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SUMMARY

A total Lagrangian finite element formulation for the geometrically nonlinear analysis (farge
displacement;large rotations) of shells is presented. Explicit expressions of all relevant finite element matrices
are obtained by means of the definition of a local co-ordinate system, based on the shell principal curvature
directions, for the evaluation of strains and stresses. A series of examples of nonlinear analysis of shell and
plate structures is given.

INTRODUCTION

The development of new and efficient formulations for nonlinear analysis of structures has
attracted the study of many researchers in the past few years, and different alternative formulations
have been presented recently.! ~7-1%:16.19.20.22 From the various structural types existing, especial
interest has been focused on the numerical study of shell-plate or arch-beam structures, due mainly
to the fact that most real engineering structural problems can be included into one of those two
categories,

The present work fails within such a context of research, and can be classified as another effort to
try to find a *simple” and ‘economical’ formulation for the analysis of shell, plate, beam or arch-type
structures  which allows for geometrical nonlinearities due to the existence of large
displacement,/large rotations in the structure.

The formulation uses two-dimensional ‘degenerated shell’ finite elements® for the study of three-
dimensional shells and piates, and one-dimensional elements for the analysis of arch, beam and
axisymmetric shell structures. A total Lagrangian approach has been chosen for the definition of
the deformation process of the structure. : '

Stress and strains are defined with respect to a local co-ordinate system intrinsic to the structure.
In the case of shells, the co-ordinate axes coincide with the principal curvature directions and the
normal vector at each point. Explicit forms of most finite element matrices can be obtained in a
straightforward manner, as will be detailed later. o

Normals to the midsurface before deformation are assumed to remain straight, but not
necessarily normal to the midsurface after deformation, thus allowing for shear deformation effects.
Moreover, zero elongation of the normal during deformation is strictly considered. Finally, it is
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also worth noting that no restrictions are made on the magnitude of the shell curvatures. This
might be of special interest for the aualysm of non-shallow shells using a relatwely small number of
elements. :

In this paper the two-dlmensxonal formulation to deal with three-dimensional sheil (plate)
problems is presented. Part two of this work dealing with one—dlmensmnal structural problems
(axisymmetric shells, arches and beams) will be published shortly.

In the first part of the paper the general finite element formulation for geometrically nonlinear
analysis of shells is presented in detail and éxplicit expressions for most finite element matrices are
given. Then, a series of examples of nonlinear analysis of shell and platé problems is presented.

GEOMETRIC DESCRIPTION

The middle surface of a general shell structure, such as the one shown in Figure 1, can be expressed
in parametric form*° as : :

xo(#nﬂz)
To= YO(Pzaﬂz) (1)
Zo(ﬂp#z)

Inequation (1) u 1(;12 = constant) and oy, = oonstant) are thc prmmpal curvature lmes of the shell
middle surface. These lines are orthogonal at each point. -

+~ At each point, O] of the middle surface, unit vectors a and b tangent to curvature lines pt; and u,
in O, respectively, and n normal to the middle surface in O, are defined. Also, parameters 7, s and ¢
will be defined as the lengths measured along hncs Hs and y, and along the normal direction, n,
respectively.

A second set of orthogonal vectors 1, m and n can be defined at each point, as shown in Figure 2,
ina way such that vector } is taken as parallel to the global plane xz and tangent to the shell middle
surface, n is the normal vector, previously. defined, and m is orthogonal to the plane n-1, and also
tangent to the shell middle surface at point O. Note that, due to their definition, vectors | and m arc
not unit vectors, and their modulus is e = {1 —n2)1/2,

1 - .
fi=dxb

N
ffafi=tbli=[n]=1
,g_;ﬁ: %ra
g—;'"::_%ss
Rr,Rg = principal curvature radius

Y

Figure 1. Definition of vectors a, band a
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e=||T}=fi@] = (1-n2 )"

Figure 2. Definition of vectors 1 and m

The components of vectors a, b, n, [ and m in the global reference system x, y, z (with associated
unit vectors i, j, k, respectively, see Figure 2) can be written in matrix form as

ax b)c nx "!x mx
a=Ja,» b=lb, b a=4n} I= Ly m={m, 2)
a, b, n, L, m,

where indices x, y and z refer to components assoctated to unit vectors i, j and k, respectively.
It can be seen in Figure 2 that vectors a, b and n define a set of local axes x', ¥ and z', associated
with the shell principal curvature lines and their normal vector, respectively. On the other hand,
vectors |, m and n define a second set of axes X, y and Z, which although it can also be considered as
‘local’, is more easily identified within the structure (x is parallel to plane xz, etc.).
A point over the shell middle surface can be defined by a vector r (see Figure 1) such that

