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Abstract. Computational fluid dynamics is a cornerstone for the modern aerospace industry,
providing important insights on aerodynamic analysis while reducing the need of expensive
experiments and tests. Nevertheless, simulations of complex geometries are often performed
on a discrete spatial domain too coarse to capture all relevant physical phenomena for the
sake of lowering the computational cost. A consistent spatial discretization on so-called grids
approximates the analytical solution of the partial differential equation with increasing number
of discrete points. Such a grid refinement study is an expensive method to assess the general grid
quality. This work shows that machine learning as a post-processing tool is capable of improving
coarse grid simulations, even if not converged. The results show that three machine learning
models varying in their complexity, namely the random forest, the neural network, and the
graph neural network, are capable of finding patterns in coarse grid simulations. These patterns
are used to predict the discretization error to approximate the field variables of interest of the
corresponding fine grid simulation mapped onto the coarse grid. Initial training and testing is
performed on the RAE2822 airfoil leading to corrected flow fields, improved surface integrals
and coefficients, even when shocks are present. Additional tests are performed on the RAE5212
airfoil, showing the generalization limits of the trained models. The proposed method promises
to reduce computational expenses while increasing the accuracy of the coarse grid results which
works locally, e.g. it corrects the error for each cell individually and is therefore not restricted
by the number of grid points. The presented results obtained by the machine learning models
during post-processing are a promising baseline for more integrated developments, where the
models will interact in a dynamic fashion with the flow solver to further improve coarse grid
simulations.

1 INTRODUCTION

Aerodynamic analysis based on computational fluid dynamics (CFD) has become a corner-
stone for the aerospace industry, whether it be for design or optimization. High-fidelity simu-
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lations provide insight into highly complex physical phenomena without the need for expensive
wind tunnel experiments or flight tests. Nevertheless, these methods are far from perfect.

One of the crucial aspects when performing such simulations is the need for a spatial dis-
cretization on a computational grid to approximate solutions of the governing equations of
interest. The design of such grids has in general a significant influence on the accuracy of the
approximate solutions. Meshes with a high grid resolution are necessary to accurately capture
phenomena such as the effects of turbulence at high Reynolds numbers, where the number of
degrees of freedom has to increase close to the boundary layer to correctly approximate steep
gradients.

Such a fine-grained resolution significantly increases computational cost as well as simulation
time and ultimately becomes a bottleneck of many high-fidelity simulations. It is best practice
to conduct grid convergence studies to quantify the error induced by the spatial discretization
allowing to find an optimal trade-off between cost and accuracy. However, obtaining such
spatial consistent results for full aircraft configurations at flight Reynolds numbers is often
regarded infeasible given an industrial setting, where it is not uncommon to have grids with
several hundred million points which are still too coarse [1]. Under these conditions, it is
often impossible to conduct rigorous grid convergence studies to estimate the error. In the
past, several approaches have been proposed to circumvent this particular shortcoming, with
adaptive grid refinement being a prominent one [2]. Although promising, especially for resolving
discontinuities, the implementation of a complex adaptive mesh refinement algorithm can be
daunting [3] and the needed computational time to solve the equations of interest still rises non-
linearly with the total number of cells in the given grid. Lately, due to an increasing availability
of hardware and respective algorithms, Machine Learning (ML) based methods have become
an attractive alternative to be discovered to leverage CFD simulations [4, 5, 6, 7]. The field
of ML promises to alleviate the computational cost of simulations by taking advantage of the
abundance of data available from testing and simulation.

