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Abstract

We present a Lagrangian monolithic strategy for solving fluid-structure interac-

tion (FSI) problems. The formulation is called Unified because fluids and solids

are solved using the same solution scheme and unknown variables. The method

is based on a mixed velocity-pressure formulation. Each time step increment is

solved via an iterative partitioned two-step procedure. The Particle Finite Ele-

ment Method (PFEM) is used for solving the fluid parts of the domain, while for

the solid ones the Finite Element Method (FEM) is employed. Both velocity

and pressure fields are interpolated using linear shape functions. For quasi-

incompressible materials, the solution scheme is stabilized via the Finite Calcu-

lus (FIC) method. The stabilized elements for quasi-incompressible hypoelastic

solids and Newtonian fluids are called VPS/S-element and VPS/F-element, re-

spectively. Other two non-stabilized elements are derived for hypoelastic solids.

One is based on a Velocity formulation (V-element) and the other on a mixed

Velocity-Pressure scheme (VP-element). The algorithms for coupling the solid

elements with the VPS/F fluid element are explained in detail. The Unified

formulation is validated by solving benchmark FSI problems and by comparing

the numerical solution to the ones published in the literature.
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1. Introduction

The aim of this work is to derive a finite element formulation capable of

solving the mechanics of a general continuum through a unique set of equations

and unkown variables. The term ’general continuum’ refers to a domain that

may include compressible or quasi-incompressible solids and free surface fluids

interacting together. For this reason, the formulation is termed Unified .

There are many reasons for undertaking the above objective. The first ad-

vantage of the Unified formulation is that it allows to solve fluids and solids

by implementing and using a single code. Furthermore, the unified solution

scheme for fluid and solid mechanics makes simpler the coupling for solving

fluid-structure interaction (FSI) problems. In fact, it is not required neither

changing the variables, neither implementing the transfer of transmission con-

ditions through the interface. With this formulation solids and fluids represent

regions of the same continuum and they differ only in the specific values of the

material parameters. Additionally, the Unified formulation leads to a mono-

lithic solution scheme for FSI problems. This gives the further advantages that

the coupling is ensured strongly and an iteration loop is not required, differently

from staggered procedures. Finally, the use of the same set of unknowns for the

fluid and the solid domains improves the conditioning of the FSI solver, because

the solution system does not include variables of different units of measure.

This formulation represents an extension of the coupling strategy for FSI

problems presented by Idelsohn et al. [? ]. The proposed Unified scheme al-

lows us to couple a Velocity-Pressure Stabilized formulation for Fluids (VPS/F-

element) with three different types of hypoelastic elements, namely the V, the

VP and the VPS/S elements, corresponding to a Velocity, a Velocity-Pressure

and a Velocity-Pressure Stabilized formulation, respectively. The governing

equations are solved using an updated Lagrangian (UL) description. Each time

step increment is solved via a two-step Gauss-Seidel partitioned iterative pro-

cedure. First, the momentum equations are solved for the velocity increments.

Then, for the mixed elements, the continuity equation is solved for the pressure
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in the updated configuration using the velocities computed at the first step.

The same linear interpolation is used for the velocity and the pressure fields.

It is well known that, for incompressible (or quasi-incompressible) problems,

this combination does not fulfill the inf − sup condition [? ] and a stabiliza-

tion method is required. In this work the Finite Calculus (FIC) stabilization

procedure [? ? ? ? ? ? ] is used. The FIC approach in mechanics is based

on expressing the equations of balance of mass and momentum in a space-time

domain of finite size. In addition to the standard terms of infinitesimal theory,

the FIC form of the balance equations contains derivatives of the classical differ-

ential equations in mechanics multiplied by characteristic distances in space and

time. In this work, the problem is stabilized using the FIC method derived and

validated in [? ] for quasi-incompressible Newtonian fluids. In particular, the

VPS/F-element has been implemented following precisely the scheme presented

in [? ].

Introducing just small modifications, the same stabilization procedure is

used also by the VPS/S-element for analysis of quasi-incompressible hypoelas-

tic solids. For solids far from the incompressible behavior, other two types of

hypoelastic elements are presented, namely the V and the VP elements. The

latter is based on the same scheme of the VPS/S-element, but the standard

non-stabilized form is used for the continuity equation. Instead, the V-element

is based on a pure velocity formulation. In this case, the stresses are computed

using the velocity only and the continuity equation is not solved.

The solid parts of the domain are solved using the Finite Element Method

(FEM) [? ], while for the VPS/F fluid element the Particle Finite Element

Method (PFEM) [? ] is used. The PFEM is a Lagrangian strategy that

treats the mesh nodes of the domain as particles which can freely move and

even separate from the rest of the fluid domain representing, for instance, the

effect of water drops. A mesh connects the nodes discretizing the domain where

the governing equations are solved using the FEM. The domain is continuously

remeshed using a procedure that efficiently combines the Delaunay tesselation

and the Alpha Shape Method [? ]. These features make the PFEM the ideal
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numerical procedure to model and simulate free surface flows. In the last years,

many scientific publications have shown the efficiency of the PFEM for solving

free surface flow problems, [? ? ? ]. The PFEM can be also used for other

problems such as those involving thermal convection-diffusion [? ? ? ], multi-

fluids [? ? ], granular materials [? ], bed erosion [? ], FSI [? ? ], excavation [?

? ] or industrial forming processes [? ].

The FSI problem is solved with a monolithic scheme. This means that flu-

ids and solids are solved within the same linear system of algebraic equations.

Thanks to the many analogies in the analysis of fluids and solids, the imple-

mentation work for coupling the mechanics of fluids and solids is reduced to a

proper assembly of the global linear system and to the geometric detection of

the fluid-solid interface.

This text is organized as follows. In the next section, the governing equations

of a general continuum are introduced. Then the constitutive laws used in

this work for fluids and solids, namely the hypoelastic and quasi-incompressible

Newtonian models, are presented. Section 4 is devoted to the linearization of the

linear momentum equations. In the following section the continuity equation is

discretized. In Section 6 the FIC-stabilized form of the continuity equation is

given, first for Newtonian fluids and then for quasi-incompressible hypoelastic

solids. The solution scheme of the Unified formulation for solving FSI problems

is described for a generic time step in Section 7. The different expressions for

the VPS/F-element for fluids and the V, VP, VPS/S elements for solids are

detailed. The way to assemble the global linear system and to detect the fluid-

solid interface is then explained. In Section 9 some numerical examples are

given in order to validate the Unified formulation for FSI problems. Finally, the

conclusions of this work are given.

2. Governing equations

The governing equations for a general continuum (either a fluid or a solid) are

the linear momentum equations, with the corresponding boundary conditions,
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and the continuity equation. These equations are coupled with the constitutive

relationships (Section ). In this work, the governing equations will be written

in the Updated Lagrangian (UL) formulation [? ].

In order to avoid ambiguities, the variables and the matrices referred to fluids

will be indentified by subindex ’f ’, and those refered to solids by subindex ’s ’.

When both materials are involved, the subindex will be ’s,f ’.

