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Abstract. Sparse direct linear solvers are at the computational core of domain decomposition
preconditioners and therefore have a strong impact on their performance. In this paper, we
consider the Fast and Robust Overlapping Schwarz (FROSch) solver framework of the Trilinos
software library, which contains a parallel implementations of the GDSW domain decomposition
preconditioner. We compare three different sparse direct solvers used to solve the subdomain
problems in FROSch. The preconditioner is applied to different model problems; linear elasticity
and more complex fully-coupled deformation diffusion-boundary value problems from chemo-
mechanics. We employ FROSch in fully algebraic mode, and therefore, we do not expect
numerical scalability. Strong scalability is studied from 64 to 4 096 cores, where good scaling
results are obtained up to 1 728 cores. The increasing size of the coarse problem increases the
solution time for all sparse direct solvers.

1 Fast and Robust Overlapping Schwarz (FROSch) Preconditioner Framework

Domain decomposition preconditioners are suitable for parallel computations, since they de-
compose, based on the computational domain, the problem into smaller subdomain problems,
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which can be solved in parallel. In this paper, we consider the Fast and Robust Overlap-
ping Schwarz (FROSch) preconditioner framework [12] of the Trilinos software library [2].
The framework contains a parallel implementation of the Generalized-Dryja-Smith-Widlund
(GDSW) preconditioner [8]. The GDSW preconditioner is a two-level overlapping Schwarz
preconditioner [19] with an energy-minimizing coarse space, which can be written in the form

M−1
GDSW = ΦK−1

0 ΦT +
∑N

i=1
RT

i K
−1
i Ri . (1)

Here, Ki = RiKR
T
i , i = 1, . . . , N , represent the local subdomain problems on the overlapping

subdomain Ω′
i, which we solve using a sparse direct solver. Each overlapping subdomain Ω′

i is
obtained by recursively adding layers of elements to the nonoverlapping subdomain Ωi. The
global coarse problem K0 = ΦTKΦ is solved using a sparse direct solver as well. The matrix
Φ contains the coarse basis functions, as columns, spanning the global coarse space. For the
construction of the GDSW coarse space functions, we consider interface functions ΦΓ of the
nonoverlapping decomposition. The interface functions are chosen as restrictions of the null
space of the global Neumann matrix to the interface components, such as the vertices, edges
and in 3D faces. We obtain the global coarse basis functions Φ by energy minimizing extensions
of ΦΓ into the interior of the nonoverlapping subdomain Ωi. We obtain

Φ =

[
−K−1

II KIΓΦΓ

ΦΓ

]
. (2)

For scalar elliptic problems and regular decompositions the GDSW preconditioner has a known
condition number bound

κ(M−1
GDSWK) ≤ C

(
1 +

H

δ

)(
1 + log

(
H

h

))
, (3)

where C is a constant independent of the problem parameters, h the element, H the subdomain
size and δ the subdomain overlap; cf. [9, 8]. For extended parallel scalability, the FROSch

framework includes an implementation of the reduced dimensional GDSW (RGDSW) coarse
space [10] as well as a multi-level extension [14]. However, for all results presented here, we
only applied the classical GDSW coarse space and two levels.

2 Model Problems

2.1 Linear Elasticity

As a first model problem, we consider the linear elasticity model problem in three dimensions:
find u ∈ H1(Ω)3

− div(σ) = f inΩ (4)

u = 0 on ∂ΩD

We use a generic right-hand-side vector of ones
(
1 . . . 1

)T
and use the standard implementations

from [15] based on [1].
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2.2 Coupled Mechanics-Diffusion problems

In contrast to the linear boundary value problem introduced in section 2.1, the model consid-
ered in this section incorporates material and geometrically nonlinear effects in a fully coupled
formulation of the mechanical balance of momentum and Fickian diffusion. The model employs
the rate-type potential from [5],

Π (φ̇, v̇,Jv) =
d

dt

∫
B
ψ̂ (∇φ, v) dV︸ ︷︷ ︸

E(φ,v)