Previous research has focused on the use of Convolutional Neural Networks (CNN) to recon-
struct high quality CFD data based on simulation data of poor quality. The main reason for using
CNNs has been their success in the field of computer vision for the so-called super-resolution
problem, where their implementation showed the ability to map the input of a low-resolution
image to a highly resolved output [8]. The main advantage of CNNs is their use of filters reducing
the dimensionality of the data. These filters are directly applicable to structured data, encoun-
tered in uniform data grids such as images. Fukami et al. [9] used direct numerical simulation
(DNS) of turbulent flow-fields as high-resolution data and created the low-resolution equivalent
via downsampling. Latter was used in a supervised setting as input to a model based on a CNN
to reconstruct the DNS data. Jiang et al. [10] propose a convolutional decoder as a variation of
the U-Net architecture with subsequent use of a multi-layer perceptron. Latter allows to sample
the super-resolved solution at any location. Kochkov et al. [11] showed substantial speed-ups
for DNS and LES simulations while applying varying CNN models to two-dimensional turbulent
flow fields in a tightly coupled manner with a CFD solver. Um et al. [12] also follow a coupled
approach, where their differentiable physics solver interacts with varying ML models based on
fully convolutional architectures. Instead of super-resolving, they focus on learning a correction
function which is applied to the coarse grid data with the aim to reduce the numerical error
arising from the discretization in time and space of the PDEs to be solved. Hanna et al. [13]
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used a random forest and a dense neural network model to predict the error due to the spatial
discretization. Their focus was the quantification of the discretization error after the coarse
simulations were performed without any coupling of the ML model and the solver.

The work of this paper will follow-up on the idea of using ML methods as a post-processing
tool. The main goal is to identify how the error induced by the discrete spatial domain is
quantifiable and subsequently if this error exhibits patterns which can be learned. Classical
CNN models are avoided, since unstructured grids are common to model complex geometries in
flow simulations, which hinders their straight-forward use on CFD data [7, 14, 15]. Instead, the
use of graph convolutional neural networks is proposed, along two less complex models which
are a random forest and a deep neural network. For all CFD computations, the Navier-Stokes
equations in conjunction with a one-equation turbulence model are solved for different airfoils
at varying Mach numbers and angles of attack.

2 THEORETICAL BACKGROUND

2.1 Governing Equations

The Reynolds Averaged Navier-Stokes (RANS) equations are on a given domain Ω and its
closed surface ∂Ω

d

dt

∫
Ω
WdΩ+

∮
∂Ω

(Fc − Fv)dS = 0 (1)

with the conservative variables being W = (ρ, ρu, ρv, ρw, ρE)T . Fc and Fv are the vector of
convective and viscous fluxes, respectively. In this work, turbulence is modelled with the negative
Spalart-Allmaras one-equation model [16]. The integral form of the governing equation for the
turbulent transport variable ν̃ with Qν̃ denoting the source term is

d

dt

∫
Ω
ν̃dΩ+

∮
∂Ω

(Fc,ν̃ − Fv,ν̃)dS =

∫
Ω
Qν̃dΩ . (2)

2.2 Theory on Machine Learning

2.2.1 Training and Prediction Phase

Given a set of training instances {(xi, yi)}Ni=1, a supervised learning algorithm for a regression
task searches a mapping function f : X → Y between the provided feature vector xi and the
continuous output yi. In this study, the output yi and a training instance i correspond to the
discretization error εϕ,i and one grid point, respectively.

ML modelxi ε̂ϕ,i

Figure 1: Prediction phase

After the training, the ML model is able to predict for previously unseen values of features
xi an approximation ε̂ϕ,i of the true output variable εϕ,i, such that f(xi) = ε̂ϕ,i ≈ εϕ,i, as
given in figure 1. Here, ϕ denotes one of the field variables of interest to be corrected, e.g.
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velocity in x- and z-direction, pressure, density and the turbulence model variable, such that
ϕ = {u,w, p, ρ, ν̃}. To learn this function, three models with varying complexity are used and
compared, namely a random forest, a neural network and a graph neural network.