For a general continuum, the local form of the linear momentum equations

using the UL description reads [? ]

ρ(X, t)v̇(X, t)− ∂σ(X, t)

∂x
− b(X, t) = 0 in Ω× (0, T ) (1)

where ρ is the density of the material, v̇ is the time derivative of the velocities, σ

is the Cauchy stress tensor and b is the body force vector. The variables within

the brackets are the independent variables. In particular, X are the Lagrangian

or material coordinates vector, x the Eulerian or spatial coordinates vector and

t is the time. For simplicity, the independent variables will be not specified in

the following.

The linear momentum equations are completed by the standard conditions

at the Dirichlet (Γv) and Neumann (Γt) boundaries

vi − vpi = 0 on Γv (2)

σijnj − tpi = 0 on Γt (3)

where vpi and tpi , i = 1, ..., ns are the prescribed velocities and the prescribed

tractions, respectively.

The continuity equation is written in the form [? ]

1

κf,s
ṗ = dv (4)

where κf,s is the bulk modulus for either the fluid or the solid, ṗ is the time

derivative of the pressure (defined positive in tension) and dv is the volumetric

strain rate which is defined as

dv = dii (5)
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where d is the spatial strain rate tensor computed as a function of the velocities

as

dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(6)

In the following, summation of terms for repeated indices is assumed, unless

otherwise specified.

Note that, depending on the values of the material bulk modulus, the con-

tinuity equation in the form of Eq.(4) can be used for (standard) compressible,

quasi-incompressible and fully incompressible materials, indifferently. For ex-

ample, κ = ∞ yields dv = 0 and canonical form of the continuity equation for

incompressible materials is recovered.

For a general time interval [n t , n+1 t ] Eq.(4) is discretized as

1

κf,s

∆p

∆t
=

1

κf,s

n+1p− np

∆t
= n+1d

v
(7)

3. Constitutive laws

In this work, a hypoelastic constitutive law is used for solids, while for fluids

the quasi-incompressible Newtonian model is considered. In the Unified formu-

lation the constitutive relations for both fluids and solids are expressed in the

following form

σ5 = c5σ : d (8)

where σ5 is the Cauchy stress rate tensor, c5σ is the fourth-order tangent

moduli tensor and d is the deformation rate tensor.

In this section, the tangent moduli for the rate of the Cauchy stress c5σ

is given and the computation of the stresses is explained for both hypoelastic

solids and Newtonian fluids.

3.1. Hypoelasticity

A hypoelastic body is defined by a direct relation between the rate of stress

and the rate of strain [? ]. Considering a isotropic body and using a Jaumann

measure of stress, the Cauchy stress rate tensor is computed as [? ]

σ5 = cσJ : d (9)
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where the Jaumann fourth-order tangent moduli cσJ is

cσJijkl = κsδijδkl+µs

(
δikδjl + δilδkj −

2

3
δijδkl

)
, cσJ = κsI⊗I+ 2µsI

′ (10)

for a 2D problem, cσJ =


κs + 4

3µs κs − 2
3µs 0

κs − 2
3µs κs + 4

3µs 0

0 0 µs


where κs is the solid bulk modulus computed from the Lamé parameters, λs

and µs, as

κs = λs +
2

3
µs, (11)

I is the second-order identity tensor and I′ is a fouth-order tensor computed as

I′ = I− 1

3
I ⊗ I (12)

where I is the fouth-order symmetric identity tensor computed as Iijkl = 1
2 (δikδjl + δilδkj).

The material time derivative of the Cauchy stress rate is computed from the

Jaumann measure of the Cauchy stress rate tensor as

σ̇ = σ5J + Ω (13)

where Ω is a tensor that accounts for the rotations defined as

Ω = W · σ + σ ·W T (14)

where W is the spin tensor

Wij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
(15)

In this work, tensor Ω is computed at the end of each time step.

Discretizing in time Eq.(13) for the time step interval [n t , n+1 t ] and expand-

ing the Cauchy stress rate, yields

n+1σ − nσ

∆t
= cσJ : n+1d+ nΩ (16)

In Eq.(16), nΩ can be viewed as a correction of the Cauchy stress tensor nσ.

For this reason, the two tensors can be joined as

nσ̂ = nσ + nΩ (17)
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Replacing Eq.(17) in (16), yields

n+1σ − nσ̂

∆t
= cσJ : n+1d (18)

Substituting in Eq.(18) the expression for cσJ using Eq.(10), yields

n+1σ − nσ̂

∆t
= κs (I ⊗ I) : n+1d+ 2µsI

′ : n+1d (19)

The first and the second terms of the right hand side of Eq.(19) represent the

increments in time of the pressure and the deviatoric part of the Cauchy stress

tensor, respectively. Thus, for hypoelastic solids the time variation of the pres-

sure can be computed in the same form as Eq.(7).

Thus, from Eqs.(19) and (7) one may compute the updated stresses using

the velocities only or both the pressure and the velocities, as follows

n+1σ = nσ̂ + ∆t (κsI ⊗ I + 2µsI
′) : n+1d (20)

n+1σ = nσ̂ + ∆pI + 2∆tµsI
′ : n+1d (21)

Eqs.(20) and (21) will be used for computing the Cauchy stress tensor in the

Velocity (V) and mixed Velocity-Pressure (VP) formulations, respectively.

3.2. Quasi-incompressible Newtonian fluids

The standard form of the constitutive relation for a Newtonian fluid reads

σ = σ′ + pI = 2µfd
′ + pI (22)

where µf is the fluid viscosity.

For a time interval [n, n+ 1] Eq.(22) reads

n+1σ = 2µf
n+1d′ + n+1pI (23)

Quasi-incompressible fluids have a compressibility that is small enough to

neglect the variations of density on time. However, unlike fully incompress-

ible materials, they are not totally divergence-free and the volumetric strain
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rate is related to time change of the pressure via Eq.(7). Hence, for quasi-

incompressible Newtonian fluids the pressure at n+1t can be computed as

n+1p = np+ ∆tκf
n+1dv (24)

Subsituting Eq.(24) into (23) yields

n+1σ = (2µfI
′ + ∆tκfI ⊗ I) : n+1d+ npI (25)

where I′ is the fourth-order tensor defined in Eq.(12).

For convenience, Eq.(25) is rewritten as

∆σ = n+1σ − nσ = cσNF : d (26)

where the following substitutions have been done

nσ = npI (27)

cσNF = 2µfI
′ + ∆tκfI ⊗ I (28)

The aim of the Unified formulation is to reduce the differences in the anal-

ysis of fluids and solids. For this reason, the quasi-incompressible Newtonian

constitutive law is written for the stress rate, similarly as for the hypoelastic

model for solids. For Newtonian fluids, the rate of Cauchy stress can be simply

computed with the material time derivative. Hence

σ5 = σ̇ =
∆σ

∆t
=
cσNF
∆t

: d = c5σNF : d (29)

where the tangent moduli tensor for the rate of the Cauchy stress c5σNF is

c5σNF =
2µf
∆t

I′ + κfI ⊗ I (30)

Note that Eq.(29) has the same structure as Eq.(8).