I=T,=ry+tn 3)
or F=<yp=To(r,s) + t-n{r,s) 4
Z

Using equation (4) and the relationships shown ‘in Figure 1, the Jacobian matrix of the
transformation xyz —rst can be written as

ox,y.2) | [or ar éx .
[5(1‘,3,5)]_[5’55’5J_T R : {5)
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where T is the orthogonal Jacobian matrix of the transformation x'y'z’ — xyz given by

P aT ax a az
_[a(xyz):\f bT =1b ‘ (6}
-7 - x ¥ z
a(x’.V7Z) HT R
x ¥ z
and
-L o o
ax',y',2) R’
x,y,z '
R=| ——=|= t 7
[ G(r,S,I) ] 0 I*k‘“ 0 ()
0 0 i

is the Jacobian matrix of the transformation x',y,z —=1,5,1.

Another matrix of special interest is that defining the components of vectors L, m and n in the
system a, b and n. From the definition of these vectors (see Figure 2) it is easy to obtain

[Lm,n]=[a,bn}T

(8)

-L,41}

11,-1,11

4 /)(_-s,-s,'-n
-

~
rd

(1-1,-1

[-1,1,-t}

{1,3,-1)

Figure 3. Typical eight-node isoparametric element. Normalized co-ordinate system and associated normatized volume
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with
by, a, 0
T={—a, b 0 ®
0 0 1

It is now possible to define the shell geomefry In an approximate isoparametric form?* as
Ng V h
r= ;Nl(éa ”)roi + Tzn(ﬁ,r]) (10)

where 1y, is the position vector of each node of a mesh of finite elements discretizing the shell middle
surface (Figure 3), n, the number of nodes of each element, N; the shape function of node i, £and 5
the normalized isoparametric co-ordinates over the shell midsurface, and 1 the third normalized
co-ordinate. This 7 co-ordinate is defined as

T1=2t/h ' (11

where h is the thickness of the element. Finally, the normal vector n{&,n) of equation {10) can be
obtained from the approximate isoparametric middle surface and the expressions shown in
Figure 1. .

Equation (10) transforms the element volume into a cube of unit side defined in the co-ordinate
system £, n, T (see Figure 3).

KINEMATIC DESCRIPTION

The deformation of the shell is based on the following two main assumptions:

1. Normals to the shell middle surface before deformation remain straight, but not necessarily
normal to the middle surface after deformation. This assumption has been frequently used in the
context of linear and nonlinear analysis of ‘thick’ shells and plates by many authors.?-6:10:15.19
2. The length of the normal vector to the shell middle surface does not change during the
deformation. This assumption, already suggested in alternative nonlinear shell formulations,® is
strictly satisfied here by imposing that the unit Jength of the normal to the shell middle surface
before deformation remains constant during the deformation process.

The first assumption allows to express the displacement vector u, of a point P laying over the
normal a at a distance ¢ from the corresponding point O over the middle surface {see Figure 4), in
terms of the displacement vector of point O, u,, and the relative displacement of the end of the
normal vector in O, with respect to point P, u,, as

u=u,+ tu, (12}
The vector of ‘fundamental displacements’ p is defined now as
P = {8g, Vo, W, 5, 7y, wi)t (13)

where ug, v, w, are the components of u, in the global system i, j, k, and &,, 0,, w, are the
components of u,, in the system L, m, n, previously defined (see Figure 4).

Vector p defines generically the displacement of any point of the shell and it can be interpolated,
within each element of the finite element mesh, in terms of its nodal values p; as

p(E = ";‘N,-(é, Wp Np=Nilg (14)

st
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]

i3
T Y
o= Ugi + Vo] + Wo K.
X e e e .
1= Ly mew A
T
Yo= { U, Yo, Wo}
e T
u,= {Uv Vi Wy }
Figure 4. Definition of diéplacements
where I is a 6 x 6 unit matrix and
= {”oi; UD;sWOisulp Uipwl,-} (15)

is the value of p at node i.
On the other hand, the second assumption allows to express the displacements @, , 7, and W, ,
due to the rotation of the normal m, at node i, in terms of the angles «; and f;, defined in Figure 5, as

3 B - . T

- SH10; COS b; — SINo; 51N b, R

ﬁliz {ﬁli! 61;!w1§}T:{ e[ ﬁl; el Bl,cosai— 1} (16)
i i

Figure 6(a) shows the relationship between angles o, and §; with the two components 0z, and 8,
of the rotation vector, 8,, of point i, tangent to the middle surface at point i. Vector 6 expresses the
anticlockwise rotation of the normal. - '