Random Forest One of the three models employed in this work is the Random Forest (RF)
algorithm developed by Breiman [17]. It belongs to the class of ensemble algorithms. Ensemble
models seek to improve the predictive performance by combining several weak learners. For a
RF regression model, the results of many decision trees for a regression task are averaged to
arrive at the final prediction. Let the prediction of a single decision tree be fi(xi) = ŷDT,i, then
the RF prediction comprising NDT decision trees is

ŷ =
1

NDT

NDT∑
i=1

ŷDT,i (3)

Neural Network Secondly, a fully connected deep Neural Network (NN) is implemented. A
NN consists of multiple layers of so-called neurons. Each layer can be described as a regression
function fl(x) = ŷl, where x is the input to each layer l and ŷ its respective output. Each
regression layer can be written as

fl(x) = gl(Wlx+ bl) (4)

where gl denotes the activation function introducing a non-linearity to the equation. The weight
matrix Wl and the bias vector bl are the parameters to be optimized during the training phase.
This is done with the backpropagation algorithm, which uses the chain-rule to compute gradi-
ents of the chosen loss function after each training epoch and accordingly updates weights and
biases in order to minimize the loss function.

Graph Neural Network As final model, the Graph Neural Network (GNN) is presented. This
model has been proposed as an extension of NNs for graph structured or non-Euclidean data [18].
Its advantage lies in its applicability to graphs G of arbitrary structure and its permutational
invariance to the number of input nodes V and edges E . GNNs take into account information
of neighbouring data points as well as the connectivity structure between all data points, thus
maximizing the usable information content of a given data set. The function to describe a layer
is written as

Hl+1 = f(Hl,A) (5)

where the input features correspond to the first layerHl=0 andA denotes the adjacency matrix of
the graph, which is needed to describe the structure of a graph. Different layer implementations
differ in their definition of the function f on the right hand side of equation 5. For this work
the node-level problem is solved, e.g. a regression task at each node V of the given graph
G. Furthermore, the graph convolutional operator proposed by Kipf et al. [19] is employed. By
introducing two simplifications to a spectral graph convolutional framework, their work promises
improvement in training times and prediction accuracy. Firstly, the identity matrix I is added
to A, such that Ã = A+ I. This allows to not only account for features of neighbouring nodes
but also of the given node itself. Secondly, to avoid a change of scale of the features, a symmetric
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normalization of Ã is introduced as D̃− 1
2 ÃD̃. Here, D̃ is the diagonal node degree matrix of Ã.

Thus, their proposed propagation rule for each layer of an undirected graph G = (V, E) is given
as

f(Hl,A) = gl(D̃
− 1

2 ÃD̃HlWl) (6)

where gl denotes a non-linear activation function such as for the NN layer in equation 4.

2.2.2 Validation Metric

Various validation metrics exist to assess the quality of a model. In this work the coefficient
of determination R2 is used (equation 7). y denotes the mean of the set of output variables
{yi}Ni=1. A model predicting the exact output y will reach a coefficient of determination R2 = 1,
whereas R2 = 0 corresponds to a model predicting the average y for any given instance.

R2(ŷi) = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − y)2
(7)

2.2.3 Hyperparameter Optimization

The hyperparameters h of a given ML model can be optimized with respect to its performance
on a validation data set evaluated for an objective function J(h). In this work, the objective is
to maximize the chosen validation metric, e.g. the coefficient of determination R2

hopt = argmax
h∈H

J(h) = argmax
h∈H

R2(h) (8)

Beside tedious manual hyperparameter tuning, common strategies for hyperparameter optimiza-
tion are grid and random search, in which all possible combinations or a random set of combi-
nations are explored for a given set of hyperparameters. A more effective strategy is Bayesian
optimization, where a probabilistic surrogate model explores only the promising solution space
based on priors. The subsequent hyperparameters are chosen in an informed manner, by taking
into account already explored trials. In this work a sampler using a Tree-structured Parzen
Estimator algorithm [20] is used.