For a 2D problem, c5σNF =


κf + 4

3∆tµf κf − 2
3∆tµf 0

κf − 2
3∆tµf κf + 4

3∆tµf 0

0 0
µf

∆t


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4. Linearization of the momentum equations

In the UL description used in this work, the governing equations are inte-

grated over the unknown configuration Ω (the so-called updated configuration)

and the space derivatives are computed with respect to the spatial coordinates.

From Eq.(1), integrating over Ω and after standard transformations, the

Galerkin approximation of the Principle of Virtual Power for a node I is obtained

as [? ] ∫
Ω

NIρdΩ v̇i︸ ︷︷ ︸
fdynIi

+

∫
Ω

∂NI
∂xj

σijdΩ︸ ︷︷ ︸
f intIi

=

∫
Ω

NIbidΩ +

∫
Γt

NIt
p
i dΓ︸ ︷︷ ︸

fextIi

(31)

where NI is the linear shape function for node I and fdyn, f int and fext are

the dynamic, internal and external force vectors, respectively, expressed in the

UL framework.

For this work we use linear 3-noded triangles (for 2D problems) and 4-noded

tetrahedra (for 3D problems) to interpolate the velocity and pressure variables,

as appropriate.

For convenience, the linearization of the internal forces f int is performed in

the known configuration Ω0, as for a total Lagrangian (TL) description. The

UL linearized form will be obtained by push-forward transformations on the TL

form. Instead, the linearization of the dynamics forces fdyn will be performed

directly in the updated configuration.

4.1. Internal components of the tangent matrix

Applying a standard pull back tranformation to f int from the unknown

domain Ω to the known one Ω0 [? ], the internal forces for a TL description

TLf int read

TLf intIi =

∫
Ω0

∂NI
∂Xj

PijdΩ0 (32)

where P is the first Piola-Kirchhoff stress tensor. All the variables with vec-

tors subscript (·)0 refer to the last known configuration. For the sake of clarity,

the terms referred to the TL description are denoted with the left upper index

TL(·). Unless otherwise specified, the variables belong to the UL description.
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In the proposed Unified formulation, the constitutive relations for both fluids

and solids are expressed in rate form. Hence it is more convenient to perform the

linearization of the material derivative of the internal forces and then integrate

for the time step increment ∆t. The material time derivative of Eq.(32) is

TLḟ intIi =

∫
Ω0

∂NI
∂Xj

ṖijdΩ0 (33)

The first Piola-Kirchhoff stress tensor P is not typically used because it is not

symmetric and its rate is a non-objective measure. For these reasons, in the TL

framework it is more convenient to work with the second Piola-Kirchhoff stress

tensor S and its rate. These stress rate measures are related each other via the

following relation

Ṗij = ṠirF
T
rj + SirḞ

T
rj (34)

where F is the deformation gradient tensor defined as

Fij =
∂xi
∂Xj

(35)

Substituting Eq.(34) into (33), and analyzing an infinitesimal increment yields

TLδḟ intIi =

∫
Ω0

∂NI
∂Xj

FirδṠjrdΩ0︸ ︷︷ ︸
TLδḟmIi

+

∫
Ω0

∂NI
∂Xj

SirδḞ
T
rjdΩ0︸ ︷︷ ︸

TLδḟgIi

(36)

In Eq.(36) the increment of the material time derivative of the internal forces

has been split into the material and the geometric parts, TLδḟm and TLδḟg,

respectively. The former accounts for the material response through the rate of

the second Piola-Kirchhoff stress tensor. The second term is the initial stress

term that contains the information of the updated stress field.

4.1.1. Material tangent matrix

The rate of the second Piola-Kirchhoff stress tensor S is related to the de-

formation rate through the tangent constitutive tensor as

Ṡij = CijklĖkl (37)

where C is a fourth-order tensor and E is the Green-Lagrange strain tensor.
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Substituting Eq.(37) into the term TLδḟm of Eq.(36), yields

TLδḟmIi =

∫
Ω0

∂NI
∂Xj

FirCjrklδĖkldΩ0 (38)

The Green-Lagrange strain tensor can be expressed in terms of the nodal

velocities as

Ėkl =
∂NJ
∂Xs

Fklv̄sJ (39)

In Eq.(39) and in the following, (̄·) denotes a nodal value (e.g. v̄sJ is the s-

component of the velocity of node J ).

Substituting Eq.(39) in (38), yields

TLδḟmIi =

∫
Ω0

∂NI
∂Xj

FrjCijkl
∂NJ
∂Xs

FkldΩ0 δv̄sJ (40)

In order to obtain the increment of the internal forces, the material time

derivative of the internal forces increment is integrated over a time step incre-

ment ∆t as

TLδfm = TLδḟm∆t (41)

From Eqs.(40) and (41), yields

TLδfmIi =

∫
Ω0

∂NI
∂Xj

Frj∆tCijkl
∂NJ
∂Xs

FkldΩ0 δv̄Js (42)

The material tangent matrix for the UL framework is obtained by applying

a push-forward transformation on each term of Eq.(42) and integrating over the

updated domain Ω. The following relations hold

dΩ0 =
dΩ

J
(43)

∂NI
∂Xj

=
∂NI
∂xk

Fkj (44)

C5σijkl = F−1
mi F

−1
nj F

−1
ok F

−1
pl c

5σ
mnopJ (45)

where c5σ is the tangent moduli for the rate of the Cauchy stress σ5.

Substituting Eqs.(43-45) into (42) and using the minor symmetries, yields

δfmIr =

∫
Ω

∂NI
∂xk

δri∆t c
5σ
kijl

∂NJ
∂xl

δsjdΩ δv̄Js (46)
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Therefore, the expressions of the material tangent matrix for the velocity

increments in UL framework in the indicial and Voigt notation read, respectively

Km
IJrs =

∫
Ω

∂NI
∂xk

δri∆t c
5σ
kijl

∂NJ
∂xl

δsjdΩ , Km
IJ =

∫
Ωe

BT
I ∆t

[
c5σ

]
BJdΩ (47)

For the node I of a 2D element, matrix B is

BI =


∂NI
∂x

0
∂NI
∂y

0
∂NI
∂y

∂NI
∂x


T

(48)

4.1.2. Geometric tangent matrix

The geometric tangent matrix in the UL framework is derived using the same

procedure as for the material component.

From Eq.(36)

TLδḟgIi =

∫
Ω0

∂NI
∂Xj

SirδḞ
T
rjdΩ0 (49)

where the rate of the deformation gradient Ḟ is defined as

Ḟij =
∂NJ
∂Xi

v̄Jj (50)

Substituting Eq.(50) into Eq.(49), the geometric components of the internal

power in the TL description can be written as

TLδḟgIi =

∫
Ω0

∂NI
∂Xj

Sir
∂NJ
∂Xr

dΩ0 δv̄Jj (51)

Integrating Eq.(51) in time for a time step increment ∆t yields

TLδfgIi =

∫
Ω0

∂NI
∂Xj

∆tSir
∂NJ
∂Xr

dΩ δv̄Jj (52)

In order to recover the UL form, the Piola identity has to be recalled, i .e.

