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Abstract. Various modal decomposition techniques have been developed in the last decade
[1–11]. We focus on data-driven approches, and since data flow volume is increasing day by day,
it is important to study the performance of order reduction and feature detection algorithms.

In this work we compare the performance and feature detection behaviour of energy and
frequency based algorithms (Proper Orthogonal Decomposition [1–3] and Dynamic Mode De-
composition [4–6, 8–11]) on two data set testcases taken from fluid dynamics. The datasets
considered (the velocity field of laminar wake around the mid-section of a very long cylinder
at ReD = 100 and the pressure field of turbulent jet (axisymetric) at ReD = 106) represent
different flow regimes.

The performance of these algorithms is thoroughly assessed concerning both the accuracy of
the results retrieved and the computational performance.

From this assessment, those techniques that are potentially better suited for the applications
are identified and after the possibility of parallelizing the algorithms will be studied with a final
objective: to enable data-driven analysis of industrially relevant fluid mechanical problems.

1 INTRODUCTION

As the amount of available data increases, it is necessary to develop tools capable of extract-
ing useful information from them and, either from numerical simulation or experiments of fluid
flows, eventually reconstruct the system they represent with the least possible error. To achieve
this need, data-based fluid flow decomposition algorithms have emerged in the last decade with
the purpose of detecting and extracting coherent structures from high-dimensional datasets.
Data-driven algorithms can be classified in two classes, energy-based and frequency-based.
Energy-based algorithms can optimally identify the most energetic contributions within a few
modes and they can be designed to prioritize different physical phenomena by the appropriate
use of mass matrix (kinetic energy, entropy, vorticity, etc). On the contrary, frequency-based
methods infer the frequency of each mode from the dataset instead of defining it a priori from
the time discretization (like in discrete Fourier transform). Also, frequency-based methods give
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information about modes growth rate, making them suitable for data-driven stability analysis
and feedback control for linear systems. However, frequency-based algorithms can be highly
challenged for non-linear systems and temporally localized events.

This work is structured as follows. In Sect. 2 we will review modal decomposition techniques,
from algorithmic point of view, used for dynamical systems order reduction, specifically Proper
Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). In Sect. 3 we
will describe the datasets used in this work. In Sect. 4 we will apply these techniques to the
datasets in order to evaluate the capacity of each of them to detect the dominant structures and
frequency (or Strouhal number) of the system. In Sect. 5 we will analyze the results in order
to draw conclusions about the studied algorithms, the relationship between them, and propose
next steps.

2 Methodology

In order to standardize the data input for each algorithm, we are going to put the data in a
snapshots matrix X ∈ Rm×nt , where m ≡ nu×nx×ny×nz. Here, nu is the number of analysed
fluid flow variables, and nx, ny, nz spatial dimensions. nt is the number of snapshots and they
will be sampled with time interval ∆t.

2.1 Proper Orthogonal Decomposition

POD originates from the turbulence field. Lumley introduced it to the fluid dynamics com-
munity in 1967 [12] as an attempt to decompose a turbulent fluid motion into a set of determin-
istic functions that capture a portion of the total fluctuating kinetic energy in the flow. In other
words, POD helps us to find coherent structures in a flow that can describe different fluid flow
phenomena. POD is related to Singular Value Decomposition (SVD) of the snapshots matrix
X:

X ≡
SV D

LΣR′, (1)

where (·)′ denotes transpose of a matrix. L = [l1, l2, ..., lnt ] ∈ Rm×nt are left singular vectors,
or POD spatial modes/structures of the flow. R = [r1, r2, ..., rnt ] ∈ Rnt×r are right singu-
lar vectors, or POD temporal modes and gives information about how corresponding spatial
modes evolve in time. Σ is a diagonal matrix with [σ1, σ2, ..., σnt ] ∈ Rnt×nt non-zero entries and
are POD singular values, it is organized hierarchically and gives information about the impor-
tance of the corresponding modes. Computationally, SVD is implemented into many scientific
packages, such as MATLAB [13] or NumPy [14].

One way to reduce the dimensionality of the original matrix X is using a subset of POD
basis. We define ϵ as the residual of the energy after choosing the size of the subset of POD, r,
as it follows:

ϵ =

∑nt
i=r σ

2
i∑nt

i=1 σ
2
i

. (2)

This will yield the r-rank optimal representation of the dataset. On the one hand, we can choose
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the size of subset, r, or we can choose ϵk and calculate r so that ϵk ≤ ϵ. Then L, Σ and R are
truncated: Lr ∈ Rm×r, Σr ∈ Rr×r and Rr ∈ Rr×nt .

In order to extract the dominant Strouhal number of the flow, Discrete Fourier Transform
(DFT) will be applied on R matrix columns, this is, right singular vectors.

