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Abstract. Liquid crystal elastomers (LCEs) are soft materials, which are capable of large deforma-

tions induced by temperature changes and ultraviolet irradiation [1]. Therefore, since many years, these

materials are under investigation in experimental researches as actuator materials. LCEs arise from a ne-

matic polymer melt, consisting of long and flexible polymer chains as well as oriented and rigid rod-like

molecules, the so-called mesogens, by crosslinking. After this process, the flow ability and the orien-

tation of the mesogens is retained. To date, the alignment of LCEs is primarily achieved in thin films.

When the orientational order in the film is lost due to temperature changes or ultraviolet irradiation, the

LCE film is capable of length changes of 400 percent. In order to numerically simulate LCE materials

as actuators in multibody system models by using the finite element method, a continuum formulation

is necessary, which include in a thermo-viscoelastic material formulation of the polymer chains the ori-

entation effects of the mesogens. This can be performed by introducing a normalized direction vector

as an independent field, and deriving from additional (orientational) balance laws independent differen-

tial equations [2]. These differential equations describe the independent rotation of the rigid mesogens

connected with the flexible polymer chains. The orientation-dependent stress law of LCEs arises from

an anisotropic free energy, comparable with fibre-reinforced materials. But, the direction vector of a

LCE model has to be independent. In contrast to [2], we apply a variational principle for deriving a new

mixed finite element (FE) formulation, which is based on drilling degrees of freedom for describing the

mesogens rotation [3]. This principle leads to balance laws, preserved by an energy-momentum scheme.

1 INTRODUCTION

Liquid crystals are liquids with regularly arranged or oriented molecules. Since this is not a crystal phase

nor an isotropic liquid phase, liquid crystals are in the so-called mesophase. The simplest form of a

mesophase is the nematic phase, because here the mesogens are arranged almost in parallel. In LCE, a

change of temperature can lead to a transition from the nematic orientation to a disordered (isotropic)

orientation, and vice versa. The mesogens of a LCE can be described by an orientation vector nnn0, with

nnn0 · nnn0 = 1 (see Fig. 1), in the initial configuration B0. Hence, the temperature increase causes the

rotation of the orientation vector at the material point XXX ∈ B0 into the orientation nnnt at the position

xxx ∈ Bt of the current configuration Bt . First constitutive laws for liquid crystals are presented in [4],

wherein a free energy function in dependence on nnnt is derived. This Frank free energy increases with the

distorsion of the orientation vector field nnnt(xxx). It is based on a quadratic form with respect to the spatial

gradient grad[nnnt ], where grad[•] denotes the partial derivative with respect to xxx ∈ Bt . Reference [5] is a
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Figure 1: Configurations of a LCE with orientational volume and surface loads.

first one about a continuum theory for LCE, in which nnnt is considered with boundary conditions. This

theory defines balance laws with a kinetic energy with respect to the partial time derivative ṅnnt as well

as volume and surface forces acting on nnnt . In this way, the linear momentum balance law defines the

motion, and an orientational momentum balance law the time evolution of nnnt . In [2], this approach is

extended by the dynamical constraint nnnt · nnnt = 1 in the sense of a differential-algebraic system. Here,

the balance laws are formulated in a Lagrangian description based on the material gradient Grad[nnnt ◦ϕϕϕ],
where Grad[•] denotes the partial derivative with respect to XXX ∈ B0 and ϕϕϕ the deformation mapping (see

Fig. 1). Reference [6] satisfies the constraint ‖nnnt‖= 1 by means of the rotation tensor. A special mixed

FE-formulation with respect to nnnt is able to avoid a differential-algebraic equation system or a rotation

tensor equation, respectively, because the pure rotation of nnnt can be formulated by local drilling degrees

of freedom [3]. Therefore, in this paper, we present a non-isothermal mixed finite element formulation

with energy-momentum scheme based on drilling degrees of freedom for rotating the orientation vector.

2 CONTINUUM MODEL

We consider a LCE material, moving in the ndim-dimensional ambient space Rndim with temperature

Θ∞, as a continuum in the configuration B0 with the orientation vector nnn0(XXX) in the material point

XXX ∈ B0 at initial time t = 0. The deformation mapping ϕϕϕ : B0 ×T → Bt describes the motion in the

time interval T = [0,T ] into the deformed configuration Bt at time t ∈ T , and satisfies the identity

ϕϕϕ(XXX ,0) = XXX at each point XXX ∈ B0. The temperature mapping Θ : B0 ×T →R+ maps the initial value

Θ(XXX ,0) = Θ0(XXX) of the absolute temperature to the temperature θ(xxx) in xxx = ϕϕϕ(XXX) ∈ Bt . The time

evolution of the temperature follows from the time rate Θ̇(XXX , t) = θ̇, where the superposed dot denotes

the partial derivative with respect to time t. The orientation mapping χχχ : B0 ×T → R
ndim , satisfying

