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Abstract. Thermoplastic materials are widely used for thermoforming and injection mould-
ing processes, since their low density in combination with a high strength to mass ratio are
interesting for various industrial applications. Semi-crystalline polymers make up a subcate-
gory of thermoplastics, which partly crystallize after cool-down from the molten state. During
the thermoforming process, residual stresses can arise, due to complex material behavior un-
der different temperatures and strain rates. Therefore, computational models are needed to
predict the material response and minimize production errors. This work presents a thermo-
mechanically consistent phenomenological material formulation at finite strains, based on [1].
In order to account for the highly nonlinear material behavior, elasto-plastic and visco-elastic
contributions are combined in the model formulation. To account for the crystalline regions, a
hyperelastic-plastic framework is chosen, based on [2, 3]. Kinematic hardening of Arruda-Boyce
form is incorporated in the formulation, as well as associated plastic flow. The material param-
eters depend on both, the temperature as well as the degree of crystallinity. A comparison to
experiments with varying degrees of crystallinity and temperatures is presented, where a special
blending technique ensures stable crystallinity conditions.

1 INTRODUCTION

Semi-crystalline polymers (SCP) are used in many different industry applications due to
their high strength to weight ratio, their temperature stability and their potential for cost-
effective mass production. Hereby, their manufacturing process plays a crucial role for the
latter material behavior, since several factors like thermal treatment, applied stresses, moisture
level and even the manufacturing process itself have a huge influence on the resulting material
[4]. This complex material behavior stems from the underlying biphasic microstructure of SCPs,
where ductile amorphous regions are combined with hard crystalline ones which impedes reliable
material predictions. Consequently, a wide range of material models have been established
during the last decade, aiming to account for that problem. Here, earlier works regarding a
phenomenological approach by [5] and [6] introduced an additive decomposition of the resistance
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into an intermolecular and molecular network. These works laid the foundation for various
models in the field of amorphous (see [2, 7]) and semi-crystalline (see [8, 9, 10]) polymers, to
name a few.
In this work ,a coupled visco-elastic, visco-plastic model approach is proposed (see Section 2),
following the works of e.g. [11, 12, 13, 14], to accurately predict the observed plastic behavior,
as well as strain recovery, stress relaxation and loading-unloading hysteresis loop. In addition,
the presented model formulation accounts for the influence of temperature which has been
studied by e.g. [15, 16], in terms of a full thermomechanical coupling. The influence of the
degree of crystallinity (DOC) on the material behavior is taken into account. Here, the DOC
serves as a constant input parameter, as done in [17]. To improve the results of [17], tension-
compression asymmetry in yielding is incorporated, as done by [18, 19]. The novelty of the
proposed framework, is the dependence of the material parameters on the DOC as well as
temperature. In this way the yield surface is able to evolve its shape throughout the evolution
of temperature and adapt to the changing model behavior. The model is then implemented
as a material user subroutine UMAT into the ABAQUS framework and characterized using
experimental results (see Section 3). In Section 3, the capabilities of the proposed formulation
are shown, first by a model prediction at a higher strain rate and then in a multiaxial stress
state for a structural validation example. Finally, in Section 4 a conclusion is drawn.

2 MATERIAL MODEL FORMULATION

The objective of this work is the derivation of a thermomechanically coupled constitu-
tive framework to predict the material behavior of semi-crystalline polymers under thermo-
mechanical loading conditions in tension and compression. In addition to the displacement and
temperature field, the degree of crystallinity is introduced as a constant input parameter which
influences the material properties, as can be seen in Table 3.1. In this manner, the biphasic
nature of the underlying microstructure is treated in a continuum mechanical way, where the
total degree of crystallinity is considered as a scalar quantity, instead of making a differentia-
tion between the two underlying crystal configurations (γ-phase and α-phase). In Figure 1, a
schematic illustration on the basis of a rheological model of the proposed thermomechanically
coupled framework and Helmholtz free energy is presented. With the assumption of two de-
coupled processes, a decomposition into an elasto-plastic (index 1) and a visco-elastic (index
2) model contribution is chosen, following the works of e.g. [1, 2]. A defect energy of Arruda-
Boyce type, represented as a nonlinear spring, is incorporated in the plastic model branch to
account for kinematic hardening. With this approach, the elastic, visco-hyperelastic, and visco-
hyperelastic-plastic material response, observed in experiments of e.g. [1], can be depicted.