Itis worth noting that equation (16) leads to the equality || 0} || = ||n, + u, || = 1. This is consistent
with the second assumption of zero elongation of the unit normal independently of the magnitude
of the rotations (large rotations formulation). Also, equation (16} and the relationships shown in
Figure 6, allow us to reduce to five the number of nodal displacement unknowns. Therefore, the
vector of displacements for node i is simply

ai = {u{)is UDia WU,—a gi,ﬂfl— }T (17)

Finally, it is worth pointing out that the definition of rotations {and their associated bending
moments), shown in Figure 6 (b), is consistent with the definition of the work of the bending
moments obtained as a scalar product of vectors M; and 6, ie. '

Mi.of:Mfilaf.'_'-Mfe.aﬁf (18}
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e = T o
=T e - : P B . LT
Ug= M N = -simay; cos B By ~Sita sinfi gl s
+{cosa; -1y
/f_’ " 2y
G, e ={1 nyi)
| —
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| o ’
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\\\ Ve
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a) - b).

%_
<,
(]

¥

b
33

I 8]l = 0z, = a; cos B
17,11 =85 = o sin f;
@ = {9%4_ 6%}”1
COSISi = Bfi/a;
sin B = 0y /o,

Figure 6. Sign convention for rotations and bending moments

STRAIN FIELD

Let us define v’ = [u, v/, w']" as the vector contaiﬂing the components of the displacement vector u
of any point of the shell measured in the co-ordinate system defined by vectors a, b and n,
corresponding at a particular point, Q, laying over the shell middle surface, Le.

=u'a+v'b+wn (19)

My
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The vector of displacement gradients at a point, P, laying over the normal vector in O (see Figure 4)

can be defined now as

with

g4
gl: gl = {
g3

au’
ax’
ov'
ax"
dw’
ax jr

€1
E=<82
g3

da

Bz =% s > =1

gs

'
ay’
ov’
ay
aw’
@_y' r

2=

g2
gg
do

aou’
3z
av’
2z
aw'

8z

(20}

(21)

where subscript P denotes values in point P
Thus, the Green strain vector at point P (associated with the local directions X', ', 2’ of Figure 2)
can be written using equation (21) as

Ex g: +3g} +493+43)
1602 4 24 2
€y gs +3lgs + g3 +g8)
E= 47y ¢ =32+ 04+ 9194+ 9285 + 9396 (22)
Pxz Ga+gq7+4197+ G298 + d39s
Vyizr et dstgsdr +dsds +dsds

On the other hand, vector g can be obtained in terms of the fundamental displacement vector, p, of
equation {13} as (see Appendix I).

d o 0
CT-- .
, zC,(A1+Tar)

g ar
1 . HO
g=<g =Lp= 0 L8 (_) (23)
CT— tClA,+T—
g < s ( 2 ) |\
0 T1
with
-1 24
" 1—1/R, 24
S 25
* 1—1t/R, 23)
1 0 n, -t
Ay=— |—n, 0 0 (26)
"1 b oa, 0
- z
LM 07 ’
A= | O 1y —1 (27
- |—a, b, 0

T
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Substituting equation (14) in equation (23) it can be finally written

g= L'i N;p; = ZM£'Pi
1 1 :

where
C,Ti& tC,(NiA1 +a~]\r—"T)
or or
oN, IN;
- *i 'A —] = —.- g.
M= | CT=— :CS(NL 2t = T) [, 31,]
0 NT
M, M

L3

Computation of the strain increment vector

Taking into account the linearity of M;, we can write from equation (28) that

sg=3" Mp,
1

2261

(28)

(29)

(30)

Using the expressions of Figure 6 and differentiating equation (16) a relationship between
fundamental displacement and nodal displacement increments at a node can be found in the form

8p; = C;-da;
where
13 0 Vli VZ:’
Cz=[0 V-] V.= sz V3i

Vai Vi

1 sino; .
V= —e—(cosmicos2 B+ - 'smlﬁ,-)

i i

i i

I . sin a;
Vo= ——sin f;cos B, cose; — :
e-

1 ) sin o;

Vi, = — | cosa,sin? f; + “cos? B,
€; &

Vyi= —sina;cos f

Vs; = —sinw;sin §;

Thus, after substituting equation (31) in equation (30), we have

Sg= MqCda,=3 Ga,
1 1

with
N, ON; ~
ek . TR |y
C. p T tC,[N,A1+ 5 TJ ;
;= . = - Nn.ﬁ
Gi=M-C, CS%T tCo) NiA, +—T |V,
os ds
0 NIV,

(31)

(32)

(33)

(34)