χχχ(XXX ,0) = nnn0(XXX) at each point XXX ∈ B0, gives the orientation vector nnnt(xxx) in the point xxx ∈ Bt . The

deformation ϕϕϕ results by time integration from the material velocity vector vvv(XXX , t) := ϕ̇ϕϕ(XXX , t) = ẋxx. The

orientation χχχ arises from the orientational velocity vector vvvχ(XXX , t) := χ̇χχ(XXX , t) = ṅnnt . Denoting by ρ0 the

mass density in B0, we then obtain the linear momentum vector ppp := ρ0 vvv. As in [2, 3], we assume

a radius of gyration lχ associated with the mesogens in direction nnn0 within the representative volume

element of the edge length l0 at each point XXX ∈ B0. We arrive at the orientational momentum vector

pppχ := AAAχ vvvχ = ρ0

[

(l2
χ − l2

0)AAA0 + l2
0 III

]

vvvχ (1)

where AAA0 := nnn0 ⊗nnn0 denotes the second-order structural tensor of the mesophase and III the second-order

identity tensor. The infinitesimal line element dxxx = FFF dXXX at the position xxx ∈ Bt is given by the defor-
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mation gradient FFF := Grad[ϕϕϕ]. Analogously, we introduce the orientation tensor FFFχ := χχχ⊗ nnn0, which

maps the initial orientation nnn0 to the current orientation nnnt (see Fig. 1). The stretch of the material line

element dxxx is measured by the right Cauchy-Green tensor CCC := FFFt gggFFF with respect to the translational

metric tensor ggg := grad[xxx]. We denote by the superscript t the transposition of a second-order tensor. In

the same way, the stretch of the material line element dxxx due to the rotation of the orientation vector nnnt

is determined by the orientational deformation tensor CCCχ := FFFt gggFFFχ = FFFt gggχ FFF , where gggχ designates the

orientational metric tensor. The orientational invariants in Reference [2] for describing an isothermal

interactive free energy density Ψi(FFF
t gggχχχ) := Ψ̂ori(Iori

1 ,Jori
2 ) can be written as

Iori
1 :=CCCχAAA0 : GGG−1 Jori

2 :=CCCχAAA0 : CCCχAAA0 (2)

where the symbol : indicates double contraction and the translational metric tensor GGG := Grad[XXX ] belongs

to the initial configuration B0. Hence, we consider the interactive free energy Ψori(CCCχ). The considered

non-isothermal elastic free energy density Ψela(CCC,Θ) := Ψ̂ela(Iela
1 ,Jela

2 , Iela
3 ,Θ) depends on the invariants

Iela
1 :=CCC : GGG−1 Jela

2 :=CCC : CCC Iela
3 := det[CCC] (3)

In order to quantify the increase of the Frank free energy density caused by distorsions with respect to

the initial configuration B0, we introduce the distorsion tensor KKKχ := FFFt gggGGGχ = FFFt gggK FFF with the metric

tensor gggK := grad[nnnt ]. We refer to GGGχ := Grad[χχχ] as the orientation gradient. Motivated by [3], the

distorsion can be then measured by the invariants

Idis
1 := (KKKχ −Grad[nnn0]) : GGG−1 Jdis

2 := (KKKχ −Grad[nnn0]) : (KKKχ −Grad[nnn0]) (4)

which vanish in the initial configuration. Thus, we assume a general form of the free energy, given by

Ψ(CCC,CCCχ,KKKχ,Θ) := Ψela(CCC,Θ)+Ψori(CCCχ)+Ψdis(KKKχ) (5)

In a LCE, the rotation of the orientation vector nnnt is directly connected with the deformation ϕϕϕ. Stretching

the LCE, we obtain a stress field rotating nnnt . Such a dissipative reorientation can be introduced by a

evolution equation [7]. Analogous to finite viscoelasticity, we start with the Clausius-Planck inequality

Dint
χ := NNNχ : gggḞFF − Ψ̇ori(CCCχ)≡

[

NNNχ −FFFχ SSSt
χ

]

: gggḞFF −FFF SSSχ : gggḞFFχ ≥ 0 (6)

for the reorientation dissipation Dint
χ . From now on, we require that the orientation vector nnnt has unit

length ‖nnnt‖= 1 at each t ∈T . Hence, the velocity rate tensor gggḞFFχ FFF−1
χ is skew-symmetric and given by

gggḞFFχ FFF−1
χ = εεε · α̇αα with α̇αα := α̇k gggk ◦ϕϕϕ(XXX , t) (7)

We denote by εεε the third-order Levi-Civita tensor. We herewith introduce a rotation mapping ααα : B0 ×
T →R

ndim , which satisfies the condition ααα(XXX ,0) = 000 at each point XXX ∈ B0, where 000 designates the zero

vector. We arrive at the reorientation dissipation

Dint
χ :=

[

NNNχ −FFFχ SSSt
χ

]

: gggḞFF − τττχ : εεε · α̇αα ≥ 0 (8)

