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Abstract. The falling of a plate is a simply posed problem that offers complex fluid-structure interac-
tions. It also gives rise to different flow structures in relation to specific flight patterns of a plate such as
autorotating tumble, side-to-side flutter, or constant abrupt turning in a chaotic manner depending on the
Reynolds number and the non-dimensional moment of inertia In actual falling flights such as tree leaves
and organisms, the bodies possess flexibility. Here, direct numerical simulation is used to portray the
free fall of a flexible plate. The Navier-Stokes equations are solved via the upper-lower decomposition
method. The effect of the flow on the solid plate is transferred through the immersed boundary method.
A strictly spatially dependent stencil of the IB is adapted to provide a solution to the fourth-order beam
equation via the pent-diagonal matrix algorithm. Comparing to the conventional method that couples
with the temporal domain, this enables stability of solution through a range of bending rigidity k from
k = 50 to k = 0.01. A plate with high stiffness resembles to a plate of non-flexible solution. The tumbling
flight trajectory is found to change as a plate is more flexible, or as k is decreased. Further decrease in k
result in changes flight states.

1 INTRODUCTION

The smooth, swift motion of a falling leaf is the result of complex fluid-structure interactions (FSI). The
earliest works began from the interest of a freely falling object that appear to be influenced by forces other
that gravity. Maxwell [1] deduced the first theoretical explanation via the flow resistance. Willmarth et
al. and Field et al. [2, 3] distinguished the tumbling, chaotic, and fluttering flight states defined by
the Reynolds number, Re, and the non-dimensional moment of inertia of the plate, I∗. Natural passive
flights are often thin and flexible. They deform under their own weight as well as fluid forces. The effect
of flexibility in fluid interactions has been extensively studied in biological organisms and micro aerial
vehicles at relatively low Reynolds numbers (Re < 103).

There are different effects for different forms of flexible flight of flexible plates [4]. One of the efficient
way of investigating this problem is through numerical methods. The use of direct numerical simula-
tion (DNS) with immersed boundary (IB) method yields a two-way coupled interaction for which this
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Figure 1: (a) Global Cartesian reference frame and nomenclature: s as arclength, V as velocity, g as gravity, x
and y as horizontal and vertical coordinates, α as angle of attack between the chord and V , δ as deflection, θ as
pitch angle between the chord and the x-axis, respectively. (b) Schematic of the Lagrangian coordinate system for
a flexible plate at three time instances: n as time step; i as Lagrangian point number.

problem is required [5]. To implement flexibility, Zhu et al. [6] used an stencil based on different and
temporal and spatial IB points. The flexible motion is thus, determined and also confined by the previous
space and time steps. Within the fundamental problems of hinged or prescribed flexible motion, this
method is very effective. However, for a plate falling in passive flight, the motion is not determined be-
forehand. Both the flexibility and the velocity have confined values such that numerical stability issues
may result in large fluctuation of nonphysical forces generated along the plate boundary. Due to this,
simulations of different orders of magnitude of bending stiffness k is limited.

This study introduces a fourth order beam equation that result in a five-point spatial stencil from the IB
to resolve the bending of the plate throughout its passive flight trajectory. As a result, numerical stability
is enhanced, and the range of k to depict various forms of flexible plate is also increased. The follow-
ing first introduce the derivation of the stencil towards the equations of motions. Then the simulated
passive flights are evaluated and validated. Different flight trajectories are resulted from flexible plates.
Ultimately, further changes in k causes the flight states of a plate to be changed.

2 METHOD

The free fall of the plate is considered to be in a two-dimensional, viscous, incompressible fluid. The flow
is derived from the Navier-Stokes equations, the plate is by the equation of motion, and their coupling is
through the IB method [5].

Following the schematic and nomenclature in figure 1(a), the plate itself has a chord length l. The
density of solid ρs is higher than that of fluid ρ f , such that it falls under the field of gravity g (and
g = |g|) inside the fluid of viscosity µ. While the IB is a one-dimensional line, the thickness h of the
plate is assumed to be negligible. When the fall is initiated, the plate generates a flow velocity field u
= (ux,uy) in the Eulerian domain. The convention of using ρ f , l, and the reference descent velocity V∞ =
[2(ρs/ρ f − 1)gh]1/2 as the characteristic parameters are followed [7]. The subsequent dimensionless
parameters are: l/V∞ for time t, ρ fV∞

2 for pressure p, ρ fV∞
2/l for Eulerian force f, ρ fV∞

2l for tension
force T , ρ fV∞

2l3 for bending rigidity k, and ρ fV∞
2 for Lagrangian force F. Further defining the density

ratio as ρ∗ = ρs/ρ f , and the Reynolds number as Re = ρ f lV∞/µ, the N-S equation (1), the continuity
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equation (2), and the equation of motion of flexible plate (3) are written in non-dimensional forms, i.e.

∂u
∂t

+u ·∇u =−∇p+Re−1
∇
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Here, F = (Fx,Fy) and f=( fx, fy) are interaction forces between the solid and the fluid, respectively. The
symbol ρ=(ρ∗−1)h∗ further simplifies the form of equation (3) with h∗= h/l. The non-dimensionalised
moment of inertia is approximated as I∗ = ρ∗h∗.

In the IB method, the interaction between the Lagrangian points and the adjacent fluid particle is provided
through a feedback. Interpolation from the Eulerian fluid velocity u = (u,v) to the Lagrangian points is
done via a smoothed delta function [?, 9]:

U IB(s, t) =
∫

domain
u(x, t)δ(X(s, t)− x)dx (4)

where X = (X,Y) denotes the Lagrangian coordinates. Conversely, the force of the solid on the fluid is
calculated by spreading the Lagrangian force to its nearby Eulerian grids:

f (x, t) =
∫

IB
F(s, t)δ(x− x(s, t))ds (5)

For clarity, in the IB formulations (4) and (5), the lower case symbols represent Eulerian quantities, and
the upper case ones represent the Lagrangian variables.