2.1 Kinematics

The kinematic relations needed to extend the presented rheological model (cf. Figure 1) in
a continuum mechanical way to finite strains, are based on several multiplicative decomposi-
tions of the total deformation gradient F . In the elasto-plastic part, the deformation gradient,
F = Fe1Fp, is decomposed into an elastic Fe1 and plastic Fp part (cf. [20, 21, 22]) with the
concomitant introduction of a plastic intermediate configuration ic1 . For the viscous part, a
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Figure 1: a) Schematic illustration of the constitutive model b) Multiplicative splits of the deformation
gradient

split into elastic and inelastic parts, F = Fe2Fi, is performed, respectively. In this way, an
additional inelastic intermediate configuraton ic2 is introduced, in line with the works of e.g.
[23, 24, 25].

2.2 Helmholtz free energy

In line with the aforementioned assumptions (cf. Fig. 1), the total Helmholtz free energy is
introduced as the sum of the elasto-plastic ψ1 as well as the visco-elastic ψ2 contribution and an
additional energy term ψc which represents a caloric contribution related to the temperature-
dependent specific heat of the material

ψ = ψ1 + ψ2 + ψc. (1)

Here, the free energy associated with elastoplasticity

ψ1 = ψe1(Ce1, χ, θ) + ψp(Cp, χ, θ) (2)

consists of an elastic term ψe1 as well as the defect energy ψp associated with plastic deformations,
whereas the viscous Helmholtz free energy consists of an elastic energy ψe2 only

ψ2 = ψe2(Ce2, θ). (3)

The total Helmholtz free energy depends on the elastic right Cauchy-Green tensors as well as
the plastic right Cauchy-Green tensor

Ce1 = F T
e1Fe1 = F−T

p C F−1
p , Ce2 = F T

e2Fe2 = F−T
i C F−1

i , Cp = F T
p Fp, (4)

respectively. Here, C = F TF represents the right Cauchy-Green tensor. All energetic contri-
butions are functions of temperature θ and/or degree of crystallinity χ to incorporate thermal
influences as well as the morphology of the underlying material microstructure. Thereby, an
increasing temperature leads to a decrease of all energetic contributions, whereas a higher de-
gree of crystallinity results in a stiffer material response in the elasto-plastic part. The specific
choices for all free energies are discussed in Section 2.6.
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2.3 Derivation based on the Clausius-Duhem inequality

The derivation of the constitutive relations is based on the local form of the Clausius-Duhem
inequality

S :
1

2
Ċ − ρ0(ψ̇ + ηθ̇)−

1

θ
q0 ·Grad(θ) ≥ 0 (5)

to ensure the fullfillment of the second law of thermodynamics. In the inequality, the specific
entropy is defined as η and the density and heat flux with respect to the reference configuration
are stated as ρ0 and q0, respectively. Inserting the specific Helmholtz free energy (1) and utilizing
the chain rule of differentiation yields

S :
1

2
Ċ − ρ0

(

∂ψ

∂Ce1
: Ċe1 +

∂ψ

∂Cp

: Ċp +
∂ψ

∂Ce2
: Ċe2

)

(6)

−ρ0

(

∂ψ

∂θ
+ η

)

θ̇ −
1

θ
q0 ·Grad(θ) ≥ 0.

Afterwards, the expression is further reformulated, exploiting the plastic velocity gradient Lp =
ḞpF

−1
p under the assumption that ψe1, ψe2 and ψp are isotropic functions of Ce1,Ce1 and Cp,

respectively. Note here, that the degree of crystallinity χ serves as a constant input parameter
in this formulation. The complete derivation is omitted here, but can be found, for example,
in [26]. After reformulation, several stress quantities are introduced in line with [1, 3, 25].
Corresponding to the elastoplastic model contribution, the second Piola-Kirchhoff stress tensor
S1 and the Mandel stress tensor M1

S1 = 2ρ0F
−1
p

∂ψe1

∂Ce1
F−T
p , M1 = 2ρ0Ce1

∂ψe1

∂Ce1
(7)

are introduced with respect to the reference and plastic intermediate configuration, respectively.
In addition, the back stress X in the intermediate plastic configuration, related to kinematic
hardening, is given as

X = 2ρ0Fp

∂ψp

∂Cp

F T
p . (8)

Similarly, for the visco-elastic part

S2 = 2ρ0F
−1
i

∂ψe2

∂Ce2
F−T
i , M2 = 2ρ0Ce2

∂ψe2

∂Ce2
(9)

are the second Piola-Kirchhoff and Mandel stress tensor corresponding to the reference and
inelastic intermediate configuration, respectively. Inserting the above derived stress measures
back into the Clausius-Duhem inequality leads to:

1

2
(S − S1 − S2) : Ċ + (M1 −X) : Dp +M2 : Di − ρ0

(

∂ψ

∂θ
+ η

)

θ̇ −
1

θ
q0 ·Grad(θ) ≥ 0, (10)

where D(∗) = sym (L(∗)) denotes the symmetric part of the corresponding velocity gradient

L(∗) = Ḟ(∗) F
−1
(∗) , with (∗) = i, p. Using the relation S = S1 + S2 for the second Piola-Kirchhoff

stress as well as η = −∂ψ/∂θ for the entropy leads to the reduced form of (10)
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(M1 −X) : Dp +M2 : Di ≥ 0. (11)

Here, Fourier’s law was used to define the heat flux

q0 = −J λT C−1 Grad(θ) (12)

with J = detF and λT (θ) denoting the heat conductivity, to ensure positivity of the dissipation
inequality during conduction.

2.4 Evolution equations

2.4.1 Yield criterion and plastic evolution equations

Following [19], a parabolic Tschoegel-type (c.f. [28]) yield function is considered

Φp = 3J2 + (m− 1)σtI1 −mσ2t ≤ 0 (13)

which is influenced by kinematic hardening via the stress Σ = M1−X that enters the function
in terms of the first I1 = tr(Σ) and second deviatoric invariant J2 = 1/2 tr(dev(Σ)2). The use
of the additional invariant I1 ensures correct yielding behavior under hydrostatic pressure as
shown by [27] for nylon 101, compared to e.g. a classical von Mises-type yield surface. Here,
the ratio m is a measure for the tension-compression flow asymmetry

m =
σc(χ, θ)

σt(χ, θ)
, (14)

where σc and σt are the compressive and tensile yield strengths, respectively. Both material
parameters depend on temperature and degree of crystallinity. Using the yield surface, the
plastic flow rule in the plastic intermediate configuration ic1 follows as

Dp = λ̇p
∂Φp

∂M1
= λ̇p

(

3dev(Σ) + (m− 1)σt I

)

(15)

with λ̇p being the plastic multiplier. Finally, the Karush-Kuhn-Tucker conditions are given as

λ̇p ≥ 0, Φp ≤ 0, λ̇pΦp = 0. (16)

2.4.2 Viscous model

The evolution of the viscous deformation in the inelastic intermediate configuration ic2 is
chosen as

Di =
1

2τµ2
dev(M2) +

1

9τK2
tr(M2)I (17)

according to the work of [25], with the bulk modulus K2(θ) and shear modulus µ2(θ). For the
relaxation time τ a constant is assumed, since experimental data for the characterization has
not been available yet.
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2.5 Representation in the reference configuration

As shown in the previous sections, the constitutive equations of the model are defined in
various configurations. To reduce the number of internal variables needed, a pull-back operation
(see [26] for a detailed overview) to the reference configuration is performed. In this way, the
model depends only on a few symmetric internal variables. Moreover, this procedure allows
for the application of an efficient and robust exponential map algorithm to integrate the plastic
evolution equations which preserves the symmetry of the internal variables, as well as the plastic
incompressibility as shown in [3].

2.6 Specific choice for the Helmholtz free energy

So far, the constitutive framework was introduced in a general manner without specifying
the Helmholtz free energies for the elasto-plastic and visco-elastic parts in order to maintain a
flexible derivation. In this way, the presented model formulation can be adapted easily for other
materials.

2.6.1 Free energy of the elasto-plastic part

For the elastic energy of the elasto-plastic part a compressible Neo-Hookean-type function is
chosen

ψe1 =
µ1
2

(tr(Ce1)− 3)− µ1ln (Je1) +
Λ1

4
(det(Ce1)− 1− 2 ln(Je1)) (18)

−3K1αT (θ − θ0) ln(Je1),

depending on the two Lamé constants µ1(θ, χ) and Λ1(θ, χ) and the thermal expansion coefficient
α(θ). Kinematic hardening is introduced by the use of an Arruda-Boyce (see [29]) type defect
energy

ψp = µ∗
5

∑

i=1

ci

λ2i−1
m (Ii1p − 3i)

. (19)