We denote with τττχ := FFF SSSχ FFFt
χ a two-point orientational stress tensor, which we refer to as orienta-

tional Kirchhoff stress tensor. According to the Coleman-Noll procedure, we define the two-point Piola
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reorientation stress tensor NNNχ := FFFχ SSSt
χ, where the orientational stress tensor SSSχ := ∂Ψori/∂CCCχ is energy-

conjugated to CCCχ. Consequently, Dint
χ is always non-negative with the local evolution equation

−
1

2
εεε : τττχ = ΣΣΣχ with ΣΣΣχ =Vχ α̇αα (9)

and takes the form of the bilinear form Dint
χ := 2ΣΣΣχ · α̇αα ≥ 0 with respect to the rotational viscosity param-

eter Vχ. The rotation of nnnt due to the reorientation in the LCE is then given by the global equation

χ̇χχ =−εεε · α̇αα ·χχχ (10)

The natural constraint ‖nnnt‖= 1 for the orientation vector at each point xxx ∈ Bt is satisfied by the identity

χ̇χχ ·χχχ = 0 at each time t ∈ T due to the initial condition nnn0 ·nnn0 = 1.

3 MIXED FINITE ELEMENT FORMULATION

We aim at a weak formulation with mixed fields ŨUUi, i = 1, . . . ,s, whose time evolutions have to be

continuous, and remainder fields ṼVV j, j = 1, . . . , p, which are temporally discontinuous, in general. Thus,

a space-time discretization will be energy-consistent, if we use the mixed principle of virtual power

∫ tn+1

tn

δ∗Ḣ ( ˙̃UUU1, . . .
˙̃UUUs,ṼVV1, . . .ṼVVp)dt = 0 (11)

on any time step Tn := [tn, tn+1]⊂T of time step size hn := tn+1− tn based on the total energy functional

H . Since the variation is performed with respect to time derivatives of ŨUU i (δ1 variations) as well as

with respect to time functions ṼVV j itself (δ or δ0 variations), we consider the δ∗ symbol. We start by

summarizing the virtual power δ∗Pϕ associated with the deformation ϕϕϕ, given by

δ∗Pϕ := δ∗Ṫϕ(ϕ̇ϕϕ, v̇vv, ṗpp)+δ∗Π̇ext
ϕ (ϕ̇ϕϕ, R̃RR)+δ∗Π̇

int
ϕ (ϕ̇ϕϕ, ˙̃FFF, ˙̃CCC, P̃PP, S̃SS) (12)

The first term of Eq. (12) associated with the inertia of translations of material points XXX ∈B0 is given by

δ∗Ṫϕ(ϕ̇ϕϕ, v̇vv, ṗpp) :=

∫
B0

δ∗v̇vv · [ρ0 vvv− ppp]dV +

∫
B0

δ∗ ṗpp · [ϕ̇ϕϕ− vvv]dV +

∫
B0

δ∗ϕ̇ϕϕ · ṗppdV (13)

Here, vvv and ppp are introduced as independent (mixed) fields. The second term of Eq. (12) introduces

volume loads BBB, traction loads T̄TT and prescribed boundary displacements ϕ̄ϕϕ by using the functional

δ∗Π̇ext
ϕ (ϕ̇ϕϕ, R̃RR) :=−

∫
B0

δ∗ϕ̇ϕϕ ·BBBdV −

∫
∂T B0

δ∗ϕ̇ϕϕ · T̄TT dA−

∫
∂ϕB0

δ∗R̃RR ·
[

ϕ̇ϕϕ− ˙̄ϕϕϕ
]

dA−

∫
∂ϕB0

δ∗ϕ̇ϕϕ · R̃RRdA (14)

where the reaction force field on the Dirichlet boundary ∂ϕB0 := ∂B0\∂T B0 disjunct with the Neumann

boundary ∂T B0 is denoted by R̃RR. The last term takes the form δ∗Π̇int
ϕ (ϕ̇ϕϕ, ˙̃FFF, ˙̃CCC, P̃PP, S̃SS) := δ∗P int

ϕ with

δ∗P int
ϕ :=

∫
B0

δ∗P̃PP :
[

Grad[ϕ̇ϕϕ]− ˙̃FFF
]

dV +
1

2

∫
B0

δ∗S̃SS :

[

∂

∂t

(

F̃FF
t
F̃FF
)

− ˙̃CCC

]

dV

+

∫
B0

δ∗
˙̃CCC :

[

∂Ψ

∂C̃CC
−

1

2
S̃SS

]

dV +

∫
B0

δ∗
˙̃FFF :

[

F̃FF S̃SS− P̃PP
]

dV +

∫
B0

P̃PP : Grad[δ∗ϕ̇ϕϕ]dV (15)
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where P̃PP and S̃SS denote the independent fields of the first and second Piola-Kirchhoff stress tensor, respec-

tively. Since we aim at the consideration of thermal material behaviour of the LCE as well as thermal

boundary conditions, we consider the virtual thermal power

δ∗PΘ := δ∗Π̇ext
Θ (Θ̇,Θ̃, λ̃, h̃)+δ∗Π̇

int
Θ (Θ̇, η̇,Θ̃) (16)