+

∫
B
ϕ̂ (Jv;∇φ, v) dV︸ ︷︷ ︸

D(Jv)

−Pφ
ext (φ̇)− P µ

ext (Jv) , (5)

in which E denotes the stored energy functional, depending on the deformation φ through its
material gradient and the swelling volume fraction v. Furthermore, the dissipation potential
functional D associated with the body B is a function of the fluid flux Jv and is additionally
parameterized by means of the deformation gradient and the swelling volume fraction. The me-
chanical part of the external load functional, associated volumetric body forces and prescribed
tractions, is abbreviated with Pφ

ext, whereas P
µ
ext expresses the corresponding diffusion part,

which depends upon the normal component of fluid flux, i.e. Hv = Jv ·N. By incorporating
the balance of solute volume

v̇ = −Div[Jv] (6)

in (5), the primary fields can be computed from the two-field minimization principle

{φ̇,Jv} = Arg

{
inf

φ̇∈Wφ̇

inf
Jv∈WJv

Π(φ̇,Jv)

}
, (7)

in which the following admissible function spaces are chosen:

Wφ̇ =
{
φ̇ ∈ H1(B) | φ̇ = ˙̄φ on ∂Bφ

}
, WJv =

{
Jv ∈ H (Div,B) | Jv ·N = Hv on ∂BHv

}
.
(8)

In the implementation of this model, a free-energy function ψ of Neo-Hookean type in connection
with a Flory-Rehner type energy that accounts for the energy due to changes in the swelling
volume fraction, and a quadratic dissipation potential ϕ are chosen. Upon the application
of the Euler backward time integration to (6) and (5), the time discrete counterpart of (7) is
employed to compute the primary fields φ|n+1 and Jv|n+1 at time tn+1. Note that the employed
variational principle ensures that the linearization of the necessary optimality condition yields
a symmetric system of equations. For more details, the interested reader is referred to [17, 5].
The following specific model problems were also used in [17].

2.2.1 Free-Swelling Boundary Value Problem

This problem was also investigated in [17]. In the free-swelling boundary value problem,
a cube of edge length 2L, as shown in Figure 1(a), is considered. It is loaded in terms of a
temporarily varying fluid flux at the outer boundary, while the outer surface remains traction
free. Due to the intrinsic symmetry of the problem, only one eighth of the cube is taken into
account in the scalability studies. Therefore, appropriate symmetry boundary conditions are
applied along the symmetry planes (X1 = 0, X2 = 0, and X3 = 0), i.e., the displacement
component and the fluid flux in the direction normal to these planes are set to zero.
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X1
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X3
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X1
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(b)

Figure 1: Cuboidal domain considered in the free-swelling boundary problem (a), and mechanically induced
diffusion boundary value problem. Figures taken from [17, Figure 4 and 6].

∥rk∥ ∥rk∥/∥r0∥
φ 10−9 10−6

Jv 5 ∗ 10−12 10−9

Table 1: Tolerances for the Newton-Raphson scheme. Here, rk is the k-th residual. Table taken from [17,
Table 3]

2.2.2 Mechanically Induced Diffusion Boundary Value Problem

This problem was also investigated in [17]. Similar to the free-swelling boundary value
problem, a cuboidal domain is also considered for the mechanically induced diffusion problem.
However, here, zero Neumann boundary conditions for the normal component of the fluid flux
are prescribed, while along the subset (X1, X3) ∈

[
−L

3
, L
3

]
×

[
−L

3
, L
3

]
at the plane X2 = L,

highlighted in Figure 1(b), the coefficients of the displacement vector are prescribed as ui =
[0,−û, 0]. Once again the intrinsic symmetry of the problem is exploited by specifying symmetry
boundary conditions as described in section 2.2.1. The material parameters employed in the
free energy function ψ and the dissipation potential ϕ are adopted from [17].