(35}

T oppimemes
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Equation (35) shows the nonlinearity of matrix G; due to matrix V; of equation (32), whose terms
are functions of the nodal rotations. A more explicit form of matrix G, is given in Table L.
Additionally, details of the computation of the curvature radius and derivatives of shape functions,
which appear in the expression of G, of Table I, are given in Appendix IL

The relationship between Green strains and nodal displacement increments is obtained from
equation (22) as

Se=A-dg (36)
with '
i+g; g2 g 0 0 0 0 0 0
0 0 0 s I+gs g6 0 0 0
A=| g. ~1+g; g5  l+g, g, g =~ 0 U (37
g7 gs l+g, 0O 0 0 1+g; 9> 43 '
0 0 0 g7 95 144y 9. 1+gs gg
and after substitution of equation (30) in (36) it can be finally written
de=A-Y G;6a,= 3 Bda, (38)
1 1
B,=AG, - (39)
CONSTITUTIVE EQUATIONS

The second Piola—Kirchhoff stress vector, corresponding to the Green strain vector of
equation (22), is defined now as

o= {Gx': O’y', Tx’y'r Tz T:y'z’:IT (40)
where x’, y and z' are the local axes defined in Figure 2.

The constitutive relationship must be incorporated to the general formulation in an incremental,
or rate form, of the type

56 =D*s¢g (41)

We will not go into details of the different forms of matrix D* for the various types of material
behaviour. A comprehensive study of the usually accepted constitutive equations for nonlinear
structura} analysis can be found in Reference 8.

DISCRETIZED EQUILIBRIUM EQUATIONS

The discretized equilibrium equations for the structure are derived via the virtual work expression
which, in its finite element total Lagrangian form, can be written ag2*

¥(a)=P(a)— R(a) =0 42
which for the ith node gives

¥,(a) = j Bl-cdV - Ryfa)=0 (43)
v

In equations (42), W(a) is the residual force vector and R{a) is the equivalent nodal force vector due
to exterior loads. :

In this work the external loads have been assumed to be conservative. Therefore, vector R in
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equation (42) can be taken as independent of the nodal displacements and equation {43) can be
written as

Yi{a)= J Bl-sdV — R, (44)
- .
Typical cases of external loads are as follows:

Point loads. For which vector R; has the form
R[ =[fxi:fyg?fzieMiiﬁM25]T ) (45)

in which f_, f,, f.. are the point loads acting at node i along the global directions x, y, z,
respectively, and Mz and M are the bending moments at node i of local axes X and y, respectively.

Surface loads

Rir—j [Nit,, N, Nit,,0, OJTdrds . (46)
m
where ¢, t,, 1, are the intensities of a uniform load acting over the element middle surface along the
global directions x, y, z, respectively.

Self weight

R;= - J [0,0,N;, 0,01 pg hdrds {47
'An-a

where p is the element density, g the value of gravity {assumed to act along the vertical global axe z)

and h the element thickness.

EQUATIONS SOLUTION METHOD—
COMPUTATION OF THE TANGENT MATRIX

The solution of systems of equations like that of equation (42) for geometrically nonlinear
structural problems, in which snap-through, snap-back, bifurcation, etc.,, phenomena might take
place, has been the objective of numerous studies, and many solution strategies are available in the
literature (i.e. standard or modified Newton—Raphson, quasi-Newton, BFGS, arc-length, con-
jugate gradient, creep-type methods, etc.).2%2¢ In this work, one of the simplest procedures—
the standard Newton-Raphson solution combined with a load incremental method— has been
chosen. However, the formulation presented in the paper allows us to use any other solution
strategy based on the knowledge of the residual force vector of equation (42) and the tangent matrix
K; = dy(a)/0a.

In the Newton Raphson algorithm the incremental displacement vector, corresponding to the
nth iteration, is calculated as

Aa" = — K (a")'F(a") (48)

from which the updated displacement field can be computed as a"*! = a” + Aa”. A convergence
criterion based on the comparison of the quadratic norm of the residual force vector y{a), with that
of the vector of external forces R(a), has been chosen. The iterative process stops when the relation
value between both norms is less than a prescribed value ¢ (In the examples presented in this paper,
the value of & = 1 per cent has been taken)
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A typical sub-matrix of K, linking nodes i and j, can be obtained by

ik &
K, (o) = 51 (@9)

J

Taking the first variation of equation (43}, we obtain

¥ Vv

S¥(a)=Y K%_-aa,:J SBT-adV + j BISedV (50)
i=1

The second of the above integrals can be expressed, by making use of equations (38) and (41), as

j BI-dodV = ¥ J BID*B;dVéa; = Y Kida, (51
14 =1 g i=1
with

K{}-:j BID*B,d¥ (52)
¥

On the other hand, the first integral of the right-hand side of equation (50} can be written, using
equation (39), as