The functional in the first term of Eq. (16) introduces a Dirichlet boundary ∂ΘB0∪∂Θ̇B0 := ∂B0 \∂QB0

disjunct with the Neumann boundary ∂QB0. On the Dirichlet boundary ∂ΘB0, we prescribe the constant

ambient temperature Θ∞, and on the Dirichlet boundary ∂Θ̇B0, a time evolution Θ̄ of the temperature is

prescribed. Here, we have to make a difference, because of using the entropy density field η as mixed

field. A prescribed time evolution Θ̄ then generates a boundary entropy h̃ on ∂Θ̇B0. The functional reads

δ∗Π̇ext
Θ (Θ̇,Θ̃, λ̃, h̃) :=

∫
B0

δ∗Θ̃
Dtot

Θ
dV +

∫
B0

1

Θ
Grad[δ∗Θ̃] ·QQQdV +

∫
∂QB0

δ∗Θ̃
Q̄

Θ
dA+

∫
∂ΘB0

δ∗Θ̃ λ̃dA

+

∫
∂ΘB0

δ∗λ̃
[

Θ̃−Θ∞

]

dA−

∫
∂Θ̇B0

δ∗h̃
[

Θ̇− ˙̄Θ
]

dA−

∫
∂Θ̇B0

δ∗Θ̇ h̃dA (17)

with the inward heat surface density Q̄ on the Neumann boundary ∂QB0 and the boundary heat flux λ̃ on

the Dirichlet boundary ∂ΘB0. A thermal volume load is given by the total dissipation

Dtot := Dcdu +Dint
χ =−

1

Θ
Grad[Θ] ·QQQ+2 α̇αα ·ΣΣΣχ with QQQ :=−k0 det[F̃FF]C̃CC

−1
Grad[Θ] (18)

by assuming Fourier’s law of isotropic heat conduction in its Lagrangian description. The second term

of Eq. (16) introduces the specific heat capacity c and the linear thermal expansion coefficient β of the

LCE by means of the functional

δ∗Π̇int
Θ (Θ̇, η̇,Θ̃) :=

∫
B0

δ∗Θ̇

(

∂Ψ

∂Θ
+η

)

dV +

∫
B0

δ∗η̇
(

Θ− Θ̃
)

dV −

∫
B0

δ∗Θ̃ η̇dV (19)

We refer to the mixed field Θ̃ as assumed temperature. Now, we present the virtual power associated with

χχχ. We begin by defining the micro inertia of the mesogens by the virtual orientational kinetic power

δ∗Ṫχ(χ̇χχ, v̇vvχ, ṗppχ) :=

∫
B0

δ∗v̇vvχ ·
(

AAAχ vvvχ − pppχ

)

dV +

∫
B0

δ∗ ṗppχ ·
[

χ̇χχ− vvvχ

]

dV +

∫
B0

δ∗χ̇χχ · ṗppχ dV (20)

Then, we introduce volume loads BBBχ and a Neumann boundary load W̄WW on the boundary ∂WB0 acting on

the orientation (see Fig. 1) with the virtual orientational external power

δ∗Π̇ext
χ (α̇αα, χ̇χχ, Z̃ZZ, τ̃ττn, ν̃νν) := −

∫
B0

δ∗χ̇χχ ·BBBχ dV −
∫

∂W B0

δ∗χ̇χχ ·W̄WW dA−
∫

∂χB0

δ∗Z̃ZZ ·
[

χ̇χχ− ˙̄χχχ
]

dA−
∫

∂χB0

δ∗χ̇χχ · Z̃ZZ dA

−
∫

∂χB0

2δ∗τ̃ττn · ν̃ννdA−
∫

∂χB0

2δ∗ν̃νν · τ̃ττn dA+
∫

B0

2δ∗α̇αα ·ΣΣΣχ dV (21)

For the sake of completeness, we also introduce a prescribed orientation χ̄χχ on the disjunct Dirichlet

boundary ∂χB0 := ∂B0 \∂W B0. The last term denotes the virtual reorientation dissipation. Finally, the
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functional form δ∗Π̇int
χ (α̇αα, χ̇χχ, ˙̃FFF, ˙̃FFFχ,

˙̃GGGχ,
˙̃CCCχ,

˙̃KKKχ, τ̃ττn, P̃PPχ, P̃PPK , S̃SSχ, S̃SSK) := δ∗P int
χ of the virtual orientational

internal power is defined by

δ∗P int
χ :=

∫
B0

δ∗
˙̃FFF :

[

F̃FFχ S̃SS
t

χ + G̃GGχ S̃SS
t

K

]

dV +

∫
B0

2δ∗τ̃ττn · [χ̇χχ+ εεε · α̇αα ·χχχ]dV +

∫
B0

δ∗P̃PPχ :
[

χ̇χχ⊗nnn0 −
˙̃FFFχ

]

dV

+
∫

B0

δ∗P̃PPK :
[

Grad[χ̇χχ]− ˙̃GGGχ

]

dV +
∫

B0

δ∗S̃SSχ :