3 Implementation

In this paper, we use the implementation and setup from [17]. For the the finite element im-
plementation of our model problem, we employed the deal.II software library [4] version 9.2.0.
The MPI-parallel data distribution is handled using the parallel::distributed::Triangulation,
which links to the external p4est library [6]. To solve the nonlinear system, we apply the
Newton-Raphson scheme with the relative and absolute tolerances as provided in Table 1. For
the parallel linear algebra, we use the deal.II TrilinosWrappers such that the Trilinos

package Epetra is applied. Further, we use some functions implemented for standard ten-
sor operations from [18]. The linearized system is solved using the Krylov iteration method
GMRES. For GMRES, we use the parallel implementation provided by the Trilinos package
Belos with a relative stopping criterion of ∥rk∥/∥r0∥ ≤ 10−8, where rk is the k-th residual and
r0 the initial residual. FROSch is applied as a preconditioner. In all computations, we apply an
algebraically computed overlap of two nodes (δ ≈ 2h) and employ the provided algebraic com-
putation of the interface components. Applying FROSch in a completely algebraic sense implies
using a one-dimensional null space. It has been shown that FROSch may be able to scale even
if certain dimensions of the null space are neglected [13, 11]. However, this is not covered by
the theory. A one-to-one correspondence between cores and subdomains is applied, and the
global coarse problem is solved on a single core. We use Trilinos version 13.0.1 with small
modifications. We compare the performance of different sparse direct linear solvers, applying
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Figure 2: Strong scalability of the solver time, scaling from 64 to 4 096 cores, for the linear elasticity model
problem applying the FROSch preconditioner with th GDSW coarse space (left) and the detailed timers subd.
problem solve time and the coarse problem solve time (right), including the time for the factorization and the
forward./backward substitution. See Table 2 for the data.

the build-in KLU solver from Amesos2 as well as Umfpack [7] and MUMPS [3] both interfaced
through Amesos. We always use the same sparse solver for the local problems and the coarse
problem. Using Trilinos version 13.0.1, we faced issues with the Amesos2 interfaces for Epetra
matrices, such that we used the older Amesos interfaces in our tests; in more recent Trilinos
versions, these issues may have been fixed. We use MUMPS in Version 5.6.0 without METIS, and
Umfpack included in the Suite Sparse library Version 5.1.0, which uses METIS 5.1.0-IDX64.
We consider the solver time, which denotes the time to build the preconditioner and to perform
the Krylov iterations. The time to solve the subdomain problems as well as the time to solve
the coarse problem includes the numerical factorization and the forward/backward substitu-
tion, denoted as subd. problems solve time and coarse problem solve time, respectively. For
the coarse problem solve time the time is determined by lower level timers, such that it may
deviate from the pure solution time by the sparse direct linear solver. All test were performed
on the JSC supercomputer JUWELS [16] at the FZ Jülich using the Intel 2021.4.0 compiler
and IntelMPI.

4 Numerical Results

Linear Elasticity As a first example problem, we choose the linear elasticity model problem,
described in section 2.1, using Q1 finite elements on a structured mesh with 884 736 cells such
that we have 2 738 019 degrees of freedom (DOF). Since we neglect the rotations from the null
space, we may expect the number of iterations to increase with an increasing number of cores.
For our tests, the number of iterations increases from 56 to 90 scaling from 64 to 4 096 cores;
see Table 2. Note that it has shown that the majority of the solver time is taken by the
construction of the preconditioner rather than by the Krylov iterations for a smaller number
of cores [17]. For this reason, the number of iterations should not influence the solver time
significantly compared to the sizes of the subdomain problems within the considered range of
cores.