S = F−1σF−TJ (53)

Substituting Eqs.(43), (44) and (53) into (52) and using the symmetries, yields

δfgIr =

∫
Ω

∂NI
∂xj

∆tσjk
∂NJ
∂xk

dΩδrsδv̄Js (54)
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The geometric part of the tangent matrix for the increments of velocity is ob-

tained from Eq.(54) as

Kg
IJrs =

∫
Ω

∂NI
∂xj

∆tσjk
∂NJ
∂xk

dΩδrs , K
g
IJ = I

∫
Ω

βTI ∆tσβJdΩ (55)

where for 2D problems βI =

[
∂NI
∂x

∂NI
∂y

]T
.

4.2. Dynamic component of the tangent matrix

In this work, the implicit Newmark’s integration rule has been adopted.

In particular, the Newmark’s parameters chosen are β = 1
4 and γ = 1

2 [? ].

According to this unconditionally stable scheme, the accelerations v̇ and the

displacements u are computed, respectively, as

n+1v̇ =
2

∆t

(
n+1v − nv

)
− nv̇ (56)

n+1u = nu+
∆t

2

(
n+1v + nv

)
(57)

Replacing Eq.(56) into the dynamic term fdynIi of Eq.(31), and differentiating

with respect to velocity increments, the dynamic component of the tangent

matrix (also known as the mass matrix) is obtained as

Kρ
IJij = δij

∫
Ω

NI
2ρ

∆t
NJdΩ , Kρ

IJ = I

∫
Ω

NI
2ρ

∆t
NJdΩ (58)

4.3. Incremental solution scheme

The linear momentum equations are solved iteratively for the velocity incre-

ments. For each iteration i the following linear system is solved

Ki∆v̄ = Ri (59)

with

Ki = Km(n+1x̄i, c5σ) +Kg(n+1x̄i,σi) +Kρ(n+1x̄i) (60)

whereKm
IJ ,Kg

IJ andKρ
IJ are respectively given in Eq.(47), Eq.(55) and Eq.(58),

and

RiIi =

∫
Ω

NIρNJdΩ ¯̇viJi +

∫
Ω

∂NI
∂xj

σiijdΩ−
∫

Ω

NI
n+1bidΩ−

∫
Γt

NI
n+1tpi dΓ (61)
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The fourth-order constitutive tangent moduli tensor c5σ of matrix Km

(Eq.(47)) is c5σNF (Eq.(30)) for a Newtonian fluid while for a hypoelastic solid is

cσJ (Eq.(10)).

In the analysis of quasi-incompressible Newtonian fluids, the volumetric part

of the material component of the tangent matrix Km can compromise the con-

ditioning of the linear system [? ? ? ]. In order to prevent the numerical

instabilities originated by the ill-conditioning of the tangent matrix, the actual

bulk modulus of the fluid κf is replaced by a reduced pseudo bulk modulus κp,

defined as a κp = θκf . The pseudo bulk modulus is predicted a priori using

the strategy described in [? ].

For Newtonian fluids the stress tensor σ is computed via Eq.(25). For hy-

poelastic solids, if a velocity formulation is used the stresses are computed via

Eq.(20). In the context of a mixed velocity-pressure formulation, the Cauchy

stress tensor σ is computed with Eq.(21).

5. Discretized form of the mass balance equation

For the solid VP-element the continuity equation is solved in the standard

non-stabilized form of Eq.(4). The Galerkin approximation of Eq.(4) for the

same linear shape functions N used for the velocity is∫
Ω

NI
1

κs
NJdΩ ˙̄pJ −

∫
Ω

NI
∂NJ
∂xi

dΩv̄iJ = 0 (62)

Regarding the time integration, a first order scheme has been adopted for

the pressure. Thus, for a time interval [n t , n+1 t ] of duration ∆t the first and

the second variations in time of the pressure are computed as

n+1ṗ =
n+1p− np

∆t
(63)

n+1p̈ =
n+1p− np

∆t2
−

nṗ

∆t
(64)

Introducing Eq.(63) in (62), the discretized form of the continuity equation

solved for the pressure is

1

∆t
M1

n+1p̄ =
1

∆t
M1

np̄+QT n+1v̄ (65)

15



where the matrices introduced in Eq.(65) are defined in Box 1.

M1IJ
=

∫
Ωe

NI
1

κs
NJdΩ , QIJ =

∫
Ωe

BT
I mNJdΩ with m = [1, 1, 0]T

Box 1. Matrices and vectors of the continuity equation (Eq.(65)) for the

VP-element.

6. Stabilized FIC form of the mass balance equation

In order to deal with quasi and fully incompressible materials the numerical

scheme needs to be stabilized. This is because the interpolation orders of the ve-

locity and pressure fields do not fullfil the so-called LBB inf − sup condition [?

]. The required stabilization is introduced for both the VPS/F and the VPS/S

elements via the Finite Calculus (FIC) technique presented in [? ]. In the men-

tioned work, a FIC stabilized finite element formulation for quasi-incompressible

Newtonian fluids is derived and validated for several free surface flow problems,

highlighting its excellent mass preservation features. The derivation of the sta-

bilization technique lies outside the objectives of this work and the details can

be found in [? ]. Basically, the linear momentum equations do not change and

are counted, with both the second order FIC form in space and the first order

FIC form in time of the quasi-incompressible mass balance equation [? ? ],

for deriving the stabilized form of the mass balance equation in a consistent

manner.

For the VPS/F-element the same FIC form of the mass balance equation

derived in [? ] can be used because both refer to Newtonian fluids. Hence, for

the VPS/F-element, the FIC-stabilized form of the mass balance equation, after

FEM discretization, reads∫
Ω

1

κf
NTN

Dp̄

Dt
dΩ +

∫
Ω

τfρ

κf
NTN

D2p̄

Dt2
dΩ−

∫
Ω

NTmTBv̄dΩ +

+

∫
Ω

τf (∇∇∇N)T∇∇∇Np̄dΩ +

∫
Γt

2τf
hn

NTNp̄dΓ− fp = 0 (66)
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where for triangular elements

∇∇∇NT =


∇∇∇N1

∇∇∇N2

∇∇∇N3

with ∇∇∇ =


∂

∂x

∂

∂y

 and N = [N1,N2,N3]T (67)

and τ is the stabilization parameter given by

τf =

(
8µf
h2

+
2ρ

δ

)−1

(68)

where h and δ are characteristic distances in space and time, respectively. In

practice, h and δ have the same order of magnitude of the element size and the

time step increment, respectively. Details of the derivation of Eq.(66) can be

found in [? ].

In order to use the same form of Eq.(66) [? ] for quasi-incompressible

hypoelastic solids as for the VPS/F-element, the fluid parameters (the viscosity

µf and the bulk modulus κf ) are replaced by the equivalent parameters for the

solid. The similarity between the constitutive expression for Newtonian fluids

and hypoelastic solids is evident comparing expression used for computing the

Cauchy stress tensor increment for both cases.

