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Abstract

This research shows a heuristic model for the design of scalable and reliable electrical distribution networks. The 
algorithms presented allow to optimize the location of transformation centers using on their database geographic 
information systems from which it is possible to define user locations, candidate sites, possible routes for the de-
ployment of the electricity grid and, in general, data for the reconstruction of the scenario. The model employs 
clustering and triangulation methods, as well as algorithms for creating a minimally expanding tree and the conse-
quent site assignment for transformer placement. After setting the optimal locations for the transformer site, the 
algorithms compute voltage drops in secondary circuits, required transformation capability, execution times, and 
coverage achieved. The results obtained are adjusted to the requirements of an actual distribution power grid and 
show a good performance on the proposed scenario.
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Resumen

La presente investigación muestra un modelo heurístico para el diseño de redes de distribución eléctricas escalables y 
confiables. Los algoritmos presentados permiten optimizar la ubicación de centros de transformación usando sobre su 
base de datos sistemas de información geográfica de las cuales es posible definir ubicaciones de usuarios, sitios candida-
tos, posibles rutas para el despliegue de la red eléctrica y en general, datos para la reconstrucción del escenario. El modelo 
emplea métodos de clusterización y triangulación, así como algoritmos para la creación de un árbol de mínima expansión y 
la consecuente asignación de sitios para la ubicación de transformadores. Tras establecer las ubicaciones óptimas para el 
emplazamiento de unidades, los algoritmos determinan caídas de voltaje en circuitos secundarios, capacidad de transfor-
mación requerida, tiempos de ejecución y cobertura alcanzada. Los resultados obtenidos se ajustan a los requerimientos 
de una red eléctrica de distribución y muestran un buen desempeño sobre el escenario propuesto.
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1. Introduction

This research is an extension of the article titled “Optimal Allocation of Transformers in Electri-
cal Distribution Systems Considering Attenuation and Capacity Constraints”, previously presen-
ted at the 4th INCISCOS 2019 International Conference held in the city of Quito - Ecuador.

Traditional electrical networks become smart grids if communications infrastructure is 
added, some researches about technologies are described considering optimal communica-
tions and infrastructure in HAN (Maldonado, 2017), NAN (Quishpe, Padilla & Ruiz, 2019; Ruiz, Ma-
sache & Inga, 2018; Ruiz Maldonado & Inga, 2019) and WAN (Ruiz & Inga, 2019; Ruiz, Masache & 
Domínguez, 2018).
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Distribution systems play an essential role since it interconnects the transmission sys-
tem and the users. Research efforts in the area have been directed toward developing methodo-
logies for optimal design, planning, and expansion of modern electrical distribution systems 
(Carrión Galarza & González Sánchez, 2019). 

Traditional design methodologies must minimize the associated costs, such as inves-
tment, energy losses, operation and maintenance while keeping satisfactory levels of security 
and reliability. Information about the electrical distribution network, such as location and ratings 
of generators, substations, transformers and lines, and the electric energy demand of the users 
is key for solving this optimization problem. However, publicly available data from a real network 
is generally scarce. Therefore, considering the demand increase, when planning distribution 
networks, typically requires the use of artificial models that emulate the real infrastructure. The 
optimal design of smart distribution networks is a combinatorial problem defined as NP-comple-
te, next papers show different methodologies for design electrical networks (Liu et al., 2017; Xie 
et al., 2018); where the connection between customers and the main node on a georeferenced 
scenario is build using a model based on minimum spanning tree (MST) techniques. 