We obtain good strong scalability results scaling from 64 to 1 728 cores for all sparse direct
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linear elasticity – GDSW

solver time subd. problems coarse problem

solve time solve time

# cores Krylov max. size Amesos Amesos2 Amesos Amesos2 Amesos Amesos2

it. size Ki K0 MUMPS Umfpack KLU MUMPS Umfpack KLU MUMPS Umfpack KLU

64 56 86 577 932 34.04s 123.38 s 592.77 s 16.36 s 85.23 s 505.00 s 1.36 s 1.44 s 1.34 s

125 62 54 396 2 108 19.72s 63.39 s 246.96 s 10.11 s 45.80 s 217.09 s 0.85 s 1.11 s 0.94 s

512 72 21 504 10 412 9.02s 22.41 s 40.16 s 3.11 s 12.54 s 32.50 s 1.07 s 3.59 s 2.87 s

729 73 17 868 16 412 9.07s 23.21 s 35.64 s 2.25 s 8.44 s 18.27 s 2.14 s 8.95 s 12.79 s

1 000 78 14 724 20 037 8.21s 23.21 s 30.54 s 1.90 s 8.44 s 13.74 s 2.28 s 8.95 s 12.56 s

1 728 68 7 581 18 788 5.18s 12.53 s 16.58 s 0.94 s 3.30 s 5.88 s 1.38 s 6.14 s 8.10 s

2 744 86 8 700 60 090 22.02s 75.62 s 228.62 s 1.00 s 3.64 s 4.55 s 13.69 s 62.47 s 214.63 s

4 096 90 7 038 78 653 25.20s 81.41 s 207.76 s 0.87 s 2.77 s 3.15 s 14.29 s 68.19 s 194.30 s

Table 2: Strong scalability results for the linear elasticity model problem using Q1 elements. We apply the
FROSch preconditioner with the GDSW coarse space and an algebraic overlap of two elements and compare
different sparse direct linear solver. The solver time is the time to build the preconditioner and to perform the
Krylov iterations. The problem size is 2 738 019.

free-swelling problem – GDSW

solver time

Q1Q1 Q1RT0

avg. Amesos Amesos2 avg. Amesos Amesos2

# cores Krylov MUMPS Umfpack KLU Krylov MUMPS Umfpack KLU

64 70.9 173.24 s 536.41 s 1 587.04 s 49.7 75.35 s 238.57 s 686.13 s

125 79.8 121.68 s 362.16 s 833.82 s 56.4 53.18 s 155.20 s 352.30 s

512 103.4 71.88 s 213.51 s 250.88 s 73.7 41.18 s 122.68 s 134.44 s

729 111.0 78.86 s 258.50 s 240.84 s 78.3 54.20 s 178.32 s 200.62 s

1 000 116.3 73.49 s 241.98 s 216.39 s 81.3 53.48 s 167.36 s 154.35 s

1 728 105.1 57.20 s 190.70 s 171.00 s 76.5 38.76 s 121.18 s 128.17 s

2 744 125.1 147.99 s 599.51 s 1 068.12 s 86.8 172.00 s 646.72 s 1 547.63 s

4 096 131.9 178.61 s 755.28 s 1 428.17 s 92.3 197.48 s 836.19 s 1 428.17 s

Table 3: Strong scalability results for the free-swelling model problem. We apply the FROSch preconditioner
with the GDSW coarse space and an algebraic overlap of two elements and compare different sparse direct
linear solver. The solver time is the time to build the preconditioner and to perform the Krylov iterations. The
problem size is 705 894 for Q1Q1 elements and 691 635 for Q1RT0 elements.

linear solvers with MUMPS being the fastest. Umfpack is faster than KLU, however for smaller
subdomain problem sizes (obtained from 729 to 1 728 cores) the results are comparable; see Ta-
ble 2 and Figure 2. Reaching 2 744 cores the solver time starts to increase instead of decreasing.
The reason for that is the significant increase for the size of the coarse problem, e.g., for 1 728
dim(K0) =18 788 which compares to dim(K0) = 60 090 for 2 744 cores; see Table 2. From 2 744
cores on, the problem size relation of K0 and max Ki is similar to 125 cores, where the subd.
problem solve time dominated the solver time. The coarse problem reaches a critical size be-
yond 1 728 cores, since after this point the solution of the coarse problem begins to dominate
the solver time; see Figure 2. The solution on a single core is not sufficient anymore. As a next
step, we could apply three-levels or/and RGDSW. We want to remark that for certain numbers
of cores and numbers of elements the decomposition obtained from p4est results in structured
decompositions decreasing the size of the coarse problem. The proportion of the number of
elements and the number of subdomains is decisive for this phenomenon.