For quasi-incompressible Newtonian fluids Eq.(26) holds and, for clarity pur-

poses, here is rewritten as

∆σf = 2µfI
′ : d+ ∆tκfI ⊗ I : d (69)

From Eqs.(19), the increment of the Cauchy stress for hypoelastic solids is

∆σs = 2∆tµsI
′ : d+ ∆tκsI ⊗ I : d (70)

Eqs.(69) and (70) show the duality between quasi-incompressible Newtonian

and hypoelastic constitutive laws. In the former the deviatoric and the volu-

metric parts of the Cauchy stress tensor are controled by the dynamic viscosity

µf and the bulk modulus κf , respectively. The equivalent roles in hypoelastic

solids are taken by the second Lamè parameter scaled by the time increment

(∆tµs) and the bulk modulus κs.
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Thanks to this equivalence, the FIC-based stabilized mass continuity equa-

tion for the VPS/S hypoelastic element can be written (after FEM discretiza-

tion) as∫
Ω

1

κs
NTN

Dp̄

Dt
dΩ +

∫
Ω

τsρ

κs
NTN

D2p̄

Dt2
dΩ−

∫
Ω

NTmTBv̄dΩ +

+

∫
Ω

τs(∇∇∇N)T∇∇∇Np̄dΩ +

∫
Γt

2τs
hn

NTNp̄dΓ− fp = 0 (71)

where τs is the stabilization parameter given by

τs =

(
8∆tµs
h2

+
2ρ

δ

)−1

(72)

We highlight again the analogy between the discretized (stabilized) FIC-form

of the mass balance equation for fluids (Eq.(66)) and solids (Eq.71).

Eqs.(66) and (71) can be written in an unified matrix form for both fluids

and solids as

M1(f,s) ˙̄p+ M2(f,s) ¨̄p−QT v̄ + (L(f,s) + Mb(f,s))p̄− fp(f,s) = 0 (73)

The matrices and vectors in Eq.(73) for Newtonian fluids (VPS/F-element)

and hypoelastic solids (VPS/S-element) are given in Box 2 and 3, respectively.

M1fIJ =

∫
Ω

1

κf
NINJdΩ , M2fIJ =

∫
Ω

τf
ρ

κf
NINJdΩ

MbfIJ =

∫
Γt

2τf
hn

NINJdΓ , LfIJ =

∫
Ω

τf (∇∇∇TNI)∇∇∇NJdΩ

fpfI =

∫
Γt

τfNI

[
ρ
Dvn
Dt
− 2

hn
(2µfdn − tn)

]
dΓ−

∫
Ωe

τf∇∇∇TNIbdΩ

Box 2. Matrices and vectors of Eq.(73) for the VPS/F-element.

Introducing the time integration of the pressure (Eqs.(63) and (64)) into

Eq.(73) and solving the stabilized continuity equation for the nodal pressures,

yields

Hf,sp̄
i+1 = Fp(f,s)(v̄, p̄) (74)

where

Hf,s =

(
1

∆t
M1(f,s) +

1

∆t2
M2(f,s) + Lf,s + Mb(f,s)

)
(75)
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M1sIJ =

∫
Ω

1

κs
NINJdΩ , M2sIJ =

∫
Ω

τs
ρ

κs
NINJdΩ

MbsIJ =

∫
Γt

2τs
hn

NINJdΓ , LsIJ =

∫
Ω

τs(∇∇∇TNI)∇∇∇NJdΩ

fpsI =

∫
Γt

τsNI

[
ρ
Dvn
Dt
− 2

hn
(2∆tµsdn − tn)

]
dΓ−

∫
Ωe

τs∇∇∇TNIbdΩ

Box 3. Matrices and vectors of Eq.(73) for the VPS/S-element.

and

Fp(f,s) =
M1(f,s)

∆t
np̄+

M2(f,s)

∆t2
(
np̄+ n¯̇p∆t

)
+ QT v̄ + fp(f,s) (76)

7. Solution scheme

Each time step is solved using a two-step Gauss-Seidel iterative procedure.

First the linear momentum equations are solved for the velocity increments

according to Eq.(59). Then the continuity equation is solved for the pressure

in the updated configuration. For the VPS/F-element the stabilized form of

Eq.(74) is solved using the matrices of Box 1. For quasi-incompressible solids,

the VPS/S-element is used, hence the continuity equation is solved using the

stabilized form of Eq.(74) and the matrices given in Box 2. Instead, for solids

far from the incompressible limit, both the V and the VP elements can be

used. With the VP-element, the non-stabilized form of the continuity equation

(Eq.(65)) is solved. On the contrary, if the V-element is used the continuity

equation is not computed. In Table 1, the essential features of each one of the

elements presented in this work are summarized.

Concerning the degrees of freedom, each node of the mesh is characterized

by a single set of kinematic variables. This means that the degrees of freedom

for the solid and fluid velocities coincide also at the interface nodes. On the

contrary, in order to guarantee the correct boundary conditions for the stresses,

each interface node has a degree of freedom for the pressure of the fluid and

another one for the pressure of the solid. This requires solving twice the con-

tinuity equation at the fluid-solid interface: once for the VPS/F-element and
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Element

V VP VPS/S VPS/F

Constitutive Hypoelastic Hypoelastic Hypoelastic Newtonian

law solid solid solid fluid

Momentum
Eq.(59) Eq.(59) Eq.(59) Eq.(59)equations

c5σ cσJ , Eq.(10) cσJ , Eq.(10) cσJ , Eq.(10) c5σNF , Eq.(30)

σ Eq.(20) Eq.(21) Eq.(21) Eq.(23)

Continuity
-

Eq.(65) Eq.(74) Eq.(74)

equation Box 1 Box 3 Box 2

Table 1: Essential features of the V, VP, VPS/S and VPS/F elements.

once for the VP or the VPS/S solid elements.

For the sake of clarity, the coupling algorithms for the V-element and the

mixed elements (the VP and VPS/S elements) are presented separately.

For a generic time interval [n t , n+1 t ], Algorithm 1 describes all the steps

required for solving the FSI problem using the VPS/F-element for fluids and

the V-element for solids.

20



For each iteration i :

1. Compute the nodal velocity increments ∆v̄s,f :

Ki
s,f∆v̄s,f = Ri

s,f (v̄is,f , p̄
i
f )

where for fluids Ki
f = Km(x̄i, c5σNF ) +Kg(x̄i,σif ) +Kρ(x̄i)

and for solids Ki
s = Km(x̄i, cσJ) +Kg(x̄i,σis) +Kρ(x̄i)

2. Update the nodal velocities: n+1v̄i+1
s,f = n+1v̄is,f + ∆v̄s,f

3. Update the nodal coordinates: n+1x̄i+1
s,f = n+1x̄is,f + ūs,f (∆v̄s,f )

4. Compute the fluid nodal pressures p̄i+1
f : Hf p̄

i+1
f = Fpf (v̄i+1

f , p̄if )

where Hf =
(

1
∆tM1f + 1

∆t2
M2f + Lf + Mbf

)
and Fpf =

M1f

∆t
np̄f +

M2f

∆t2

(
np̄f + n¯̇pf∆t

)
+ QT v̄i+1

f + fpf

5. Compute the updated stress measures

for fluids: σi+1
f = 2µd′f (v̄i+1

f ) + pi+1
f I

for solids: σi+1
s = nσ̂s + ∆t σ5,i+1

s with σ5,i+1
s = cσJ : ds

(
v̄i+1
s

)
6. Check the convergence: ‖ Ri+1

s,f (v̄i+1
s,f , p̄

i+1
f ) ‖< tolerance

If condition 6 is not fulfilled, return to 1 with i ← i+ 1.