2.2 Dynamic Mode Decomposition

In the original definition of DMD [5], input data was provided as a single time series.
However a generalization of DMD, that produces the same results and requires a dataset of
shanpshot pairs, was introduced in [6]. DMD assumes a linear relationship between consecutive
snapshots:

xt+1 = Axt. (3)

DMD requires a dataset of snapshot pairs, or a pair of datasets as follows: Xnt−1
1 =

[x1,x2, ...,xnt−1] and Xnt
2 = [x2,x3, ...,xnt ]. Next, using truncated SVD, reduced A is com-

puted:

Ā ≡ L′
r ALr = L′

r X
nt
2 Rr Σ

−1
r , (4)

where Ā is a projection of A into POD modes.
Then right eigendecomposition is calculated:

Ā Ψ = Ψ Λµ, (5)

where the columns of Ψ are projected DMD modes with the corresponding DMD eigenvalues
µi (the diagonal entries of Λµ). Temporal growth rates can be calculated (αi = ℜ(logµi/∆t))
as well as angular pulsation (ωi = ℑ(logµi/∆t)). Exact DMD modes will be recovered as
Φ = Xnt

2 Rr Σ
−1ΨΛ−1

µ . We calculate amplitude ai corresponding to each DMD mode as
in [15]:

min
a

∥Xnt−1
1 −ΦDaVand(µ)∥, (6)

where Da is diagonal matrix with amplitudes as entries, and Vand(µ) Vandermonde matrix
formed with DMD singular values.

3 Testcase description

We have considered two publicly available testcases, encompassing laminar and turbulent
flows.

The first testcase considered is the flow field around the mid-section of a very long cylinder.
The Reynolds number is ReD = 100, defined as ReD = UD/ν, where U is the free stream
velocity, ν is the kinematic viscosity and D = 1 is the diameter of the cylinder. At these
conditions, the flow is laminar and two-dimensional. The flow past a circular cylinder is a
benchmark problem in fluid dynamics, generally used in a large number of applications, i.e.,
to validate novel methodologies, algorithms, etc. This makes it a suitable database to test
the performance of all the methods analysed in this article. The flow dynamics in the two-
dimensional flow past a circular cylinder is already known, studied since the past and presented
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in detail by Barkley & Henderson [16] (among others). More specifically, at ReD = 100 this
two-dimensional flow field is periodic with leading non-dimensional frequency Strouhal number
St = 0.16, where St = fD/U , being f the frequency in Hertz.

The database analysed is available from Ref. [17]. This database consists of 151 snapshots,
equiseparated in time with ∆t = 0.2, representing the saturated flow regime of the streamwise
and normal velocity components. The spatial domain is limited to the area surrounding the
cylinder wake x ∈ [−1, 8] and y ∈ [−2, 2] for the streamwise and normal spatial components,
where the center of the cylinder is located at the point (x, y) = (0, 0). The spatial domain is
formed by 450 × 200 grid points, also equidistant in space. Figure 1 shows two representative
snapshots of the stramwise velocity component in the database analysed. The figure also shows
the temporal evolution of the streamwise and normal velocities in a representative point of the
computational domain, where it is possible see the periodic character of the studied solution.

Figure 1: Flow past a circular cylinder at ReD = 100. Top: two representative snapshots of the
streamwise velocity field. Bottom: time history of the database analysed represented by the streamwise
(left) and normal (right) velocity components. Point extracted at (x, y) = (2.5, 0.7).

The second testcase, taken from Ref. [18], considers the pressure field in a turbulent jet at
ReD = 106 (based on the nozzle diameter D) and Mach number M = 0.4, defined as M = U/c,
with U the free stream velocity and c the sound speed, taken in an azimuthal plane. This testcase
is a good example of a DNS generated turbulent flow, consisting of multiple interacting spatio-
temporal scales and suitable to show the performance of the methods in complex flows. Although
it is notorious that, in contrast to wall bounded turbulent flows [11], the frequency spectrum in
jet flows presents selected high-amplitude frequencies, which are in charge of driving the flow
dynamics. These high-amplitude frequencies are in many cases connected with flow instabilities
occurring in the shear layer of the jet, which is in good agreement with the own nature of this
type of flows.

The database studied is conformed by 5000 snapshots representing the pressure field in a
solution statistically converged. Each snapshot is formed by 39× 175 grid points equidistant in
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space, and they are organized equiseparated in time with ∆t = 0.2. The flow is axi-symmetric.
In the case studied, the jet nozzle is located at (x, r) = (0, 1) in the spatial domain defined
in x ∈ [0, 20] and r ∈ [0, 4], being r the radial component, non-dimensionalized with the jet
diameter D = 1. At the present flow conditions, the flow is characterized by a high-amplitude
frequency driving the flow dynamics: St ≃ 0.6, based on the jet nozzle diameter (see more details
about this flow characterization in Ref. [18]). The high complexity and the turbulent character
of the database analysed is presented in Fig. 2, which shows two representative snapshots of
the flow field and the evolution of the pressure field in two representative points of the spatial
domain.