Free-Swelling Boundary Value Problem For the model problem described in section 2.2.1,
we consider a mesh with 110 592 cells. We compare two types of ansatz functions for the flux
field Q1 and RT0, and for the deformation field, we always use Q1 elements. For Q1Q1, we
obtain 705 894 DOF and 691 635 DOF for Q1RT0. We restrict the computation to two time
steps. Each requires five Newton iterations. We take the solver time over the two time steps,
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Figure 3: Solver time scaling from 64 to 4 096 cores using different direct linear solvers for the subd. problems
of the FROSch preconditioner with a GDSW coarse space. The preconditioner is applied the free-swelling model
problem. See Table 3 for the data.

such that the preconditioner is applied ten times. We consider an average number of Krylov
iterations (avg. Krylov) over the ten Newton steps. Since we apply FROSch fully algebraically,
i.e., using the the null space of the Laplace operator for the construction of the coarse space,
we cannot expect numerical scalability. Consequently, avg. Krylov increases with the number
of cores; see Table 3.

Generally, the number of Krylov iterations is lower for the Q1RT0 elements, yet the increase
from 64 to 4 096 cores stronger than for the Q1Q1 elements. This is in agreement with the results
obtained in [17]. Further, the size of the coarse problem is much larger with increasing number
of cores. For 4 096 cores, we obtain a coarse space dimension of 48 232 for Q1Q1 elements
respectively 77 222 for Q1RT0 elements; see also Table 4. This indicates that the algebraic
decomposition for the Q1Q1 is favorable since less interface components are obtained.

Regarding the strong scalability, we obtain similar results as for the linear elasticity model
problem; compare Figures 2 and 3. For both ansatz functions, the solver time increases reaching
2 744 cores. The Q1RT0 elements are faster up to 1 728 cores. For larger number of cores the
solve coarse problem time dominates the solver time. As previously discussed, the size of
the coarse problem is smaller for Q1Q1 elements such that the solver time is faster for these
elements employing larger numbers of cores. As for linear elasticity, the best performance of
the solver framework is obtained using MUMPS. For 64 cores, MUMPS is more than 15 times faster
than KLU and more than five times faster than Umfpack; see Table 3. The advantage of using
MUMPS is most apparent if the size of the directly solved problem is large. From 1 728 to 4 096
the subd. problem solve time Umfpack and KLU perform similarly, e.g., considering 1 728 cores,
the time to solve the Kis is 51.02s for Umfpack and 50.89s for KLU using Q1Q1 elements; see
also Table 4 and Figure 4. Generally for smaller subdomain problem sizes Umfpack and KLU

are comparable. Although MUMPS is much faster than Umfpack and KLU the scalability is not
extended solely by this choice of the direct linear solver.

Mechanically Induced Diffusion Problem The results for the mechanically induced dif-
fusion problem, introduced in section 2.2.2, confirm the results obtained for the free-swelling
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Figure 4: Time to solve the local subd. problems and time to solve the coarse problem scaling from 64 to 4 096
cores using different direct linear. See Table 4 for the data.