Here, I1p = tr(Cp) is the first invariant of the plastic right Cauchy Green tensor. ψp depends
on the two material parameters λm and µ∗ [30]. The prefactor ci is defined as

ci =

{

1

2
,

1

20
,

11

1050
,

19

7000
,

519

673760

}

. (20)

With Eq. (18) and (19), the second Piola Kirchhoff stress for the elastoplastic part and the
thermodynamic conjugate force for kinematic hardening in the reference configuration follow to

S1 = µ1(C
−1
p −C−1) +

Λ1

2

(

det(C)

det(Cp)
− 1

)

C−1 − 3K1αT (θ − θ0)C
−1 (21)

X̄ = µ∗
(

I +
1

5λm
I1pI +

11

175λ2m
I21pI +

19

875λ3m
I31pI +

519

67375λ4m
I41pI

)

(22)

6



M. Reuvers, B. Boes, S. Felder, T. Brepols and S. Reese
σ
x
[M

P
a
]

λx [−]λx [−]

Experiment
Simulation

χ = 0.23χ = 0.23
λ̇x ≈ 0.0005 s−1 λ̇x ≈ 0.0058 s−1

23◦C

50◦C

120◦C

θ̇ ≫ 0

a) b)

Figure 2: Monotonic, uniaxial extension: Comparison of experimental data and corresponding model
response for 23% crystallinity a) Model characterization at λ̇x = 0.0005 s−1 loading rate b) Model pre-
diction at λ̇x = 0.0058 s−1 loading rate.

2.6.2 Free energy of the viscous part

The Helmholtz free energy corresponding to the viscous part is chosen as of Neo-Hookean
type

ψ2 =
µ2
2

(tr(Ce2)− 3)− µ2 ln(Je2) +
Λ2

4
(det(Ce2)− 1− 2 ln(Je2)) (23)

−3K2αT (θ − θ0)ln(Je2),

as a function of the Lamé constants µ2(θ) and Λ2(θ). After a longer derivation, the second Piola
Kirchhoff stress for the viscous part results in

S2 = µ2(C
−1
i −C−1) +

Λ2

2

(

det(C)

det(Ci)
− 1

)

C−1 − 3K2αT (θ − θ0)C
−1 (24)

2.7 Numerical implementation

The material model is embedded into the commercial FEM software ABAQUS/Standard as
a user subroutine UMAT. For details regarding the implementation as as well as the algorithmic
treatment of the constitutive equations corresponding to the elasto-plastic model, the reader is
reffered to [1, 3, 17].

3 NUMERICAL EXAMPLES

3.1 Model characterization

In the following section, the isothermal material model is characterized using experimental
monotonic tensile data from [17] for different temperatures, a constant degree of crystallinity χ =
0.23 and a constant stretch rate λ̇x ≈ 0.0005s−1. Therefore a staggered parameter identification
procedure is exploited, where the Young’s modulus is taken from the initial elastic response of
the material during monotonic loading. The elastic model parameters are defined as follows
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EExp(θ, χ) = E1(θ, χ) +E2(θ). (25)

Note here, that for simplicity only the elasto-plastic Young’s modulus E1 depends on the degree
of crystallinity. In addition, the initial yield stress σt = χσt,0(θ) in tension is taken from the
experimental results of [17]. The missing plastic parameters can be identified using a nonlinear
multiple curve fitting procedure in MATLAB, employing the Downhill-Simplex algorithm. Note
here, that the thermal, as well as the viscous parameters are taken from [17]. Resulting from the
staggered identification scheme, a set of mechanical parameters is defined for each temperature
separately (see Table 3.1). In Table 3.1, also the accompanying thermal parameters are stated.
The corresponding material response to monotonic tensile results at different temperatures can
be seen in Fig. 2. To test the characterized material model, a higher strain rate of λ̇x ≈ 0.0058s−1

is used for a model prediction (see Fig. 2). Note here, that the results above four percent strain
are left out (see Fig. 2), due to a prominent self-heating effect, visible in the experimental data.
The prediction reveals good agreement with the experimental data, especially for temperatures
above the glass transition temperature. As alluded in [1, 17], material self-heating occured at
higher loading rates. Consequently, the model prediction is only shown up until λx = 1.04.