For the RF model, the number of decision tree estimators, the minimum samples at the leaf
nodes, the maximum number of features for a split and the bootstrapping parameter are tuned.
The hyperparameters to be tuned for the NN are the number of hidden layers, the number of
neurons for each layer, the batch size, activation function, optimizer and the learning rate with
and without exponential decrease. The best optimizer and activation function found during the
NN tuning were then employed for the GNN. Only the number of stacked convolutional layers
and their feature dimensionality as well as the learning rate and its exponential decay rate are
tuned for the GNN.
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3 APPLICATION CASE

3.1 RAE2822 Simulation

This paper presents results for the turbulent flow over the two-dimensional transonic airfoil
RAE2822. The DLR-CFD simulation software TAU [21] is used, which employs a vertex-centered
scheme. The high-resolution (HR) and low-resolution (LR) solutions are obtained on structured
C-type grids with 1280 × 256 = 327′680 and 80 × 16 = 1′280 cells, respectively (2a and 2b).
Hence, the resolution factor between both grids is 256. The two grids are nested grids, since the
coarse grid is obtained via agglomeration of the HR grid, as can be seen in figure 2c. A detailed
study on this grid sequence was conducted by Langer [22].

(a) HR grid 1280×256 (b) LR grid 80×16 (c) Detail of the grids

Figure 2: Coarse and fine grid

Steady-state simulations are performed for the Mach numbers M={0.3, 0.35, 0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7} and various angles of attack, summing up to a total of 144 simulations
(see appendix 5.1 for further details). For high angles of attack not all simulations converged
on the LR grid, e.g. their residuals showed an oscillating behaviour after a reduction of only
two to four orders of magnitude. The Courant-Friedrichs-Lewy number is constant across all
coarse simulations to ensure consistency between these non-converged LR solutions. Moreover,
for non-converged flow simulations the solutions were obtained by averaging the results over
the last 3000 iterations. For all other simulations on the coarse and fine grid, the convergence
criterion was reached, meaning that a reduction of the density residual of at least ten orders of
magnitude has been obtained.

3.2 Mapping Operator

The HR solution is not directly used as ground truth for the training. Instead, the variables
of interest of the HR solution ϕHR are mapped onto the coarse grid

ϕmapped = T ϕHR (9)

where T denotes a mapping function. This mapping allows to quantify the discretization error
ε for each variable ϕ at each vertex i of the coarse grid as

εϕ,i = ϕmapped,i − ϕLR,i (10)
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where ϕLR denotes the variables of interest of the LR solution. This mapping poses the following
limitations to the proposed procedure: a) The choice of the mapping function T is non-trivial,
especially around curvatures when the vertices of the LR and HR grids are not overlapping if
non-nested grids are used and b) by reducing the number of data points it naturally decreases the
accuracy of the HR solution. Since for the investigated test case the LR vertices are coinciding
with their corresponding HR vertices, the nearest neighbour interpolation method is a natural
choice as a mapping function T . Thus, the first mentioned limitation can be avoided.

Figures 3 to 4 show different comparisons of computed coefficients of the LR and HR sim-
ulation solution as well as the HR solution field variables mapped to the coarse grid. Looking
at the friction coefficient in figure 3a and the viscous drag coefficient in figure 4c resulting from
the mapping, it can be observed that the coarse boundary layer cells are not resolved enough
to capture the same velocity gradient as the HR solution. Hence, the friction coefficient and
the viscous drag coefficient are in general lower than for the HR solution. Nonetheless, it is as-
sumed for this study that the coarse grid has enough degrees of freedom to capture the relevant
physical phenomena of the HR solution after the mapping. Therefore, the mapped solution is
taken as ground truth for the ML model training and evaluation. After the prediction of the
discretization error ε̂ϕ,i by the ML model, this value is used to correct the flow field of the LR
solution computed on the coarse grid as:

ϕLR,i + ε̂ϕ,i = ϕ̂mapped,i ≈ T ϕHR,i (11)