Figure 5: Solver time scaling from 64 to 4 096 cores using different direct linear solvers for the subd. problems of
the FROSch preconditioner with a GDSW coarse space. The preconditioner is applied the mechanically induced
diffusion model problem. See Table 5 for the data.

boundary value problem. Here, we also restrict the computation to two timesteps each solved
with five Newton iterations. The more complex boundary conditions result in higher numbers
of Krylov iterations. As for the other model problems, the number os iterations increases with
an increasing number of cores. Yet, the change of boundary conditions does not affect the do-
main decomposition, such that the sizes for the subdomain problems Ki and the coarse problem
K0 are equal. Therefore, the strong scaling behavior is similar to the free-swelling problem;
see Table 5. Consequently, for these tests, the solver time obtained using MUMPS is the fastest
as well. The results comparing Umfpack and KLU for this model problem are remarkable. From
512 to 1 728 cores the solver time using KLU is slightly faster than Umfpack, although it has
been slower for the free-swelling model problem. The time to solve the subdomain problems
again dominates solver time scaling from 64 to 1 000 cores; see Tables 5 and 6 and Figures 5
and 6.
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free-swelling problem – GDSW

Q1Q1 Q1RT0

subd. problem solve time

max. size Amesos Amesos2 max. size Amesos Amesos2

Ki MUMPS Umfpack KLU Ki MUMPS Umfpack KLU

64 38 334 81.29 s 412.17 s 1 453.55 s 35 634 33.33 s 171.26 s 615.22 s

125 27 648 58.90 s 279.19 s 763.12 s 25 598 24.02 s 112.08 s 317.11 s

512 13 896 30.06 s 127.59 s 200.50 s 12 571 11.95 s 53.77 s 87.94 s

729 11 472 24.97 s 103.84 s 130.83 s 10 368 9.43 s 43.92 s 61.50 s

1000 10 452 22.79 s 93.92 s 113.40 s 9 369 8.63 s 38.68 s 50.62 s

1728 5 634 12.49 s 51.02 s 50.89 s 5 064 5.43 s 19.91 s 21.87 s

2744 7 020 14.35 s 59.66 s 51.74 s 6 209 5.84 s 23.64 s 21.81 s

4096 6 312 13.03 s 52.51 s 51.74 s 5 563 5.54 s 21.75 s 21.81 s

coarse problem solve time

size Amesos Amesos2 Size Amesos Amesos2

K0 MUMPS Umfpack KLU K0 MUMPS Umfpack KLU

64 981 5.07 s 6.74 s 5.16 s 981 3.35 s 4.53 s 3.39 s

125 2 003 3.69 s 8.80 s 4.56 s 2 125 2.72 s 6.35 s 3.22 s

512 8 614 8.16 s 42.14 s 17.41 s 10 748 9.30 s 45.55 s 26.41 s

729 13 552 18.24 s 98.23 s 73.48 s 16 712 20.11 s 107.02 s 114.12 s

1 000 15 904 18.51 s 98.23 s 70.23 s 20 578 20.76 s 107.02 s 79.36 s

1 728 18 788 18.62 s 108.68 s 93.77 s 18 788 15.24 s 81.61 s 87.93 s

2 744 37 229 81.63 s 471.65 s 961.46 s 57 308 109.34 s 550.39 s 1 456.04 s

4 096 48 232 106.39 s 637.60 s 1 325.53 s 77 222 122.81 s 727.94 s 1 325.53 s

Table 4: Strong scalability for the subd. problem solve time and the coarse problem solve time using different
sparse direct linear solvers. The time includes the factorization of problem and the forward./backw. substitution
during the Krylov iterations. For the whole solver time see Table 3

