present the brittle behaviour of 
masonry structures efficiently. At the optimization stage, the parameters of the constitutive 
law were trained in order to be able to predict the stress states as approximately as possible. 

The future step of this research is the implementation of the trained constitutive law to a 
FE software. This also includes the transformation procedure. Then the applicability and the 
accuracy of the trained model can be tested for the analysis at the macro scale. 
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