(a) Friction coefficient (M=0.5, AoA=3.0) (b) Pressure coefficient (M=0.6, AoA=7.0)

Figure 3: Comparison of surface coefficients
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(a) CL (b) Cdp (c) Cdf

Figure 4: Coefficients of LR, HR and mapped solution (M=0.6)

3.3 Feature Selection and Data Pre-Processing

Since it is assumed that the discretization error correlates to steep gradients within a flow
solution, the first and second derivatives of the variables of interest in each dimension are a
natural choice as input features for the ML model [13]. The gradients are computed using
a weighted least squares approach with an inverse distance weight as described in [23]. The

local cell Reynolds number Rei =
|Ui|dw,i

νi
is another feature using the wall distance dw as

reference length. There is an additional need to quantify the state of convergence of the LR
data, since a set of non-converged simulations is part of the LR database. Hence, the residuals
of the density, the velocity, the energy and the turbulent variable are chosen as features. As
a global quantification of the uncertainty induced by the non-converged simulations, the final
density residual of the simulation is an additional feature. As data pre-processing, the Yeo-
Johnson power transformation [24] is applied to each feature as well as to each output variable
to stabilize variances and therefore make the data more Gaussian-like. Additionally, the data
sets are standardized to zero mean and unit variance.

3.4 Training and Validation Strategy

The simulations at Mach 0.6 were set aside to serve as a test set, since they are of special
interest exhibiting a shock at higher angles of attack. For all ML models a 8-fold cross validation
strategy was employed, where one set of the remaining simulations at a certain Mach number
were used as validation set. Thus in total, there are 135 simulations set aside for training and
validation and 9 simulations for testing. For the implementation of the RF the Scikit-learn
library [25] and for the NN model the SMARTy library [26] with the PyTorch backend [27]
were used. The pytorch geometric library [28] was employed for the GNN model. For the
hyperparameter tuning, the optuna toolbox is used [29] with a TPE sampler and a median
pruning strategy. Details on the final hyperparameters can be found in the appendix 5.2.

3.5 Test Case Results

This section presents results for the test set of the RAE2822 at M=0.6. Since the correction
of the flow field is the main focus of the proposed method, firstly a qualitative comparison of
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the pressure field is given in figure 5. It presents the percentage error of the pressure at Mach
0.6 at angle of attack 8.0 before and after the ML correction. Looking at the ground truth in
figure 5b, it is visible that the flow field is not smoothly captured by the coarse grid after the
mapping. Nevertheless, the mapping to the coarse grid is able to capture the shock resolved
on the fine grid, whereas the stand-alone simulation on the coarse grid does not feature such a
non-linearity (5a). This is reflected in the percentage error given in figure 5d, which shows that
the error is mainly present around and upstream of the shock location. Figures 5e-5g show the
correction of the coarse simulation for the ML models. All three models are able to reduce the
error at the leading edge, thus predicting a shock where the coarse grid simulation failed to do
so. All models succeed in reducing the error, with the performance of the GNN being the best.
For the RF model the maximum error is found at 87.6 % with a still comparable distribution
to the coarse grid solution. The GNN model however decreases the error to a maximum of 37.9
% and deviations from the ground truth only remain in close proximity to the shock location.
Similar field correction trends have been observed for the other variables.

(a) Pressure LR solution (b) Pressure ground truth (c) GNN correction

(d) Pressure error LR simulation (e) RF correction

(f) NN correction (g) GNN correction

Figure 5: Pressure error before and after ML correction

In figure 6, the friction and pressure coefficient along the airfoil surface are visible for the
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coarse grid simulation to be corrected, the ground truth and the ML corrections for the same
test set (M=0.6). Figure 6a presents a case with low angle of attack where the coarse grid
simulation converged and all models performed well, as can be seen in the improved friction
coefficient. Figure 6b shows a case at high angle of attack, where the coarse grid simulation did
not converge. It is again visible that the GNN model performed best, since the other models
only slightly improve the pressure along the shock location. The integrated lift, pressure drag
and viscous drag coefficients are given in figure 7. All models reduce the error significantly at
low angles of attack, where all simulations converged. At higher angles of attack, a reduction of
the prediction accuracy occurs due to physical non-linearities and uncertainties from the non-
converged data sets. Still, all models improve the coefficients showing the right trend with the
GNN being the best.