Figure 2: Turbulent jet flow at ReD = 106 and M = 0.4. Top: two representative snapshots of the
pressure field. Bottom: time history of the database analysed represented by the pressure field extracted
at (x, r) = (5, 1.2) (left) and (x, y) = (12, 1.2) (right).

All the computations carried out have been performed on a computer equipped with an 4-core
Intel(R) Core(TM) i7-10750H CPU at 2.6GHz, a cache memory of 6144 kB and 16.0GB of
RAM.

4 Results

This section introduces the results of the two testcases for well known POD and DMD
algorithms. Fig. 3 shows POD singular values (left) and frequency content for the first temporal
mode (right) for the first testcase, laminar wake around cylinder. Singular values are found in
pairs as expected from a periodic flow. As expected, there is only one dominant frequency since it
is a saturated regime and with no noise. Fig. 4 shows DMD spectrum (left) and DMD growth
rates (right) of corresponding modes. The DMD spectrum shows a clear periodic solution
with leading St = 0.16 and its harmonics. The growth rates are nearly zero, as expected in a
saturated regime. In noisy data or numerical simulations still not in saturated regime, DMD
growth rates will never be zero.

Fig. 5 shows that POD and DMD modes, or spatial structures, are very similar. POD

5



B. Begiashvili, J. Garicano-Mena, S. Le Clainche and E. Valero

Figure 3: POD in the two-dimensional cylinder wake. Left: singular values. Right: first temporal
mode’s frequency content.

Figure 4: DMD in the two-dimensional cylinder wake. Left: amplitude as a function of Strouhal
number for each DMD mode. Right: growth rate as a function of Strouhal number for each DMD
mode.

modes are real, while DMD modes are complex, revealing travelling character of the modes by
phase shifting. In this case, since the dataset comes from a saturated flow regime and with no
noise, POD modes are also travelling with a clear dominant frequency.

Fig. 6 shows singular values (left) and first POD temporal mode’s frequency content (right)
for turbulent jet. Unlike the previous case, the singular values do not reach a certain number
of modes and stop decreasing, but decrease continuously. This is due to the fact that it is a
turbulent flow and multi-scale phenomena take place. For the same reason, the POD mode
contains several frequencies.

Fig. 7 shows DMD amplitudes (left) and growth rates (right) in the turbulent jet. Unlike
the laminar wake around cylinder, growth rates are not zero. They are negative, this means that
the corresponding modes, representing different phenomena, are decreasing. As seen, DMD is
sensitive to the tolerance choice for SVD part of the algorithm.

The POD and DMD modes are presented in Fig. 8. The results show that both algorithms,
POD and DMD are able to detect the dominant spatial sturcture. All the modes take a form of
wavepacket structures. These wavepackets have been linked to the Kelvin-Helmoltz instability
of the annular jet shear layer for St ≥ 0.3 [19]. The fact that there is a link between a real
turbulent jet and these simple linear stability concepts provides the possibility for non-empirical
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and reduced-order models.
Fig. 9 shows the capacity of detecting dominant Strouhal number, presenting Strouhal num-

ber as a function of number of snapshots considered by the algorithm. As seen in Fig. 9, in
the laminar wake around cylinder, DMD converges before POD. This is due to the DFT that
is calculating on the temporal POD modes. When calculating DFT, frequency resolution is
determined by the time domain considered. In the turbulent jet POD and DMD present very
similar behaviour.

5 Conclusions and future steps

In this contribution we have illustrated how these modes can be leveraged to identify flow
patterns. These algorithms can also be used to derive lower-order models of the dynamics
investigated [20,21]. Parallelized versions of these algorithms allow to tackle large-scale industrial
problems. Both avenues are currently under investigation.
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Figure 5: The two-dimensional cylinder wake. POD (top), DMD real (mid) and DMD imaginary
(bottom) dominant modes. From left to right: first and second highest energy/amplitude modes.
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Figure 6: POD in the turbulent jet. Left: singular values. Right: first temporal mode’s frequency
content.

Figure 7: DMD in the turbulent jet. Left: amplitude as a function of ϵ and Strouhal number for each
DMD mode. Right: growth rate as a function of Strouhal number for each DMD mode.
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Figure 8: The turbulent jet. POD (top), DMD real (mid) and DMD imaginary (bottom) dominant
modes. From left to right: first and second highest energy/amplitude modes.
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Figure 9: Dominant St detected vs the number of snapshots considered for POD and DMD in the
laminar wake around cylinder (top); and turbulent jet (bottom).
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