[

∂

∂t

(

F̃FF
t
F̃FFχ

)

− ˙̃CCCχ

]

dV

+

∫
B0

δ∗S̃SSK :

[

∂

∂t

(

F̃FF
t
G̃GGχ

)

− ˙̃KKKχ

]

dV +

∫
B0

δ∗
˙̃CCCχ :

[

∂Ψ

∂C̃CCχ

− S̃SSχ

]

dV +

∫
B0

δ∗
˙̃KKKχ :

[

∂Ψ

∂K̃KKχ

− S̃SSK

]

dV

+
∫

B0

δ∗
˙̃FFFχ :

[

F̃FF S̃SSχ − P̃PPχ

]

dV +
∫

B0

δ∗
˙̃GGGχ :

[

F̃FF S̃SSK − P̃PPK

]

dV +
∫

B0

P̃PPχ : [δ∗χ̇χχ⊗nnn0] dV

+

∫
B0

P̃PPK : Grad[δ∗χ̇χχ]dV +

∫
B0

[

1

2
εεε : τττχ − τ̃ττn · εεε ·χχχ

]

·2δ∗α̇ααdV +

∫
B0

2 τ̃ττn ·δ∗χ̇χχdV (22)

We introduce the distorsion stress tensor S̃SSK energy-conjugated to K̃KKχ. Further, weakly defined stress

tensors are PPPχ := FFF SSSχ and PPPK := FFF SSSK , which we refer to as Piola orientational stress and Piola distor-

sion stress, respectively. We call the Lagrange multiplier 2τττn the rotation stress vector. The weak forms

arise from the application of the variational principle in Eq. (11) to the virtual power functional

δ∗Ḣ := δ∗Pϕ +δ∗PΘ +δ∗Ṫχ(χ̇χχ, v̇vvχ, ṗppχ)+δ∗Π̇
ext
χ (α̇αα, χ̇χχ, Z̃ZZ, τ̃ττn, ν̃νν)+δ∗P

int
χ (23)

We obtain four globally weak forms coupled in the deformation ϕϕϕ, the temperature Θ, the orientation χχχ

and the rotation stress vector 2τττn. We solve these weak forms within a monolithic solution strategy. The

deformation ϕϕϕ is determined by the weak balance of linear momentum, given by

∫
Tn

∫
B0

δ∗ϕ̇ϕϕ · [ ṗpp−BBB]dV dt −

∫
Tn

∫
∂T B0

δ∗ϕ̇ϕϕ · T̄TT dAdt +

∫
Tn

∫
B0

P̃PP : Grad[δ∗ϕ̇ϕϕ]dV dt =

∫
Tn

∫
∂ϕB0

δ∗ϕ̇ϕϕ · R̃RRdAdt (24)

The temperature Θ follows from the weak balance of thermal momentum, which can be written as

∫
Tn

∫
B0

δ∗Θ̃

[

η̇−
Dtot

Θ

]

dV dt −

∫
Tn

∫
∂QB0

δ∗Θ̃
Q̄

Θ
dAdt −

∫
Tn

∫
B0

Grad[δ∗Θ̃] ·
QQQ

Θ
dV dt =

∫
Tn

∫
∂ΘB0

δ∗Θ̃ λ̃dAdt (25)

The rotation stress 2τττn is associated with the weak balance of orientational momentum, defined by

∫
Tn

∫
B0

δ∗χ̇χχ ·
[

ṗppχ +2 τ̃ττn −BBBχ

]

dV dt −

∫
Tn

∫
∂W B0

W̄WW ·δ∗χ̇χχdAdt (26)

+

∫
Tn

∫
B0

P̃PPK : Grad[δ∗χ̇χχ]dV dt +

∫
Tn

∫
B0

P̃PPχ : [δ∗χ̇χχ⊗nnn0]dV dt =

∫
Tn

∫
∂χB0

Z̃ZZ ·δ∗χ̇χχdAdt

The orientation χχχ is determined by the weak balance of orientation rate, which takes the form

∫
Tn

∫
B0

2δ∗τ̃ττn · [χ̇χχ+ εεε · α̇αα ·χχχ]dV dt =
∫

Tn

∫
∂χB0

2δ∗τ̃ττn ·νννdAdt (27)

The vector field ννν represents a reaction due to a prescribed orientation on the boundary ∂χB0. We refer

to this vector field as reaction velocity field. The time evolution in Eq. (9) is solved on the element level

with an elementwise space approximation and a consistent linearisation as the viscoelasticity in [3].
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4 BALANCE LAWS

This weak formulation satisfies different balance laws associated with the time functions defined in Tab. 1

in consequence of symmetry properties of ϕϕϕ, Θ, χχχ and 2 τ̃ττn with respect to Euclidean transformations.

Therefore, by choosing specific variations as test functions, we obtain different balance laws.

Table 1: Energy and momentum functions of the non-isothermal LCE extended continuum.