J 53}‘«&/:‘[ G[-0AT-odV + j SGT-AT-adV (33)
v v v

The above integrals can be transformed as follows. Using equations (37), (40) and (34) it can be
written

j G}éAH;—dV:f G/-S-8gdV = ZJ G[-5-G;dVda;= ) K éa, (34)

with ’ ’ e .
Kif = J GISG;dv (55)

¥
where
o3 PR SV PO ) BN
S=tlr.. L, o0y r.1; (56)
Teely Ty 0

The second integral of the right-hand side of equation (56) can be written as
ij

J SGI-AT-¢dV = Y K; 0a; - (57)
v J=1

Matrix K™ of equation (57) can be simply obtained using the fact that M, is independent of the
nodal unknowns. Thus, it can be written, making use of equations (35), (32} and (29),

0 0 M 0
T $CT-MT = Do - 58
SGT = 5CT-M] [0 5 3] [MJ [5‘,?_ ?J (38)

Now, since matrix V, is a function of the nodal rotations f¢.and 6, only, it can be finally obtained

K, =0 fori#j (59)

PPt e s
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000 0 0 0
0 0 0 0 0
Ki*=|0 0 0 0 0 (60)
60 0 0 H, Hy
0 0 0 H, H,;
where
Hn> j oVl o or (Hu) J vl
= —-M]AledV; = | ——MFATedV 61
(sz ¢ v 005, Hys /; Vagyj.

Anexplicit form of 8V /86, and dV,/06; matrices is presented in Appendix II1. There it can be seen
that H,, = H;, and, therefore, Ki" is a symmetric matrix.
From equations (51), (54) and (57) we can finally write the full tangent matrix as

K, =K;+Kj + K5~ (62)
where Kf;, K and KZ® are obtained by equations (52), (55) and (59)-(60) respectively.

EXTENSIONS FOR KINKED SHELLS

The shell formulation presented in previous sections is valid only for smooth shells. However,
extensions to allow for kinks {folded plate structures) are simple. They only imply the adequate
transformation of the two local rotations 0, ¢; into the global co-ordinate system, so that at a
common node all the nodal forces contributed by the different elements meeting at the node are
assembled in the same global system. The number of nodal unknowns then increases from five to.
six due to appearance of an extra nodal rotation after the transformation process. Such
transformation can be easily done by using, in the first place, matrix T of equation (9) to transform
the two local rotations from the I, m, n axes, where they are originally defined, to the a, b, n axes.
Then, matrix T (see equation (6)) can be used for the final transformation into the global axes. It can
be easily shown that

Gi';_ 6:; (63)
B=la, |=Tr|6,{=Tro
6., 0,
with
0 —1 0 010
T*=—{t 0 O|T'T./-1 0 O (64)
“lo 0 1 00 1

where ¢, is the scaling factor defined in Figure 5.
The tangent matrix after the transformation K, can be computed as

K T = TTK;[;TJ

. (5 o Ky, 0
Tf:[g TJ; K?U{ 0" 0} (65)

Some precautions must be taken if the above transformations are performed for nodes which lay on
smooth zones of the shell, since singularity of matrix K; will arise in those cases. This can be
avoided by a selective transformation of rotations in the adequate nodes only, or by inserting an
arbitrary number in the zero pivot coefficient at the equation solution stage.**

where
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NUMERICAL INTEGRATION AND CHOSEN FINITE ELEMENT

All the different integrals have been evaluated using a Gauss—Legendre numerical integration

quadrature.
It is worth noting from (7) that for the volume integrals
roor Z’
dV =dx'dy'dz = ?(x_yl drdsdt = det|R|drdsdt
: olr,s, 1)
={1—¢/R)(1 —t/R,) drdsdt (66)
On the other hand, from equation (10) and (15), _
) B(r, S) a(x()s yD) / a(x(): y())
drds = —|dédn = dédn 67)
a&n| e || o (
h
dt = id'c

x2 ¥
z:m(i-?)ﬂ-?)

¥
P Im ’
¢ — X

m=50" E=30=10% ps.i.
0=300" V=00

h = thickness = 6"

9 elernents of eight nodes

Figure 7. Parabolic shell under central point load. (Geometry, material properties and finite element mesh used in the
analysis

Ty
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Thus, from (66) and (67),

%o 0o _ 0% Oyo
h9E on  an @
do=(1—t/R)(1 ~YR)5 = 8;@ ajo af -dédndr (68)
Q. Yo e

ar Os ds or

Equation (68) allows the use of the normalized domain of Figure 3 for the numerical integration of
all volume integrals.