(a) Friction coefficient for AoA=2.0 (b) Pressure coefficient for AoA=7.0

Figure 6: Corrected surface coefficients for M=0.6

(a) Lift coefficient (b) Pressure drag coefficient (c) Friction drag coefficient

Figure 7: Corrected coefficients for M=0.6
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A final comparison on the test set RAE2822 between the models is done by computing the
coefficient of determination R2 as given in equation 7. Figure 8 contains the scores at the lowest
angle of attack AoA=0.0 and the three highest values of AoA={6.0, 7.0, 8.0}. Only the RF
model predicts for low angles of attack consistently accurate results for all variables. Instead,
the NN and GNN model show a decreased performance for the turbulence model variable ν̃
but consistent R2 scores for the remaining variables. Looking at the high angles of attack and
therefore non-converged cases, the GNN outperforms the other models for all variables.

Figure 8: Coefficient of determination R2 for test set RAE2822 M=0.6, AoA={0.0, 6.0, 7.0, 8.0}

3.6 Generalization Test Case

As a test case to assess the generalization capabilities of the trained models, additional
simulations are carried out on a different transonic airfoil geometry. For this, mesh deformation
has been performed based on the HR grid of the RAE2822 with a subsequent agglomeration to
obtain the LR grid. The similar airfoil shape RAE5212 is chosen, as given in figure 9. Solutions
were computed for M={0.35, 0.6} at angles of attack 3.0 and 7.0. The angles of attack were
chosen to cover a case in the linear and in the non-linear flow regime as well as a converged and
a non-converged computation.

Figure 9: Airfoils for this study

The ML models trained on the RAE2822 geometry as described above were directly employed
for the prediction on the RAE5212 data sets. In general, all models performed well for the lower
Mach number independent of the angle of attack. This can be seen in the derived friction and
pressure coefficient in figure 10. Although all models tend to improve these coefficients, the
GNN model shows the least noisy behaviour. For M=0.6 at AoA=3.0, similar improvements are
observed. The limits in the predictive capability of the models are found for M=0.6 at an angle of
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attack of 7.0, where all models fail to improve the coarse grid simulation and even deteriorate the
LR simulation where it was comparable to the ground truth. Friction and pressure coefficients
of this case for the GNN are plotted in figure 11.

(a) Friction coefficient for AoA=7.0 (b) Pressure coefficient for AoA=7.0

Figure 10: Prediction for RAE5212 for M=0.35

(a) Friction coefficient for AoA=7.0 (b) Pressure coefficient for AoA=7.0

Figure 11: Prediction for RAE5212 for M=0.6

12



A. Kiener, S. Langer and P. Bekemeyer

4 CONCLUSION

Conducting CFD simulations on grids with sufficient degrees of freedom to approximate
the actual solution is in practice rarely feasible. Thus, it is of interest to find methods which
generate accurate results while keeping computational costs low. This work presents a procedure
to quantify the discretization error between solutions of two nested grids and, subsequently,
employs a ML model to correct the inaccurate coarse grid solution. Three different ML models
were tested and compared: A random forest, a neural network and a graph neural network.