Kinetic energy Kinetic energy of orientation Potential energy

T (t) :=

∫
B0

1

2
vvv · pppdV Tχ(t) :=

∫
B0

1

2
vvvχ · pppχ dV Πint(t) :=

∫
B0

ΨdV

Linear momentum Angular momentum Momentum of orientation

LLL(t) :=

∫
B0

pppdV JJJ(t) :=

∫
B0

ϕϕϕ× pppdV LLLχ(t) :=

∫
B0

pppχ dV

Moment of momentum Reorientation function Thermal energy

JJJχ(t) :=
∫

B0

χχχ× pppχ dV C ori(t) :=
∫

B0

[

‖χχχ‖2 −1
]

dV Πthe(t) :=
∫

B0

ΘηdV

Entropy Total energy Lyapunov function

S(t) :=
∫

B0

ηdV H := T +Tχ +Πint +Πthe +Πext F := H −Θ∞ S

First, the balance law of linear momentum describes a symmetry with respect to virtual translations along

any vector ccc ∈Rndim . This balance law is obtained by choosing the test function δ∗ϕ̇ϕϕ = ccc, leading to

LLL(tn+1)−LLL(tn) =
∫

Tn

∫
B0

BBBdV dt +
∫

Tn

∫
∂T B0

T̄TT dAdt +
∫

Tn

∫
∂ϕB0

R̃RRdAdt (28)

Then, we obtain a balance law of orientational momentum by choosing the test function δ∗χ̇χχ = ccc, where

ccc ∈Rndim denotes any constant orientation. We arrive at

LLLχ(tn+1)−LLLχ(tn) =

∫
Tn

∫
B0

[BBBχ −2 τ̃ττn − P̃PPχ nnn0]dV dt +

∫
Tn

∫
∂χB0

W̄WW dAdt +

∫
Tn

∫
∂χB0

Z̃ZZ dAdt (29)

A further symmetry property is associated with a virtual rotation around a constant axial vector ccc∈Rndim ,

introduced by the test function δ∗ϕ̇ϕϕ = ccc×ϕϕϕ. Here, we apply the definition ttt1 × ttt2 := εεε : [ttt1 ⊗ ttt2] of the

cross product of two vectors ttt1 and ttt2. This balance law of angular momentum is given by

JJJ(tn+1)− JJJ(tn) =
∫

Tn

∫
B0

ϕϕϕ×BBBdV dt +
∫

Tn

∫
∂T B0

ϕϕϕ× T̄TT dAdt +
∫

Tn

∫
∂ϕB0

ϕϕϕ× R̃RRdAdt

+

∫
Tn

∫
B0

[F̃FFχS̃SS
t

χ + G̃GGχS̃SS
t

K ]× F̃FF dV dt (30)

by using the notation of a cross product TTT 1 × TTT 2 := εεε : [TTT 1 · TTT t
2] of second-order tensors TTT 1 and TTT 2.

Without introducing an orientation χχχ, the last term in Eq. (30) vanishes. But, bearing in mind the rotation

of the orientation vector nnnt during reorientations, we obtain distributed couples. Analogous to the angular

momentum balance law, the test function δ∗χ̇χχ = ccc× χχχ leads to a balance law associated with a virtual

7
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rotation of the orientation vector nnnt around any direction ccc ∈ Rndim . This balance law of moment of

orientational momentum reads

JJJχ(tn+1)− JJJχ(tn) =

∫
Tn

∫
B0

χχχ×BBBχ dV dt +

∫
Tn

∫
∂W B0

χχχ×W̄WW dAdt +

∫
Tn

∫
∂χB0

χχχ× Z̃ZZ dAdt

−

∫
Tn

∫
B0

[F̃FFχS̃SS
t

χ + G̃GGχS̃SS
t

K ]× F̃FF dV dt −

∫
Tn

∫
B0

χχχ×2 τ̃ττn dV dt (31)

Distributed couples are eliminated by adding Eqs. (30) and (31), with exept of the couples χχχ× 2 τ̃ττn. A

balance law of thermal momentum arises by employing the test function δ∗Θ̃ = c ∈R, which reads

S(tn+1)−S(tn) =

∫
Tn

∫
B0

Dtot

Θ
dV dt +

∫
Tn

∫
∂QB0

Q̄

Θ
dAdt +

∫
Tn

∫
∂ΘB0

λ̃dAdt (32)

Second, we obtain energy balance laws as symmetry with respect to virtual translations along the time

axis. Choosing δ∗ϕ̇ϕϕ = ϕ̇ϕϕ, we obtain the balance law of kinetic energy

T (tn+1)−T (tn) =
∫

Tn

∫
B0

BBB · ϕ̇ϕϕdV dt +
∫

Tn

∫
∂T B0

T̄TT · ϕ̇ϕϕdAdt +
∫

Tn

∫
∂ϕB0

R̃RR · ϕ̇ϕϕdAdt

−

∫
Tn

∫
B0

[S̃SS : ˙̃FFFt F̃FF + S̃SSχ : ˙̃FFF t F̃FFχ + S̃SSK : ˙̃FFFtG̃GGχ]dV dt (33)