At the end of each time step, for solid elements compute

n+1σ̂s = n+1σs + ∆tΩs (n+1v̄s,
n+1σs)

Algorithm 1: Iterative solution scheme for FSI problem solved with the

V-element for solids and the VPS/F-element for fluids.

Algorithm 2 shows the procedure for solving the FSI problem using the VP-

element or the VPS/S-element for the solid and the VPS/F-element for the

fluid.

As explained before, the nodes at a fluid-solid interface have two different

pressure degrees of freedom. As a consequence, the mass balance equations are

solved separately for the fluid and the solid. In particular, the mass balance

equation is solved twice at the interface nodes. All this increases the computa-

tional cost of the analysis with respect to the coupling with the V-element de-

scribed in Algorithm 1. On the other hand, this scheme is more general because

it allows us to solve FSI problems where incompressible solids are involved.
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For each iteration i :

1. Compute the nodal velocity increments ∆v̄s,f :

Ki
s,f∆v̄s,f = Ri

s,f (v̄is,f , p̄
i
s,f )

where for fluids: Ki
f = Km(x̄i, c5σNF ) +Kg(x̄i,σif ) +Kρ(x̄i)

and for solids: Ki
s = Km(x̄i, cσJ) +Kg(x̄i,σis) +Kρ(x̄i)

2. Update the nodal velocities: n+1v̄i+1
s,f = n+1v̄is,f + ∆v̄s,f

3. Update the nodal coordinates: n+1x̄i+1
s,f = n+1x̄is,f + ūs,f (∆v̄s,f )

4. Compute the fluid nodal pressures p̄i+1
f : Hf p̄

i+1
f = Fpf (v̄i+1

f , p̄if )

where: Hf =
(

1
∆tM1f + 1

∆t2
M2f + Lf + Mbf

)
and Fpf =

M1f

∆t
np̄f +

M2f

∆t2

(
np̄f + n¯̇pf∆t

)
+ QT v̄i+1

f + fpf

5. Compute the solid nodal pressures p̄i+1
s : Hsp̄

i+1
s = Fps(v̄

i+1
s , p̄is)

For the VP-element: Hs = 1
∆tM1s

and Fps = QT n+1v̄i+1
s + M1s

∆t
np̄s

For the VPS/S-element: Hs =
(

1
∆tM1s + 1

∆t2
M2s + Ls + Mbs

)
and Fps = M1s

∆t
np̄s + M2s

∆t2

(
np̄s + n¯̇ps∆t

)
+ QT v̄i+1

s + fps

6. Compute the updated stress measures

for fluids: σi+1
f = 2µd′f (v̄i+1

f ) + pi+1
f I

for solids: σi+1
s = nσ̂s + p̄i+1

s I + 2µ∆t
[
I′ : ds

(
v̄i+1
s

)]
7. Check the convergence: ‖ Ri+1

s,f (v̄i+1
s,f , p̄

i+1
s,f ) ‖< tolerance

If condition 7 is not fulfilled, return to 1 with i ← i+ 1.

At the end of each time step, for the solid elements

n+1σ̂s = n+1σs + ∆tΩs (n+1v̄s,
n+1σs)

Algorithm 2: Iterative solution scheme for FSI problem solved with the VP

or the VPS/S element for solids and the VPS/F-element for fluids.
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8. Assembly of the global linear system and interface detection

The assembly of the global linear system is performed by looping over all

the nodes of the mesh. Each node provides the contributions of the elements

that share the node and each element is computed according to the specific

constitutive law and the solution scheme chosen. So, when an interface node

is analyzed, it is necessary to sum the contributions of both materials in the

global linear system. Because the fluid and the solid pressures are two different

degrees of freedom, the fluid elements assemble only the contributions for the

fluid pressure, while the solid elements do that for the solid pressure.

In order to ensure the coupling, the fluid and the solid meshes must have in

common the nodes along the interface. In other words, there must be a node to

node conformity. This is guaranteed by exploiting the capability of the PFEM

for detecting the boundaries [? ]. The fluid detects the solid interface nodes in

the same way it recognizes its rigid contours. This is performed by an efficient

combination between the Alpha Shape method and the Delaunay triangulation

[? ]. According to this strategy, if the separation of the fluid contour from the

solid domain is small enough so that that the Alpha Shape criteria are fulfilled,

a fluid element connecting the fluid domain to the solid domain is generated.

Otherwise the two domains keep apart from each other.

In Figure 1 a graphic representation of this technique.

9. Numerical examples

We present several examples for validating the Unified formulation. Three

FSI problems are presented and other numerical results are compared to the

numerical solutions. A comparison between the three solid elements (V, the VP

and the VPS/S elements) derived in this work is also given for all the problems

presented. In all the numerical examples, the effect of the air has not been

taken into account and the VPS/F-element has been used for the fluid part of

the domain. The numerical examples involve large displacements of the solid
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(a) Cloud of points (b) Delaunay triangulation (c) Alpha Shape Method

(d) Cloud of points (e) Delaunay triangulation (f) Alpha Shape Method

Figure 1: Detection of an interface with the PFEM [? ].

structures and free surface flows. These features increase the complexity of the

problems.

9.1. Falling of a cylinder in a viscous fluid

The problem is a two-dimensional (2D) abstraction of the displacement of a

circular solid cylinder between two parallel walls. The cylinder moves prepen-

dicularly to its axis due to the gravity force increasing the falling velocity until

an asymptotic value.

The distance from the rigid walls and the axis of the cylinder is l = 0.02m.

The radius of the circle is a = 0.0025m. The geometry of the problem and the

material data are given in Figure 2 and Table 2.

The solid cylinder has been modeled as a quasi-rigid body with an hypoe-

lastic model and a high value for the Young modulus. The VP formulation has
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C           A
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Figure 2: Falling of a cylinder in a vis-

cous fluid. Initial geometry.

Geometric data

l 0.02 m

a 0.0025 m

g 9.81 m/s2

Fluid data

Density 1.0·103 kg/m3

Viscosity 0.1 Pa · s

Solid data

Density 1.2·103 kg/m3

Young modulus 107GPa

Poisson ratio 0.35, 0.4999

Table 2: Falling of a cylinder in a vis-

cous fluid. Problem data.

been used for the solid.

This numerical example was already studied in other publications [? ? ?

]. The numerical results can be also compared to the analytical study of the

motion of a rigid cylinder with constant velocity U between two parallel plane

walls [? ]. For the fluid viscosity 0.1Pa · s and slip conditions on the walls,

both numerical and analytical strategies give the velocity of fall of the cylinder

reaching an asymptotic value of around Umax = 0.0365m/s.

In this work, the problem has been solved for both stick and slip conditions

on the vertical walls of the container.

In Figure 3 the velocity field obtained considering slip boundary conditions

is given for three time instants.

In Figure 4, the results for the stick case for the same time instants of Figure

3 are given.