With respect to the type of element chosen for the examples analysed, we have to note that the
formulation presented here can, in fact, be classified within the range of ‘thick shell formulations’
and, therefore, any of the reduced integration family of elements recently developed to deal with
thick/thin shells could be used.®*™** For the examples presented in this paper, the eight-noded
isoparametric element with the following integrating rule has been chosen:

1. Reduced integration (2 x 2 Gauss~Legendre rule) along directions ¢ and » over the middle
surface of the shell

2. A two-point integration rule over the thickness {r direction) for the elastic solutions and 4-8
points for the elastoplastic solutions.

We are fully aware of some deficiencies found for this element in the range of very thin shells.?”
However, this element has been chosen here with the only objective of testing the formulation
presented. Thus, all examples have been restricted to moderately thin shells. The numerical resuits
obtained have been very accurate, as will be shown in next sections.

——--— Clamped hnu
F{1-u3
Fh? Present a. Simply a
formulation supported a
0.03 4 o Parually
o supported = S
/// A
e
wWooD[21] § et
-
o
s
002 - T
g T ]
/‘T./I"""g_ — T e
Pt Bt o
A -
0.01 ‘ s
A7
v
//‘
/ w = central deflection
Y/ o
T . . , .
02 Q4 06 08 10

Figure 8. Parabolic shell. Normalized plot of the elastic central displacement versus for three different types of boundary
conditions
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NUMERICAL EXAMPLES

All the examples presented below have been solved in a VAX/VMS 11/780 computer using single
precision. .

Example 1. Parabolic shell-elastic analysis

The geometry of the shell and finite element mesh used can be seen in F igure 7. The problem has
been analysed by a process of incrementing the central deflection from a zero initial value to a value
of 50 in.

Nurmerical results obtained for the central displacement load elastic curve obtained for different
types of boundary conditions at the shell edges are presented in Figure 8. Numerical resuits
obtained by Wood with paralinear three-dimensional shell elements®! are also shown for
comparison. Note the differences between the boundary conditions imposed by Wood and those
used in the present analysis.

1= 2a=500" E€-30x10° psi,
6" 0

fi= thidress 06" V=E'315
03" ’

9 dements of eight nodes.

Figure 9. Simply-supported square plate. Uniform loading. Geometry, material properties and {inite element mesh used in
the analysis
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Example 2. Simply-supported square plate—elastic analysis

In this example a simply-supported square plate under an increasing uniform vertical load has
been analysed. The geometry of the plate, material properties and finite element mesh used can be
seen in Figure 9. Note that only a quarter of the plate has been analysed due to symmetry.
Numerical results obtained for the load intensity—central deflection elastic curve are plotted in

w"h w = central deflection
. h = thickness= 6 *

— LEVY {8] . ¥:=0316 o
o U=036 . ' o
v=00 A

Present formulation

q=undorm feading

ad
Eht

T T T T T T T T

2 4 6 8 10 12 14 16 18

Figure 10. Simply-supported square plate. Normalized plot of the elastic central deflection versus toad intensity for two
different values of the Poisson ratio

W/h
—— h:=B" in/i = 1/100)
o b:08" /1 = 121000}
7
+ B=:03" (At = 172000) .
&
/+
/4>
4
1 4
420318
qa*
Ent
T T F L] T T L] ¥ L]
2 [2 & 8 0 12 1% i3 18

Figure 11. Simply-supported squaxe plate. Normalized plot of the central deflection versus load intensity for three different
thickness-width ratios
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Figure 10, where results obtained by Levy® arealso presented for comparison. Excellent agreement
between the two solutions is obtained. Finally, the same problem has been analysed for different
thickness—width ratios and numerical results for the load—deflection curve can be seen in
Figure 11. It can be seen in these figures that the behaviour of the reduced integration eight-noded
element used for the thick and moderately thin situations is good. Further research in this context
for other different types of elements is actually on course.

Example 3. Cylindrical shell—elastic analysis

The cylindrical shell studied can be seen in Figure 12. Note that only four elements have been
used to discretize one quarter of the structure {due to symmetry). The shell is assumed to be simply
supported on its straight edges and free on the curved ones. In the analysis presented, an increasing