Since we also assume a micro inertia of the mesogens, we also obtain a balance law of orientational

kinetic energy by inserting the test function δ∗χ̇χχ = χ̇χχ. This leads to the relation

Tχ(tn+1)−Tχ(tn) =
∫

Tn

∫
B0

BBBχ · χ̇χχdV dt +
∫

Tn

∫
∂ϕB0

W̄WW · χ̇χχdAdt +
∫

Tn

∫
∂ϕB0

Z̃ZZ · χ̇χχdAdt

−

∫
Tn

∫
B0

[S̃SSχ : F̃FF
t
(

˙̃FFFχ + εεε · α̇αα · F̃FFχ

)

+ S̃SSK : F̃FF
t ˙̃GGGχ +Dint

χ ]dV dt (34)

by taking into account the variational form of Eq. (9). The potential energy balance law follows from

the time derivative of the total potential energy Π := Πint +Πext with the external potential energy

Πext(t) :=−
∫

B0

BBB ·ϕϕϕdV dt −
∫

B0

BBBχ ·χχχdV dt (35)

with respect to dead loads. The time derivative Π̇ then leads to the balance law

Π(tn+1)−Π(tn) =

∫
Tn

∫
B0

[S̃SSχ :
∂

∂t

(

F̃FF
t
F̃FFχ

)

+ S̃SSK :
∂

∂t

(

F̃FF
t
G̃GGχ

)

+ S̃SSχ : F̃FF
t
(εεε · α̇αα)F̃FFχ]dV dt

+

∫
Tn

∫
B0

[

S̃SS : ˙̃FFFt F̃FF +
∂Ψ

∂Θ
Θ̇−BBB · ϕ̇ϕϕ−BBBχ · χ̇χχ

]

dV dt (36)

We obtain a further balance law by inserting the test function δ∗Θ̃ = Θ. This balance law reads

Πthe(tn+1)−Πthe(tn) =

∫
Tn

∫
B0

[

−
∂Ψ

∂Θ
Θ̇+Dint

χ

]

dV dt +

∫
Tn

∫
∂Θ̇B0

Θ̇ h̃dAdt

+

∫
Tn

∫
∂ΘB0

Θλ̃dAdt +

∫
Tn

∫
∂QB0

Q̄dAdt (37)

8
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Accordingly, adding Eq. (33), Eq. (34), Eq. (36) and Eq. (37), we obtain the total energy balance law,

which coincides with the first law of thermodynamics depending on non-conservative loads only. Addi-

tionally, the balance law of thermal momentum leads to a Lyapunov function balance law, given by

F (tn+1)−F (tn) =

∫
Tn

∫
∂T B0

T̄TT · ϕ̇ϕϕdAdt +

∫
Tn

∫
∂ϕB0

R̃RR · ϕ̇ϕϕdAdt +

∫
Tn

∫
∂ϕB0

W̄WW · χ̇χχdAdt +

∫
Tn

∫
∂ϕB0

Z̃ZZ · χ̇χχdAdt

−

∫
Tn

∫
∂T B0

Θ∞

Θ
Dtot dV dt +

∫
Tn

∫
∂Θ̇B0

Θ̇ h̃dAdt +

∫
Tn

∫
∂QB0

Θ−Θ∞

Θ
Q̄dAdt (38)

The last balance law is the conservation law of reorientation pertaining to the function C ori. Choosing

the test function δ∗τ̃ττn = χχχ, we arrive at the conservation

C ori(tn+1)−C ori(tn) =

∫
Tn

∫
B0

2χχχ · χ̇χχdV dt ≡

∫
Tn

∫
B0

2 α̇ααt · [χχχ×χχχ]dV dt ≡ 0 (39)

of the length of the orientation vectors ‖nnnt‖= ‖nnn0‖ ≡ 1 on each time step Tn.

5 SPACE-TIME DISCRETIZATION

Analogous to [3], we introduce in Eq. (23) time approximation polynomials with respect to the nor-

malized time α(t) := (t − tn)/hn ∈ [0,1] associated with Tn. As mentioned above, we distinguish be-

tween time rate variables φn ∈ {ϕϕϕn,vvvn, pppn,Θn,ηn, F̃FF
n
,C̃CC

n
,χχχn,vvvn

χ, pppn
χ,ααα

n, F̃FF
n

χ,G̃GG
n

χ,C̃CC
n

χ, K̃KK
n

χ} and the remain-

der mixed fields. A time rate variable field φn on the n-th time step Tn is approximated by k-order