The fluid motion equations are then discretised with the finite difference method on a staggered grid. The
velocity components and momentum forcing are defined on the cell interfaces, whereas the pressure is
applied at the centre of cells. The decoupling of the velocity and pressure is achieved by the upper/lower
block decomposition through approximate factorization. The fractional step method is used for temporal
advancement, and both the convective and viscous terms are discretised via the Crank-Nicholson scheme,
preserving the second-order temporal accuracy [10]. The pressure Poisson equation is solved via fast
Fourier transform, which is then used to correct the velocity field to satisfy the continuity equation in
completing the fractional steps. The coupling between the fluid and the solid is abridged via the no-slip
condition that is enforced by the IB method.

The plate is considered as inextensible in the chordwise direction. While it is possible to numerically
confine the extension of the plate very close to zero by imposing a sufficiently large stretching coefficient
[6], it would require a small computational time step to ensure the numerical stability. Instead, the
geometric inextensible condition is imposed, i.e. (∂X/∂s) · (∂X/∂s) = 1 [13, 5].

In considering the plate’s flexibility, a five-point IB stencil is used (labelled i in figure 1b) to solve the
motion equation (3) via the pent-diagonal matrix algorithm with the following boundary conditions at
the free ends of the plate at s = 0 and s = l [12]:
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Figure 2: Time histories of fluttering plates at Re = 80 and I∗ = 0.1. The current flexible solution at k = 50 and
k = 500 are compared with a non-flexible solution [12] denoted as k = ∞, in terms of: (a) lateral velocity; (b)
angular velocity.

T = 0,
∂2X
∂s2 = (0,0)

∂3X
∂s3 = (0,0) (6)

3 RESULTS

3.1 Performance

In performing each simulation, the plate begins to fall from rest. The bending rigidity is within 0.01 <
k < 50. The Reynolds number is varied in a range of 50 < Re < 250; and the moment of inertia is within
0.1 < I∗ < 1.0. This fourth order beam IB method is validated by considering plates’ fluttering motion
in different k values and methods, as depicted in figure 2(a) & (b). The lateral and angular velocities,
Vx and Vθ, are compared at k = 50 and k = 500 with respect to the formulation of a non-flexible plate
solution, labelled as k =∞. Vx provides a comparison of flight envelopes, while Vθ provides a comparison
of the rotational dynamics that is an important indicator to the development of the flight trajectory. Note
that both the magnitude and period are slightly higher under the current, flexible, solution at k = 500 as
compared k = ∞. The difference may be due to the different governing equations used.

Furthermore, figure 3 shows the results between the non-flexible solution (a), and the current fourth
order beam solution in (b) set to be very rigid. It can be seen that, throughout the fluttering turn, the
plate at k = 50 has no deformation. Important features such as leading edge and trailing edge vorticities
resembles closely to the non-flexible solution.

3.2 Effect of flexibility on trajectories

A plate of k = 0.01 undergoes a stable tumbling trajectory in figure 4. It is very little different from
conventional non-flexible trajectories [7]. The sequences of snapshots from figure 4(b) to (d) depict the
two critical instances - turning and gliding. It shows that, within different vorticity and velocity fields,
there may be small deformations of the plate as in (b), or large deformations as in (d).

The plate in figure 5, also in tumbling flight at the same k, appears to have less tendency rotate. It thereby
generates a unique, aperiodic tumbling trajectory not found in previous passive flight studies. There are
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Figure 3: Vorticity fields of a falling plate at Re = 80 and I∗ = 0.1 in three snapshots. (a) Solved via a non-flexible
solution [12], denoted as k = ∞. (b) Solved with the current flexible solutions with k = 50.

Figure 4: (a) Tumbling flight path of case I∗ = 1.0, Re = 100 and k = 0.01 with instants of (b, c, d) velocity and
vorticity fields.
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Figure 5: (a) Tumbling flight path of case I∗ = 0.70, Re = 200 and k = 0.01 with instants of (b, c, d, e) velocity
and vorticity fields.

large degree of plate deformation shown in the vorticity-velocity fields of figure 5(c-d). This suggests
that the degree of bending affects the flight path of the plate..

3.3 Effect of flexibility on flight states

Given the changes in FSI, further changes in k eventually yield changes in the flight state of a plate
altogether. With the numerical method enabling the changes in k from 50 to 0.001, figure 6 depicts, for
a constant Re and I∗, the changes in flight states. The plate transitions from tumbling in figure 6(a), to
chaotic flight in in figure 6(b), and fluttering in figure 6(c). The more significant the deformation, the
more likely that a plate will flutter through a turn.

4 CONCLUSION

With the introduction of a five point stencil, the corresponding numerical discretisation of the equation of
motion for the flexible IB are implemented into the DNS flow simulation. Results in kinematics and flow
fields correspond closely to the non-flexible solution. This enables large variations of bending stiffness in
O(104), for a problem that previously encountered numerical stability. It is found that plate trajectories
are changed as bending stiffness is decreased. Large decrease in k result in changes in flight states. The
formulation of flexible plates can be applied to observe changes in passive flight for plates in larger range
of Reynolds number and moment of inertia.
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Figure 6: Trajectories and instantaneous vorticity field of plates in different flight states at Re = 167 and I∗ = 0.5
with various bending stiffness: (a) tumbling at k = 50, (b) chaotic at k = 0.05 and (c) fluttering at k = 0.01.
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