mechanically-induced diffusion problem – GDSW

solver time

Q1Q1 Q1RT0

avg. Amesos Amesos2 Avg. Amesos Amesos2

# cores Krylov MUMPS Umfpack KLU Krylov MUMPS Umfpack KLU

64 115.8 214.14 s 739.30 s 1 654.99 s 119.9 113.30 s 432.78 s 753.36 s

125 130.0 154.23 s 500.88 s 887.11 s 137.2 85.14 s 300.36 s 399.83 s

512 177.2 100.06 s 323.04 s 292.94 s 180.3 74.06 s 265.61 s 183.75 s

729 186.4 112.14 s 390.50 s 288.87 s 192.3 102.14 s 395.56 s 260.95 s

1 000 196.4 107.12 s 374.02 s 262.23 s 205.4 106.15 s 386.94 s 224.96 s

1 728 210.6 97.71 s 356.62 s 226.93 s 219.5 88.08 s 320.87 s 192.73 s

2 744 224.4 241.59 s 1 008.08 s 1 212.64 s 235.6 362.65 s 1 561.48 s 1 846.48 s

4 096 239.1 295.22 s 1 283.16 s 1 606.95 s 249.0 422.36 s 2 027.79 s 2 372.35 s

Table 5: Strong scalability results for the mechanically-induced diffusion model problem. We apply the FROSch
preconditioner with the GDSW coarse space and an algebraic overlap of two elements and compare different
sparse direct linear solver. The solver time is the time to build the preconditioner and to perform the Krylov
iterations. The problem size is 705 894 for Q1Q1 elements and 691 635 for Q1RT0 elements.

5 Conclusion

In our tests, we were able to reduce the solver time by over 80% with the choice of the sparse
solver. We should therefore take particular interest in the choice of the solver using FROSch.
For the considered model problems, we recommend using MUMPS since it performed the best.
We expect a good performance of MUMPS for other model problems as well.

For the range of problems considered here, we did not face any memory issues with the
direct solvers compared, and we did not specifically examine the memory usage. However, we
expect differences in the range of possible subdomain and coarse problem sizes due to different
memory demands of the different solvers.
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mechanically induced diffusion problem – GDSW

Q1Q1 Q1RT0

subd. problem solve time

max. size Amesos Amesos2 max. size Amesos Amesos2

Ki MUMPS Umfpack KLU Ki MUMPS Umfpack KLU

64 38 334 115.89 s 609.33 s 1 515.37 s 35 634 61.56 s 351.75 s 673.00 s

125 27 648 85.54 s 409.80 s 809.69 s 25 598 47.02 s 239.01 s 356.35 s

512 13 896 46.94 s 207.11 s 229.25 s 12 571 25.06 s 122.50 s 112.68 s

729 11 472 38.56 s 166.92 s 152.12 s 10 368 20.03 s 100.85 s 81.18 s

1 000 10 452 35.56 s 152.18 s 131.74 s 9 369 18.88 s 92.55 s 69.41 s

1 728 5 634 22.80 s 90.63 s 65.87 s 5 064 13.30 s 53.54 s 34.12 s

2 744 7 020 23.92 s 101.89 s 65.43 s 6 209 13.75 s 62.04 s 34.43 s

4 096 6 312 21.98 s 89.07 s 65.43 s 5 563 13.01 s 56.25 s 34.43 s

coarse problem solve time

max. size Amesos Amesos2 max. size Amesos Amesos2

Ki MUMPS Umfpack KLU Ki MUMPS Umfpack KLU

64 981 5.32 s 7.92 s 5.42 s 981 4.36 s 7.18 s 4.43 s

125 2 003 4.25 s 12.21 s 5.34 s 2 125 4.06 s 13.04 s 5.08 s

512 8 614 11.64 s 68.46 s 22.99 s 10 748 16.23 s 103.86 s 38.81 s

729 13 552 25.86 s 167.40 s 87.50 s 16 712 35.08 s 239.38 s 132.98 s

1 000 15 904 26.73 s 167.40 s 85.64 s 20 578 38.30 s 239.38 s 107.88 s

1 728 18 788 30.67 s 206.60 s 116.33 s 18 788 31.65 s 218.03 s 117.71 s

2 744 37 229 119.86 s 788.58 s 1 059.76 s 57 308 204.04 s 1 315.37 s 1 633.51 s

4 096 48 232 156.47 s 1 076.23 s 1 432.02 s 77 222 233.64 s 1 748.85 s 2 130.84 s

Table 6: Strong scalability for the subd. problem solve time and the coarse problem solve time using different
sparse direct linear solvers. The time includes the factorization of problem and the forward./backw. substitution
during the Krylov iterations. For the whole solver time see Table 5.
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