Lagrange polynomials MI(α), I = 1, . . . ,k+ 1. Then, we approximate the remainder mixed fields and

variations φ̃n on the n-th time step by k−1 order Lagrange polynomials M̃J(α), J = 1, . . . ,k. We tem-

porally discretize the time integrals by a k-point Gaussian quadrature rule. In Eq. (23), we apply a glob-

ally continuous space discretization with hexahedral elements, based on local shape functions Na(ζζζ),
a = 1, . . . ,nnode, defined on the domain B✷ := [−1,1]× [−1,1]× [−1,1], and the associated quadrature

rules to the mixed fields Φ1 ∈ {ϕϕϕ,vvv, ppp, R̃RR,Θ,η,Θ̃, h̃, λ̃,χχχ,vvvχ, pppχ, τ̃ττn, Z̃ZZ, ν̃νν} and the corresponding varia-

tions Φ2 ∈ {δ∗ϕ̇ϕϕ,δ∗v̇vv,δ∗ ṗpp,δ∗R̃RR,δ∗Θ̇,δ∗η̇,δ∗Θ̃,δ∗h̃,δ∗λ̃,δ∗χ̇χχ,δ∗v̇vvχ,δ∗ ṗppχ,δ∗τ̃ττn,δ∗Z̃ZZ,δ∗ν̃νν}. The remainder

fields Φ̂ on the e-th finite element are globally discontinuously approximated in space by local shape

functions N̂b(ζζζ), b = 1, . . . , n̂node, well-defined on the domain B✷. Note that the local shape functions

N̂b(ζζζ), b = 1, . . . , n̂node, also fulfill a completeness condition. Hence, we apply the approximations

φn
α :=

k+1

∑
I=1

MI(α)φn
I φ̃n

α :=
k

∑
J=1

M̃J(α) φ̃n
J Φe

ζζζ :=
nnode

∑
a=1

Na(ζζζ)Φe
a Φ̂e

ζζζ :=
n̂node

∑
b=1

N̂b(ζζζ)Φ̂e
b (40)

Motivated by Reference [8], we apply for ααα and δ∗α̇αα local shape functions Ñc(ζζζ), c = 1, . . . , ñnode, which

are generally different from Na(ζζζ) and N̂b(ζζζ). In order to satisfy the property in Eq. (36) also in a discrete

sense, we extend the stress approximations (cp. [3]). Further, we implemented the dyadic product χ̇χχ⊗nnn0

in a special way, such that a special B̄-operator has arisen. We report about these details in a next paper.

6 NUMERICAL EXAMPLE

The reorientation of the orientation vectors (mesogens) directly affects the motion. This is obvious from

the balance laws. Whereas the linear momentum balance law is not influenced by the reorientation, the

angular momentum balance law is affected by the distributed couples. As the dissipative reorientation

9
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process is simulated non-isothermally, we obtain a conserved total energy H and a decreasing Lyapunov

function F without external loads due to the increasing entropy S . An isothermal simulation leads to a

decreasing total energy H due to the reorientation dissipation. In order to demonstrate this dynamical

behaviour, we initiate a free rotation of a thin LCE film (0.3×12.5×75 [mm]). The rotation around the

center of mass is initiated with an initial angular velocity ω = 32 [1/s] around the z-axis. We compare

an isothermal and a non-isothermal simulation as well as the motion with and without reorientation.

In Fig. 2, we compare the isothermal motion without (left) and with (right) reorientation. Without a

reorientation, the film steadily rotates anti-clockwise in the x−y-plane and the mechanical momenta and

total energy are conserved. However, the couples of reorientation leads to an unsteady right-left-rotation

with large deformations, and the dissipation Dint
χ leads to a decreasing total energy. In the non-isothermal

motion in Fig. 3, the total energy H is now conserved and the Lyapunov function F is decreasing.

7 CONCLUSIONS

According to the non-isothermal formulation of the reorientation of the mesogens with a variational

principle the first law of thermodynamics is satisfied analogous to thermo-viscoelasticity. The next step

is to include the temperature dependence of the reorientation of the LCE film (see e.g. Reference [1]).
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Figure 2: Comparison of isothermal time evolutions without (left) and with (right) reorientation. As in [3],

Na belongs to a 20-node serendibity hexahedral element (H20) and N̂b to a 12-node prismatic element (P12).

Motivated by [8], Ñc belongs to a 8-node Lagrangian hexahedral element (H8). Colours in the left top plot indicate

the Kirchhoff stress τττ = P̃PPF̃FF
t
, where in the right, finite elements are coloured by the skew-symmetric part of τττχ.

The LCE film is defined by polyconvex free energy functions with ρ0 = 0.00176 [g/mm3], Vχ = 1 [kPa · s], Young’s

modulus E ≈ 0.914 [MPa], Poisson’s ratio ν ≈ 0.493. Further, the initial orientation nnn0 = eeey is used.
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Figure 3: Comparison of non-isothermal time evolutions without (left) and with (right) reorientation. The shape

functions are chosen as in Fig. 2. Colours in the left top plot indicate the Kirchhoff stress, where in the right,

finite elements are coloured by the current temperature Θ. The LCE film is defined by the mechanical parameters

in Fig. 2, and additionally with the linear thermal expansion coefficient β = 10−3 [1/K], specific heat capacity

302 [J/(Km3)] (1+ 0.56 [1/K](Θ−Θ∞)) and thermal conductivity k0 = 0.4 ·10−3 [W/(mmK)] (Θ∞ = 298.15 [K]).
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