The project deals with the optimal location of distribution transformers using a modified-
prim algorithm based on the minimal cost of low voltage network between transformers and 
users. Secondly, clustering algorithms are used to break the dataset (number of distribution 
transformers) up into groups, then the k-medoids algorithm determines a defined number of 
clusters, which can be used as primary feeders. The next stage deals with the built-up of the 
medium voltage network based on modified-prim (Gholizadeh-Roshanagh, Najafi-Ravadanegh 
& Hosseinian, 2018; Xie et al., 2018) to determine the lowest path between the main substa-
tion and distribution transformers on a georeferenced path. The minimum spanning tree (Li, 
Mao, Zhang & Li, 2016) is estimated with the Prim algorithm and graph theory. Prim is used to 
finding the subset of branches and all vertices that will constitute the tree. The constraint re-
lated to the losses due to distances is taken into account during the process. In each iteration, 
the algorithm increases the tree size, starting from an initial vertex representing a transformer 
and successively adding vertices corresponding to the users, such that the distances between 
the transformer and the users are minimized, initial works in telecommunications. This process 
considers variables such as location of the householders’ main feeders, location, and ratings of 
transformers and path of medium and low voltage along the streets; it also takes into account 
constraints such as power flow balance/equality, the location of a substation, the path of lines, 
bus voltage and ratings and coverage of each transformer. Regarding the latter, any transfor-
mer that does not satisfy the requirements is to replace. The proposed model in this paper is 
to develop considering a multigraph, that defines a layer for the medium voltage network and 
another layer for the low-voltage network, ensuring the connectivity of users in the deployment 
depending on demand. To achieve the objectives a deployment is carried out in urban areas 
using an open street map (OSM) (Once, 2017) file with the information of longitude and latitude 
within a model developed in Matlab. The efficiency of the model is estimated for varying den-
sities of the electric load, to assess adaptation capability and resources available to fulfill the 
demand of a different number of users. The k-means algorithm is used for generating the clus-
ters, and the nodes inside an area are treated as PQ loads. Such a network is generated through 
the Delaunay-Voronoi triangulation (Budka, K., Deshpande, J. and Thottan, 2014; Ciechanowicz, 
Pelzer, Bartenschlager, & Knoll, 2017), thus resulting in a partially connected mesh. If such mesh 
network shows a redundancy larger than desired, branches are iteratively suppress starting 
with the one connecting two nodes with the highest degree. 
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Henceforth, this article is organized as follows. Section 2 presents the methodology of 
the problem, where the proposed algorithms and procedures for optimization are formulated. 
Section III presents results and discussion, describing and analyzing the information obtained 
by applying the optimization model on simulation scenarios with different parameters. Finally, in 
section V, the conclusions and recommendations about this research.

2. Methodology

Planning electrical distribution networks involves, among other aspects, taking some initial 
considerations that allow defining preliminary parameters to their implementation on the op-
timization model. The considerations included in the research respond to the deployment of a 
new power grid. This implies that existing distribution network is not considered, or in turn, it 
does not exist. Items considered, such as location of users, candidate sites and possible routes 
for the deployment of the electricity network, are identified using georeferenced data from the 
OpenStreetMap platform after their processing in MATLAB. In addition to characterization of the 
scenario, the object of the implementation of georeferenced information lies in the ability to 
facilitate the obtaining of coordinates where the location of the electrical transformers is ade-
quate. Being this, one of the results obtained through the model presented. Table 1 shows the 
variables of equations and algorithms shown later.

Table 1. Variables and notation

Nomenclature

X, Y Array of user and candidate sites locations, respectively.

State variable of the -th candidate site.

Minimal spacing constant between transformers.

Distance between each of the active transformers.

Demand from each user.

Maximum transformation capability.

Number of regions for clustering.

Index assigned to each user and medoid locations, respectively.

Vector of demand assigned to each user.

Graph obtained by applying the Prim algorithm.

Preliminary array of logical values of active sites and assigned users.

Transformer(s) assigned to a user

Coordinates for the transformer location.

Resistivity and cross-section of the conductor.

Set of users assigned to a transformer.

Transformer power.



87

Enfoque UTE, V.11 -N.1, Ene. 2020, pp. 84-95

Distance between the user and their assigned transformer.

Resistance and current along the section between transformer and user’s meter

Line voltage and estimated power factor over the secondary circuit

Voltage drops of secondary circuits.

Being  the number of users and  the number of candidate sites, it is sought to minimize 
the number of candidate sites considering the spacing between transformation centers, and their 
maximum capability; which must be greater than the sum of the power demanded by users con-
nected to the equipment, ensuring that the specified transformability will not be exceeded. The 
mathematical expressions that respond to the above are presented below, being (1) the objective 
function, (2) spacing restriction and (3) maximum transformation capability restriction.

 (1)

  (2)

 (3)

Once the scenario is characterized and after defining the candidate sites for the location 
of transformers, taking into account the characteristics of the design area; a scenario where a 
large number of users are available could involve excessive complexity to perform optimization 
in large blocks, so it is chosen to cluster the design area in a way that makes routing easier by 
creating subnets. Sectorization is done using the k-medoids clustering method, thus dividing 
the environment into regions while building a graph connecting the different nodes in the geo-
referenced area. The clustering result is also used for assigning random loads to each user. Also, 
Delaunay and Voronoi triangulation methods are used to visualize sectorization. After that, it 
is proposed to solve the problem of optimal location using the modified-Prim and Greedy algo-
rithms. The above process is carried out when applying Algorithm 1. 