The resulting pressure field for the slip and stick cases is illustrated in Figure

5.

The pictures show that the perturbation over the fluid pressure field caused
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(a) t = 0.375s (b) t = 0.675s (c) t = 1.000s

Figure 3: Falling of a cylinder in a viscous fluid. 2D simulation of the slip case.

Snapshots of the cylinder motion with velocity contours at different instants.

by the motion of the cylinder is almost imperceptible and there are not signifi-

cant differences between the slip and stick cases.

In the graph of Figure 6 the time evolution of the vertical velocity of the cylin-

der obtained with the finest mesh of 3-noded triangles (average size=0.0004m)

is given for both the slip and stick cases.

The terminal velocities of the cylinder obtained for the slip and the stick

cases are 0.0377m/s and 0.0336m/s, respectively.

For this example the transmission conditions between the solid and the fluid

domain have been monitored. The curves of Figure 7 represent the time evo-

lution of the Neumann conditions in the X-direction (horizontal) at the points

A,B,C located at the boundary of the cylinder and depicted in Figure 2. Specif-

ically, the value plotted in the curves is the mean value of the X-component of

vector σn (σxxnx + τxyny) computed for the fluid and the solid elements at the

points A,B,C of Figure 2.

The graph shows that the transmission condition is guaranteed during all

the analysis.

The problem has been solved also for a quasi-incompressible solid using the

VPS/S-element. For this case, a Poisson ratio of 0.4999 and the same Young

modulus of the previous case have been considered. The simulation has been
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(a) t = 0.375s (b) t = 0.675s (c) t = 1.000s

Figure 4: Falling of a cylinder in a viscous fluid. 2D simulation of the stick case.

Snapshots of the cylinder motion with velocity contours at different instants.

run considering stick conditions on the walls and using a mean mesh size of

0.007m, as for the problem plotted in Figure 4. In Figure 8 the velocity and the

pressure fields for the solid and the fluid computed at t = 1s are given.

In the graph of Figure 9 the time evolution of the vertical velocity obtained

with the VPS/S-element for ν = 0.4999 is compared to the solution obtained

with the VP-element for ν = 0.35 and the same average mesh size and boundary

conditions.

Figure 9 shows that the solutions are almost the same and the vicinity to

the incompressible limit does not affect the quality of the results.
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(a) slip conditions, t = 1s (b) stick conditions, t = 1s

Figure 5: Falling of a cylinder in a viscous fluid. Pressure field obtained for the slip

and stick cases.
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Figure 6: Falling of a cylinder in a viscous fluid. Time evolution of the vertical

velocity of the cylinder. Results for the slip and stick cases.
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Figure 7: Falling of a cylinder in a viscous fluid. Time evolution of the X-component

of σxxnx + σxyny computed at the points A,B,C of Figure 2.

(a) Velocity field (b) Fluid pressure (c) Stress in the cylinder

Figure 8: Falling of a cylinder in a viscous fluid. Quasi-incompressible solid (ν =

0.4999). Velocity and the pressure fields and solid Cauchy stress (YY-component) at

t = 1s for stick conditions on the walls and a mean mesh size of 0.007m.
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Figure 9: Falling of a cylinder in a viscous fluid. Solutions obtained with two different

elements for the solid: the VP-element (ν = 0.35) and the VPS/S-element (ν =

0.4999).
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9.2. Filling of an elastic container with a viscous fluid

This example has been inspired from a similar problem presented in [? ]. A

volume of a viscous fluid drops from a rigid container over a thin and highly

deformable elastic membrane. The impact of the fluid mass causes an initial

huge stretching of the structure and its subsequent oscillations. Two horizontal

rigid walls are placed at the top of the elastic container in order to avoid the

leackage of the fluid. The problem was solved in 2D for two different values of

the fluid viscosity, namely 50 and 100 Pa · s. For the structure, both the V

and VP elements presented in this work have been used. The purpose was to

compare the formulations and to show that both solid elements can be used for

the modeling of standard elastic solids in FSI problems. The initial geometry

of the problem is given in Figure 3 and the material data are given in Table 3.

Figure 10: Filling of an elastic container

with a viscous fluid. Initial geometry.

Geometry data

h 2.5

H 3.75

R 2.25

b 1.3

B 4.8714

s 0.2

Fluid data

Viscosity 50, 100 Pa · s
Density 1000 kg/m3

Solid data

Young modulus 2.1 107GPa

Poisson ratio 0.3

Density 20 kg/m3

Table 3: Filling of an elastic con-

tainer with a viscous fluid. Problem

data.

The solid and the fluid domains have been discretized with a mesh composed

by 9363 3-noded triangles.
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In the graph of Figure 11 the results for the less viscous case (µ=50 Pa·s)

obtained using the V and the VP elements for the solid are given. The compar-

ison is performed for the vertical displacement of the lowest point of the elastic

structure.
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Figure 11: Filling of an elastic container with a viscous fluid (µ = 50Pa · s). Vertical

displacement of the bottom of the container obtained using the V and the VP elements

for the solid domain.

The curves are almost coincident and only after 4.5s of simulation some

slight differences appear.

In Table 4 the maximum and the minimum vertical displacements of the

elastic structure obtained with the V and the VP elements are shown. Amin

and Amax refer to the minimum and maximum points of the curves of Figure

11. The numerical results obtained with the two solid elements are very close.

Point
V-element VP-element

time instant vertical disp. time instant vertical disp.

Amin 1.045 s -0.951 m 1.045 s -0.961 m

Amax 2.695 s 0.586 m 2.695 s 0.606 m

Table 4: Filling of an elastic container with a viscous fluid (µ = 50Pa · s). Maximum

and minimum vertical displacements for the V and the VP elements.
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For the same problem, some representative snapshots are collected in Figure

12. Over the solid domain the pressure contours are depicted and over the fluid

one the mesh is plotted. The numerical results correspond to the simulation

using the VP-element for the solid.

(a) t = 0.920s (b) t = 1.045s (c) t = 1.545s

(d) t = 2.670s (e) t = 3.170s (f) t = 7.320s

Figure 12: Filling of an elastic container with a viscous fluid (µ = 50Pa·s). Snapshots

of the numerical simulation at different instants. Pressure contours are depicted over

the solid domain.

In Figure 13 snapshots of the numerical simulation for the most viscous case

(µ=100 Pa·s) are given for the same time instants of Figure 12. The numerical

results correspond again to the solution obtained using the VP-element for the

solid domain.

The results obtained with the V and VP elements for the solid are compared
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(a) t = 0.920s (b) t = 1.045s (c) t = 1.545s

(d) t = 2.670s (e) t = 3.170s (f) t = 7.320s

Figure 13: Filling of an elastic container with a viscous fluid (µ = 100Pa · s).

Snapshots at different instants of the 2D simulation. Pressure contours depicted over

the solid domain.

for the most viscous case analyzing the time evolution of the vertical displace-

ment at the bottom of the container. In Figure 14 the solutions obtained using

both elements are plotted.

Once again, the differences between the results of the two formulations for

the solid are very small. This is a further evidence of the validity and flexibility

of the Unified formulation, that allows us to choose for the solid either a velocity

or a mixed formulation.