R= 2540 mm
I =254 mm
h=thickness =127 — 635 mm

e =01 radians

E=310275 kNsmm?
I Y V=03

4 elemnents of eight nodes

Figu%e 12. Cylindrical shell under central point load. Geometry, material properties and finite elernent mesh used in the
analysis

t
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Figure 13, Cylindrical shell. Piot of the elastic deflection versus load for ewo different points of the shell for a thickness of
127 mm

displacement, w, is prescribed in point A and the corresponding vertical reaction force, F, obtained.
In Figure 13, the load-deflection paths for points A (central) and B (mid-point of the free edge) for a
shell thickness of 127 mm are presented. It can be seen that there is a snap-through point for a
value of the force F = 22 kN. The control of the vertical displacement of point A allows usto obtain
all the load values along the deflection path. Numerical results agree well with those obtained by
Sabir and Lock!” and Surana.'® When the shell thickness is reduced to halfits value (6.35 mm) the
load—deflection curve presents a snap-through point for F ~ 0.6 kN, togethes with a snap-back one
(vertical tangent) for a value of the deflection w, =17 mm {see Figure 14). Numerical results show
good agreement with those obtained by Sabir and Lock.}?” However, we have to note that the
method of controlling the displacement of point A has a drawback for this particular case, since no
results can be obtained in the region between the two vertical tangents. Results in that particular
region can be obtained by using more sophisticated solution procedures,?* ¢ as mentioned in the
earlier section ‘Equations solution method’ which can be easily implemented in the shell

formulation presented in this paper.
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. + P i
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Figure t4. Cylindrical shell. Plot of the elastic deflection versus load for two different points of the shell for a thickness of
635 mm

Example 4. Spherical shell—elastic and elasto-plastic analysis

The last example is the analysis of a spherical shell with fully-clamped edges under an increasing
vertical point load acting in the centre of the shell, as can be seen in Figure 15. Again, due to
symmetry, only a quarter of the structure has been considered. A mesh of 7 eight noded elements
has been used (see Figure 15). Results for the load—deflection at the centre have been plotted in
Figure 16 for the elastic case and good agreement with results obtained by Wood with a two-
dimensional axisymmetric formulation is obtained.

An elasto-plastic solution has also been attempted for the same problem. A Von Mises yield
criteria with no strain hardening and an initial yield stress of 5 x 10% psi has been chosen.
Numerical results for the elasto-plastic load—displacement curve for different integrating rules
across the shell thickness are plotted in Figure 17. Finally, a drawing of the plastic zones for a
central deflection of 0-16 in. is shown in Figure 18.
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b= 180~ Radius=t. 758 "
m= 0 085895" Thickness = 001576~
E£=107 psi. =5 10* psi.
V=03 H'=0C0

7 elements of eight nodes

Figure 15, Spherical shell under point load. Geometry, material properties and finite element mesh used in the analysis

CONCLUSIONS

A total Lagrangian finite element formulation for the geometrically nonlinear analysis (large
displacements/large rotations) of shells has been developed.

The formulation allows for large curvatures in the shell surface and shear deformation effects.
Explicit forms of the relevant finite element matrices have been given. The formulation presented
here is the basis for obtaining simpler formulations for the geometrical nonlinear analysis of
different structural types, i.c, plates, axisymmetric shells, arches or beams. The accuracy of the
formulation has been checked in a series of examples of nonlinear analysis of shell and plate
structures. Details of the simplification of the shell formulation presented here, for the nonlinear
analysis of ‘one-dimensional’ structures, together with further examples which will test the
efficiency of the formulation, will be published shortly.
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Fllbs)
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— WO0OD[21] 6 axisymmetric elements
<] Present analysis
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/ Linear solution
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0.02 004 006 008 EAly 012 Qa4 0.6

Figure 16. Spherical shell. Plot of the elastic central deflection versus load

APPENDIX I COMPUTATION OF THE L OPERATOR

Let p be the shell point in which the L operator is to be calculated and O the corresponding point

a1, over the shell middle surface in which vectors ay, by and n, and the local system of co-ordinates
) x'y'z’ are defined (see Figure 19). ' o

Let Q be another point laying over the shell normal at a distance Ffrom its corresponding point

: M over the shell midsurface (see Figure 19) and let 1, m and n be the vectors defined in point M, as

explained in the second section. Let finally
up =y, + r¥u) (69}

be the displacement vector of point Q in the system x'y'z’.
On the other hand, from equations (21) and (17) it can be deduced that

o’ au’ o’
= _ i o —_— N =| — 7
gl (Cr ar)l?, gz (CS 63 )P, g3 ( 8t )P ( O)

¥ bissonr

3 - . ’ et e e A e ————; T
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006 008 010 012 0 016
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Figure 17. Spherical shell. Elastopiastic analysis. Plot of the central deflection versus load. Numerical results obtained with

different integrating points through the shell thickness

Figure 18. Spherical shell. Plastic zones for the maximum deflection of -16 in.
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Figure 19.

where C, and C, are defined in equations (24) and (25), and subscript p refers to valuesin point P. 1t
can also be found that
uy =To-uy and v, =Ty [Lm,n}-u,, {71)

where uy, and u, ,, denote components in the global system xyz and local vector system Imn (in
point M), respectively, matrix T has been defined in equation (6) and subscript zero denotes values
in point O.