Good results are achieved on the test set for the RAE2822 airfoil covering different flow
regimes. The RF model shows good results in the linear regime, whereas it was outperformed
in the non-linear region, especially for the non-converged cases, by the GNN model. The overall
better performance of the GNN model shows that it is capable of grasping more information
by taking into account the connectivity to neighbouring nodes and their features. Qualitatively,
the field corrections were analyzed and a quantitative analysis was done by deriving various
coefficients such as surface distribution as well as global integral values. Difficulties were en-
countered in the non-linear regime, where additional uncertainties were introduced by using
non-converged data sets. The generalization test on the different airfoil geometry RAE5212 has
shown that the models obtain accurate results for a low angle of attack for both low and high
Mach number. Improvements at a higher angle of attack, which leads for both Mach numbers
to a non-converged simulation on the coarse grid, were only possible at low Mach numbers.
The models fail to generalize on a non-converged data set for high angles of attack and high
Mach numbers. On the one hand, a limitation of the method is the chosen mapping function,
which naturally decreases the data quality obtained on the fine grid. On the other hand, it was
shown that ML models can find patterns in coarse grid CFD simulations and therefore improve
them, even if the data set contains non-converged simulations. Additionally, conducting a local
cell-wise correction does not limit the correction on a static number of data points. Finally, the
use of the GNN instead of classical CNNs seems to be promising for cases where simpler models
such as the RF fail. Since the NN model showed a noisy behaviour on various test cases, the
training procedure could be reconsidered with particular focus on avoiding overfitting effects.

For the future, the proposed method will be tested on a three dimensional data set. Moreover,
developing a more integrated methodology by closely coupling an ML model with the CFD solver
could enable improvements for correcting the discretization error beyond a pure post-processing
approach.
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5 APPENDIX

5.1 Conducted simulations

The following plot lists the Mach numbers and angles of attack, which were used to create the
data sets. For testing, all simulations at Mach 0.6 were used (9 simulations), whereas the other
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simulations were used for training and validation (135 simulations). The blue and red crosses
indicate converged and non-converged simulations for the 80× 16 grid, respectively. There are
in total 71 converged and 73 non-converged data sets.

Figure 12: Data sets

5.2 Hyperparameter Tuning

5.2.1 Random Forest

The tuned hyperparameters for the RF model are the number of decision tree estimators
N , the minimum samples at the leaf nodes s, the maximum features xmax for a split and if
bootstrapping B is applied or not. For the RF implementation the Scikit-learn library [25] was
used.

Table 1: RF Hyperparameter

Search space Final hyperparameter

N [30-250] 126
s [1-10] 1

xmax [5-37] 15
B [True, False] False

5.2.2 Neural Network

For the NN architecture the number of hidden layers l, number of neurons in each hidden
layer nl, batch size b, activation function for the input and hidden layers g, optimizer o and the
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learning rate lr with and without exponential decrease are chosen for the tuning process. For the
implementation of the NN the SMARTy library [26] was used with the PyTorch backend [27].

Table 2: NN Hyperparameter

Search space Final hyperparameter

l [6-12] 9
nl [50-550] {486, 501, 481, 340, 416, 318, 472, 396, 315, 391, 282}
b [32, 128, 256, 1024, 1280*, 2048] 1024
g [tanh, relu] tanh
o [Adam, SGD] Adam
lr [0.00001-0.001] 0.000117 with exp. decrease

*Corresponds to the number of data points in one simulation case.

5.2.3 Graph Neural Network

For the GNN architecture the same ADAM optimizer and tanh activation function were cho-
sen for the NN training. The learning rate lr, the exponential decay rate γ, the number of
stacked convolutional layers lc (which corresponds to an aggregation of ”hops” in the neighbor-
hood around each node) and the feature dimensionality Hl of each such layer (excluding in- and
output) was optimized for. The GNN was implemented using the pytorch geometric library [28]
and specifically the implementation of the graph convolutional operator ”GCNConv” proposed
by Kipf et al. [19] was used.

Table 3: GNN Hyperparameter

Search space Final hyperparameter

lr [0.00005-0.001] 0.000797
γ [0.95-1.0] 0.966
lc [8-14] 13
Hl [50-550] {353, 324, 416, 390, 439, 251, 363, 252, 390, 433, 546, 433, 419}
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