Algorithm 1: Clustering and Optimal Location of Electrical Transformers

1: procedure Input( , )

2: Step 1: Create subregions

3:

4:

5:

6: Step 2: Random demand assignment 

7:

8: Step 3: Modified Prim Algorithm
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9:

10: Step 4: Greedy-SCP 

11:

12: Step 5: Eliminate redundancy

13:

14:

15:

16:

17:

18:

19:

20:

21: procedure Output( w

From Algorithm 2, modified-Prim method allows building a minimum expansion tree over 
the network. The graph obtained includes all the vertices of the network where the sum of its 
edges is minimum, the weights of the graph are the distances between users and candidate si-
tes obtained by the haversine formula. On the other hand, the Greedy algorithm allows obtaining 
an array with logical values that show those active transformers that will meet the demand of 
the different user blocks. However, the array of logical values obtained with Greedy can present 
minor problems, such as providing a solution that includes more than one transformation unit 
for the same user, which would result in incorrect transformer sizing and, in general, unwanted 
redundancy errors. Therefore, the algorithm considers that particularity and corrects it.

The procedure implemented by Algorithm 2 allows determining the capability of the trans-
formers and after the nominal power of each transformer has been obtained, the algorithm per-
forms a calculation of the existing distances for the set of users covered by a transformer using 
the haversine formula, this procedure is applied to the full extent of the distances between a 
user and its assigned transformer; with this data, voltage drop calculations are performed ba-
sed on the parameters of the established conductor, as well as electrical factors typical of the 
network and demand, such as voltages in secondary and power factor.

Algorithm 2: Sizing and voltage drops in secondary circuits calculation

1: procedure Input( , )

2: Step 1: Transformer sizing

3:

4:

5:
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6:

7:

8:

9:

10:

11: Step 2: Calculate distances 

12:

13: Step 3: Calculate voltage drops

14:

15:

16:

17:

18:

19: procedure Output(

3. Results and Discussion

MATLAB R2018b software is used to implement the proposed methodology on a computer with 
an Intel Core i7-6500U processor, 8 Gb of RAM, and Windows 10. The proposed scenario has 824 
users and 163 candidate sites located at the intersections of the georeferenced area, obtained 
after recognition by interpreting geographical information. The proposed georeferenced area is 
shown in Figure 1, along with the location of the candidate sites, users and clustering of the area.

Figure 1. Proposed georeferenced area with the location of candidate sites and users.
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Table 2 shows results achieved after applying the optimization methodology on the pro-
posed scenario. In order to obtain these values, the spacing and maximum transformation ca-
pability parameters considered were 100 meters and 200 KVA, respectively. 

As can be seen, 18 active sites are obtained, which refer to the set of coordinates marked 
by the model as optimal to the location of transformation centers. The number of active sites 
represents eleven percent of the total available sites. On the other hand, while the set of trans-
formation units to be deployed on the network does not guarantee a total supply of demand, 
since the coverage is not 100 %; the number of users not supplied is minimal, so they could be 
assigned to a transformer with low loadability. In this sense, the table also shows information 
about the maximum and minimum number of users assigned to a transformer. This data shows 
the condition of certain units in which the number of users is minimal, so they can withstand 
higher load and therefore will be able to supply the entire demand. 

Table 2. Summary of parameters obtained after applying the optimization methodology

Parameter Obtained Value

Number of active sites 18

Number of users 804

Electric coverage [%] 97.573

Maximum number of assigned users 153

Minimum number of assigned users 1

Figure 2 shows the georeferenced area with the deployment of the transformation units 
located at the coordinates rated as optimal. In addition, the primary of the electrical network 
covering each of the active transformation units is shown. This network constitutes a possible 
route for the deployment of the power grid.

Figure 2. Optimal allocation of transformers in the georeferenced area and deployment of the feeder
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Table 3 shows the capability of each transformation unit located in the georeferenced 
area. Values presented are based on standard values. The maximum capability obtained af-
ter sizing reaches 150 KVA in a single unit, ensuring compliance with the maximum capability 
constraint.

Table 3. Power capability of the transformation units

Transformer Power [KVA] Transformer Power [KVA] Transformer Power [KVA]

T1 150 T7 75 T13 100

T2  30 T8 15 T14 30

T3 100 T9 75 T15 30

T4 50 T10 50 T16 15

T5 100 T11 30 T17 15

T6 100 T12 15 T18 15

Voltage drops, corresponding to the secondary circuits of the network, cover the sections 
between each user and its assigned transformer. Figure 3 shows these drops obtained by using 
the following parameters: voltage 120 volts, power factor 0.85 and 1/0 aluminum conductor. Thus, 
the maximum voltage drop would be around 0.04 volts, which is 0.033 % of the total voltage. 
However, most users would have drops ranging from 0.01 to 0.025 volts. Consequently, it can 
be said that the expected voltage attenuation should not violate the standards for distribution 
systems. Voltage drops are calculated only in secondary circuits due to the model handles user 
and active transformer locations. So, with such parameters, it is possible to calculate distances 
and therefore voltage drops between users and their assigned transformer. The voltage drop in 
primaries is not addressed since the model does not perform optimal network routing. In addition, 
Figure 3 shows the distribution of users for each of the active transformers, providing an overview 
of the coverage of each transformer. Furthermore, the maximum and minimum number of users 
connected to a transformer is appreciated, in accordance with data shown above in Table 2.