Substituting equations (71} in (69) it is finally obtained that

g =Ty {uy, + t*[,m,n]-a,,,} (72)

Differentiation of equation (72) and substitution in equation (70) (making O — P, M - QO and t*— 1),
yields

_Za
g =10, C,r[TmEi-ir Azﬁ,:l

or or

a il
g2=CsT—§;9+ C,-zI:Ta—Z+AzﬁIJ 73)
g =T,

where matrices T, A; and A, are defined in equations (9), (26} and (27). From egquation (73) the
operator L of equation (23) can be directly obtained.
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APPENDIX II: COMPUTATION OF THE PRINCIPAL CURVATURE
DIRECTIONS, RADIUS OF CURVATURE AND
SHAPE FUNCTION DERIVATIVES

The isoparametric expression
To= ;Ni(f, n)to; (74)

defines a parameteric form of the shell middle surface within each element for which the curvature
chrectlons and curvature radius can be calculated by simple application of formulae of differential
calculus.!

Thus, let E, I, G and ¢, f, g be the coefficients of the fundamental expressions defining the sheil
surface, where

~Org Oy _ﬁrO_BrO'G aro g
T T TR oy an

L S N L0 @fo
T JEG—F?) 887 \ ot

(75)
_ 1 &1y [ or, are
f= JEG—FY ~ ey (af )
1 a* dry
g= T N\ AE S,
JEG-—F)  an? ( ok Oy )
The equation
(Fg— Gg)A* + (Eg — Ge)A+ (Ef — Fe)=0 {76)

where 4 = 6{/0n yields values of 1, and A,, which define two orthogonal directions in which the
curvature has a maximum and a minimum, respectively. Such curvatures can be obtained by

1 f+gd  e+fA

R, F+Gl, E+Fi

b frghy et fi,
R, F+Gl, E+FA,

(77)

The radius of curvature R, and R, are obtained as R, and R,, respectively. The angles which the
principal curvature directions form with the co-ordinate line ¢ (which is easy to identify for each
element, see Figure 20) are given by

arccos E+4E {(78)
= o
P ATRCOS TR JE 20 F + A2G)
b
S=yi o
vty

It is well known that there might exist points on the shell surface in which all curvature directions
are principal and they have the same radius of curvature (umbilical points). In such points, the
angles y and & have no particular meaning and they can be defined arbitrarily (in such cases, as
happens with the problem of spherical shell, the curvature direction ‘" has been taken to coincide
with local axis &).
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3:‘,)4-%'

Figure 20.

It can be proved!? that the denvatlves of the shape functions with respect to the principal
curvature directions are given by

BN, - , - R

e 42

aN.  E e

‘ar  JE+2AF+ 12G

r U F 1) (79)
GN; ,1%

aN, aE

s JE +2ASF~§~/1’*G|)

Finally, vectors a, b and n can be evaluated from thelr definition shown in F1gurei and
equations (74} and (79).

APPENDIX TH

Differentiation of the expressions of the components of vector V;of equations {32) and (33)leads to

Vi TA, A, Ay oVl T[4, A, A
30z | A, A, A, [ 06, A, 4, 4,
where ‘

V. 1 ;
A, =291‘ = __[3(coscx!m51;1a )sm B:cos §; — sinocl-cos-",Bi}

Xi el’ X; (]
aVv,; oV 11 {cosa; sing;
Ay =B 2 M 2 L 3 B, — 2sin B, cos?
2 895,' 59_];, €; [( o, al )( s ﬁ ﬁ ﬁ)
— sin o; sin §; cos® ﬁ;]

B all

wmeif

et o ey o v 14 e e sy 4 e e e % R pam e e e = m m e e s e m -.—-—-n—-——rq.-ww"‘""’
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1.

z

3.

16.

7.

18.

200

oV, sino
Ay =-—t=—cosucos’ f — ! O(‘515125,-
aa;i &;
oV OV, 1] fcosu; sing; .
Aym == —— LT H(cos® B — 2 sin? fcos B
4 ae;i 699‘- ei ai lg ( ﬁ[ 1 ﬂl ﬂz}
—sinajsinl,ﬁicosﬁf}
oV, 3V, SIn & .
A= =% " —cosa; }sin f;cos f;
5 6623 agfi ( fxi l) ﬂ ﬁi
aVy,; 1 cosa; sino; . .
Ag =t = | 3 L2t Jsin B cos? f; — sin e sin® ;]
agi[ €; o oy
Vs, ) sina;
A, ==t = —cosusin® §; — 2% cos? B,
0t o;
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