The maximum and the minimum vertical displacements of the structure

obtained by the V and the VP elements are collected in Table 5. Bmin and

34



Sheet2

Page 1

0 1 2 3 4 5 6 7 8 9 10

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Mixed formulation
Velocity formulation

Time [seconds]

Y
 d

is
pl

ac
em

en
t 

[m
]

Bmin

Bmax

Figure 14: Filling of an elastic container with a viscous fluid (µ = 100Pa·s). Vertical

displacement of the bottom of the elastic container obtained using the V and the VP

elements for the solid domain.

Bmax correspond to the points marked in the graph of Figure 14.

Point
V-element VP-element

time instant vertical disp. time instant vertical disp.

Bmin 1.070 s -0.950 m 1.070 s -0.960 m

Bmax 2.620 s 0.384 m 2.570 s 0.347 m

Table 5: Filling of an elastic container with a viscous fluid (µ = 100Pa ·s). Maximum

and minimum vertical displacements for the V and the VP elements.

Comparing the results of Tables 4 and 5, one may note that the lowest

position of the structure is almost the same for both problems, although in

the most viscous case it is reached slightly later. For the maximum upward

displacement, the differences between the two problems are bigger. In fact, the

maximum upward displacement of the container is significally larger for the less

viscous fluid and the highest position is reached later. This is so because the

less viscous fluid splashes more and moves away from the bottom of the elastic

container, reducing the weight acting on the container walls.
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9.3. Collapse of a water column on a deformable membrane

The problem illustrated in Figure 15 was introduced by Walhorn et al . [? ].

Figures/FSIfigs/FSIinput3.pdf

Figure 15: Collapse of a water column on a deformable membrane. Initial geometry

and problem data.

The water column collapses by instantaneously removing the vertical wall.

This originates the flow of water within the tank, the formation of a jet after

the water stream hits the ground, and the subsequent sloshing of the fluid as

it impacts a highly deformable elastic membrane. The membrane bends and

starts oscillating under the effect of its inertial forces and the impact with the

water stream.

In Figure 16 some representative snapshots of the 2D simulation are given.

The VP-element for the solid was used for the analysis.
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(a) t = 0.238s (b) t = 0.350s

(c) t = 0.526s (d) t = 0.670s

(e) t = 1.500s (f) t = 2.000s

Figure 16: Collapse of a water column on a deformable membrane. Snapshots of the

2D simulation at different instants. The VP-element is used for the solid.
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The results obtained with the present formulation using the V-element and

the VP-element for the solid have been compared to the ones computed in [? ?

? ]. In the graph of Figure 17 the time evolution of the horizontal deflection of

the left top corner is illustrated.

Walhorn et al. (2005)
Idelsohn et al. (2008)
Cremonesi et al. (2010)
VP-element
V-element

Figure 17: Collapse of a water column on a deformable membrane. Horizontal

deflection of the left top corner on time. Numerical results obtained with the V and

VP elements for the solid. Comparison with numerical results obtained in [? ? ? ].

The diagram shows that for the first part of the analysis the proposed for-

mulation agrees well with the results reported in the literature. After around

0.5s of simulation, the numerical results of each formulation start to disagree.

However, for all cases the membrane oscillates two times around its vertical

position before the time instant t = 1s.

The first part of the simulation is easier to analyze than the second one

because the phenomena to model are less aleatory and the fluid splashes do not

affect the results, as it occurs after 0.5s. Furthermore, the differences between

the numerical simulations accumulate throughout the analysis. In other words,

a slight difference in the first part of the simulation may produce a huge variation

of the results for the rest of the analysis. In fact, the inital deformation of the

elastic structure affects highly the results: a smaller bending of the membrane
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induces an impact of the water stream at an higher height of the containing wall

and with a bigger tangential component of the impact velocity. Consequently,

the fluid stream impacts with the right side of the elastic membrane later and

with reduced inertial forces.

The same example has been solved also in 3D. A width of 0.07m for the

prismatic tank been considered for the z-direction. In order to maintain the

plane strain state of the 2D problem, in the 3D analysis the nodal displacements

of the elastic membrane in the z-direction have been constrained. The mesh data

of the 3D problem are given in Figure 15. The V-element has been used for the

solid in this case.

In Figure 18 the numerical results of the 3D simulation are given.
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(a) t = 0.25s (b) t = 0.39s

(c) t = 0.66s (d) t = 1.00s

Figure 18: Collapse of a water column on a deformable membrane. Snapshots of the

3D simulation of different instants. The V-element is used for the solid.
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For the same time instants of Figure 18, in Figure 19 the velocity contours

are plotted over the cutting plane built at z = 0.035m.

(a) t = 0.25s (b) t = 0.39s

(c) t = 0.66s (d) t = 1.00s

Figure 19: Collapse of a water column on a deformable membrane. Velocity contours

plotted over the plane located at z = 0.035m of the 3D domain. The V-element is

used for the solid.
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No numerical or experimental results have been found in the literature for the

described 3D abstraction of the 2D benchmark problem presented in [? ]. For

this reason, 3D results have been compared only to the analogous 2D problem

solved with the proposed formulation. Figure 20 shows the time evolution of the

2D and 3D results for the horizontal deflection of the left top corner obtained

with the V-element for the solid. Sheet1
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Figure 20: Collapse of a water column on a deformable membrane. Horizontal

deflection of the left top corner on time. Comparison between 2D and 3D analyses for

the V-element.

Figure 20 shows that the 3D results agree well with those of the 2D analysis

for the first part of the simulation. After around 0.5s the two graphs start to

diverge. In particular, in the 3D analysis the water stream hits the right side

of the membrane later and with a reduced impact force with respect to the 2D

case. This is due to the 3D effects. In fact, if the plane strain hypotesis is

not satisfied exactly, the fluid can expand also in the z-direction reducing its

impact velocity against the structure. Clearly, the mesh refinement can reduce

these effects and, consequently, also the differences between the 3D and the 2D

simulations.
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10. Concluding remarks

In this work, a Unified formulation for fluid and solid mechanics and FSI

problems has been presented.

For incompressible materials the mixed velocity-pressure formulation is sta-

bilized using the FIC-FEM procedure derived in [? ] for Newtonian fluids and

applied in this work also for quasi-incompressible hypoelastic solids.

For the solid parts of the domain, three different hypoelastic elements have

been presented, namely the V, the VP and the VPS/S elements respectively

based on a velocity, mixed velocity-pressure and mixed velocity-pressure stabi-

lized formulation.

The Unified formulation, through an efficient combination of the PFEM

for the fluid, and the FEM for the solid, allows us to solve FSI problems in a

monolithic way ensuring automatically a strong coupling. Furthermore, the risk

of ill-conditioning in the global linear system of algebraic equations is reduced

using the same unknown variables for the fluid and the solid and solving the

global problem through a partitioned scheme.

The efficiency of the method has been tested by solving FSI benchmark

problems involving free surface viscous flows and large displacements for the

structure. Good agreement between the results obtained with the present for-

mulation and published results has been found in all cases for all the solid

elements derived in this work.
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