Figure 3. Voltage drops in secondary circuits for the proposed scenario



92

Enfoque UTE, V.11 -N.1, Ene. 2020, pp. 84-95

Another aspect to be evaluated is the percentage of electrical coverage achieved after the 
location of the transformation centers. Since no coverage constraints are introduced, this pa-
rameter is not controlled, however, the results achieved expose a marked trend. Figure 4 shows 
coverage values obtained after applying the optimization methodology considering changes in 
the restrictive parameters of the model. The minimum coverage values are placed when using 
as the spacing distance of 20 meters. For this distance, even when the maximum transform ca-
pability changes, coverage remains fixed at approximately 22 %. Similarly, it occurs for spacing 
values of 30 and 40 meters, with coverage values of 45 % and 67 %, respectively. For spacing 
values of 80 meters, coverage improves considerably, except for results obtained for powers 
less than 100 KVA, the coverage reaches approximately 95 %. 

Figure 4. Network coverage by variations in model restrictions

Following the trend, coverage below the tested minimum distance is expected to be low 
and above the maximum distance tested would be greater than 95 %. However, the distance 
parameters used as constraints do not fit the needs of an actual distribution system. Since even 
the distance between poles should be commonly greater than 40 meters. Even, as a minimum 
spacing a distance less than that value, involves violating the minimum distance requirement 
between posts and, considering a spacing value equal to 40 meters, would imply the possibility 
of placing a transformer on each post, which nor does it fit the reality. Generally, transformers 
are located at distances of not less than 100 meters and as presented above, the coverage 
achieved under that distance is around 96 %.
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Figure 5. Execution times resulting from variations in spacing and transformation capability

Figure 5 shows data regarding execution times as a result of applying the optimization 
methodology and the variation of its restrictions. It should be noted from this figure that the 
markers refer to the maximum and minimum powers used for the creation of the different sce-
narios, which correspond to 350 KVA and 15KVA, respectively. These values correspond to the 
power horizons used, however, among these values there are more power parameters. Having 
said that, it can be observed that for a spacing of 20 meters all the results obtained yield the 
same asset site numbers, specifically, 53. Although the number of active transformes is the 
same, execution times experience an increase, starting from 11 hours, for the minimum horizon, 
to 21 hours, on the maximum horizon. Similarly it happens with the spacing of 30 meters, obtai-
ning a number of active sites of 59, in this case the execution time presents a decrease, so the 
maximum execution time is 29 hours and the minimum 1 hour. For the spacing of 40 meters, 
different numbers of active sites were obtained, starting with 64 to reach 58 active sites, with 
times ranging from 1 hour to 9 hours, being that, in the same way, there is an increase in the 
execution time. Finally, with the spacing of 80 meters, different numbers of active sites were 
obtained forming a growing curve in time and decreasing in number of transformers. In the lat-
ter, times range from 1 hour to 22 hours.

5. Conclusions and Recommendations

The optimization methodology presented uses georeferenced information for the characteriza-
tion of the scenario. It includes identifying users, candidate sites, and possible routes for net-
work deployment. This work considers the deployment of a new power grid and the model does 
not identify or consider existing networks. So, in a scenario where a network is already deployed, 
the results can help assess whether the current location of the transformation units is adequa-
te and if it is not, to consider the relocation of the transformer, this, accompanied by specific 
analyses as economic implications.
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Voltage drops achieved do not exceed the typical maximum permissible values stipula-
ted by regulations for electrical distribution systems. The resulting values show an adequate 
location of the transformers, as their reduced magnitudes respond to a well-achieved proximity 
between users and their assigned transformer, this implies that the distance between them is 
small and as a result, little attenuation is achieved.

Assignment of users to each transformation unit is not uniform, presenting cases in 
which a transformation unit covers just a single user. This is justified in cases where the user 
has a high electrical demand. And even if the above does not stick to reality, such units can be 
considered in the expansion of the distribution system.

The coverage obtained in scenarios with spacings less than 80 meters is limited, howe-
ver, the use of such parameters is not applicable to the requirements of a distribution network, 
since, as explained during the analysis, some of these values involve the possibility of placing 
transformers on each of the poles in the distribution network. With spacings greater than 80 
meters the coverage reaches quite acceptable levels, above 95 %. Despite achieving accepta-
ble levels for certain ranges, future research should include coverage restrictions to ensure full 
demand supply, even if the restrictions do not adhere to the actual requirements of a distribu-
tion network.
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