Table 1: a) Temperature dependent mechanical parameters b) Thermal material parameters

a)

Function Parameter at: 23 ◦C 50 ◦C 120 ◦C

E1 = χE1,0(θ) E1,0 [MPa] 7392.6 3016.9 798.26

E2 = E2(θ) E2 [MPa] 677 639.23 183.6

ν1 = ν2 ν1 [-] 0.35 0.35 0.35

σt = χσt,0(θ) σt,0 [MPa] 71 49 30

σc = χσc,0(θ) σc,0 [MPa] 284 53.9 30

µ∗ = χµ∗0(θ) µ∗0 [MPa] 75 110 120

λ = λ(θ) λ [-] 4 1.5 1.8

τ = τ(θ) τ [s] 156 71 48

b)
λT [W/mK] cT [mJ/gK] ρ0 [g/mm3] αT [1/K]

0.27 1470000 71 8.76 · 10−5

3.2 Model validation

As a validation, to assess the capabilities of the constitutive model, a structural example with
a multiaxial stress state is conducted. Therefore, experimental results of [17] for a Polyamide 6
sample (type 5A of ISO 527-2:2012) with a circular hole are compared to simulative results. The
specimen with a degree of crystallinity of 23% is modified carefully with a circular hole of 1 mm
diameter in the center of the gauge (see Fig. 3) and loaded under displacement controlled with a
velocity of v = 5mm/min by a Zwick Z005 universal testing machine. During the test procedure,
a heterogeneous strain field arose close to the hole, which is measured by a 2D ARAMIS 4M
digital image correlation system with a chosen facet size of 14 x 14 pixel. Due to a homogeneous
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Figure 3: Structural validation example: a) Geometry of the specimen with circular hole and DIC
measurement area b) Finite element model including boundary conditions c) Recorded force data [17].

strain field visible at the outer boundary of the specimen, the evolution of the cross section Ā(t)
can be deducted by means of the initial cross section A0 and the mean stretch in transversal
y-direction λ̄y(t). In this way, the evolution of the true stress in x-direction at the boundary of
the measuring field can be computed from the measured force data F (t)

σ̄x(t) =
F (t)

λ̄y(t)2A0
(26)

and used as a traction boundary for the FEM model (see Fig. 3). The comparison between
experiment and simulation in terms of engineering strain contours is shown in Fig. 4 for two
distinct time steps A(t = 60 s) and B(t = 140 s), highlighted in the force time relation (see Fig.
3). Due to the chosen facet size, no experimental data is available close to the imperfection,
therefore this region is omitted in the comparison. A good agreement between experiment and
simulation for horizontal and longitudinal direction is observed for both time steps. Considering
the model identification procedure soley against monotonic tensile results, the good agreement
of the multiaxial strain field close to the hole in experiment and simulation is particularly
exceptional.

4 CONCLUSION

In this work, a framework for modeling semi-crystalline polymers at large strains under
various temperatures and degrees of crystallinity is proposed to capture the material behavior
of Polyamide 6. Inherent to the model is an additive decomposition into an elastoplastic as well
as a viscoelastic contribution, both dependent on temperature as well as degree of crystallinity.
The elastoplastic part is extended with an Arruda-Boyce type defect energy, to model kinematic
hardening in a thermodynamic consistent way. In addition to the assumption of associative
plasticity, a Tschoegel type yield surface is introduced, to account for a tension-compression
asymmetry in yielding. After the implementation of the constitutive framework into the software
ABAQUS, a model characterization with experimental results is carried out. Here, a staggered
identification scheme for the isothermal model is used to identify the material constants for
each temperature seperately, independent of strain rate and degree of crystallinity. A prediction
of monotonic tensile tests at larger strain rate, serves as a first model validation. A good
agreement between experiment and simulation is observed in the regime before material self-
heating occured. Consequently, further validation examples are conducted, to assess the model
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Figure 4: Engineering strain contour plots for two different time steps A and B - Comparison of Exper-
imental data (Exp.) and corresponding model response (Sim.) in the ADIC area (cf. Fig. 2). The strains
in the grey area surrounding the hole are not provided, due to the chosen facet size (see [17]).

capability for multiaxial stress states. For that, experimental results of a tensile specimen with
circular recess are taken from the literature and compared to simulative results. Also in this
case, a good agreement with the experimental results is observed. The multiaxial stress state
at the vicinity of the recess is well captured, indicating that the identification scheme against
monotonic tensile tests alone is sufficient for the model characterization.
In the future, an extended experimental study over a wide range of degrees of crystallinity(20−
40%) and temperatures will is planned to improve the characterization and model prediction even
further. Therefore, the relaxation function will be fitted to experimental data and compression
tests will yield insight on the yielding behavior under tension. Moreover, combined tension-
compression tests will be carried out to better characterize the kinematic hardening.
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