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Executive summary

This deliverable presents the software release of Kratos Multiphysics, together with the
XMC library, Hyperloom and PyCOMPSs API definition [8]. This report is meant to serve
as a supplement to the public release of the software. Kratos is “a framework for building
parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and
high performance. Kratos is written in C++, and counts with an extensive Python
interface”. XMC is a python library for hierarchical Monte Carlo algorithms. Hyperloom
and PyCOMPSs are environments for enabling parallel and distributed computation.
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Nomenclature / Acronym list

Acronym | Meaning

API Application Program Interface
Kratos Kratos MultiPhysics

[S[®) Uncertainty Quantification
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1 Introduction

The Kratos software [5l [6] is designed for dealing with a multitude of different physical
problems; spacing from computational fluid dynamics to convection diffusion, from struc-
tural applications to fluid structure interaction. For further details we refer to the Kratos
documentation.

One of the most recent capabilities of Kratos is Uncertainty Quantification. UQ is the
field of science which studies how uncertainties evolve and propagate in a problem charac-
terized by random parameters, and how the output quantities of interest are affected by
the randomness. Even though within the ExaQUte project we are interested in applying
UQ to wind engineering problems, where wind velocity is the random quantity, one can
easily observe that UQ range of application is much wider, and spaces from engineering
to physics and finance. UQ methods have been developed within the XMC library [1],
and Kratos is the default solver software of the library. Further details about the XMC
library can be found in [2].

Moreover, efficiency is an important factor when dealing with large problems. For
this reason, both XMC and Kratos are designed for large scale computing in distributed
environments. The scheduling in distributed environments is handled by external libraries:
Hyperloom [4] and PyCOMPSs [3], 9], [11]. XMC presents a natural integration with these
libraries, making the library particularly suitable for running in supercomputers. Due to
this inner integration of XMC with Hyperloom and PyCOMPSs, the API definitions of
the schedulers have been integrated in the software release.

Therefore, the software release [§] contains Kratos as solver, XMC as UQ library and
Hyperloom and PyCOMPSs API definitions.

2 Software structure

Within Kratos, different applications are organized in different folders. One folder is
entirely dedicated to UQ and it is called MultilevelMonteCarloApplication. The folder is
located in:

Kratos/applications/MultilevelMonteCarloApplication
This folder contains XMC in:

Kratos/applications/MultilevelMonteCarloApplication/external libraries/
XMC

and Hyperlooms and PyCOMPSs API definitions in:

Kratos/applications/MultilevelMonteCarloApplication/external_libraries/
PyCOMPSs/exaqute

Examples of usage and tests checking the correct integration between the different libraries
are also included.

3 Examples

Different algorithms are developed and can be run with this software release: Monte Carlo,
Multilevel Monte Carlo, Adaptive Monte Carlo, Adaptive Multilevel Monte Carlo, Con-
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tinuation Multilevel Monte Carlo, Asynchronous Monte Carlo, Asynchronous Multilevel
Monte Carlo [10].

Multilevel algorithms are designed to run with different hierarchy strategies: stochastic
adaptive refinement, deterministic adaptive refinement or standard uniform refinement.
To perform adaptive refinement, the MMG software [7] is exploited for remeshing. To
remesh, a metric is a required input to MMG. Different metrics are developed within
Kratos, and the one exploited in the examples is based on the hessian of the numerical
solution. We refer to the Kratos MMG tutorial and MMG examples| for further details.

Examples are located in:

Kratos/applications/MultilevelMonteCarloApplication/external_libraries/
XMC/examples

These examples are configurable through a JSON file, which is located in the pa-
rameters folder (inside the examples folder). Different configuration files are present and
available as a reference to run Monte Carlo, Multilevel Monte Carlo or their asynchronous
counterparts. For example, to run a standard Monte Carlo example, one should change
to the examples folder and execute

$ python3 run_mc_Kratos.py parameters/
parameters_xmc_test _mc_Kratos_poisson_2d.json

while to run a Multilevel Monte Carlo example one should execute

$ python3 run_mlmc_Kratos.py parameters/
parameters_xmc_test _mlmc_Kratos_poisson_2d.json

By default, such examples run in serial. If one is interested in running exploiting
distributed computations, Hyperloom and/or PyCOMPSs must be installed in the ma-
chine. For example, to run the standard Monte Carlo example with COMPSs, one should
execute:

$ runcompss --options=value run_mc_Kratos.py parameters/
parameters_xmc_test _mc_Kratos_poisson_2d.json

However, the user must note that the appropriate imports have to be changed in places
marked through XMC from:

from exaqute.ExaquteTaskLocal import *

to

from exaqute.ExaquteTaskHyperLoom import *
or

from exaqute.ExaquteTaskPyCOMPSs import *

For further details about running in distributed environments, we refer to the Multi-
levelMonteCarloApplication documentation and to the COMPSs and Kratos tutorial.

4 Current results

The work developed and released has been run and tested with several benchmarks, which
have been run in different supercomputers. These benchmarks include potential flow, low
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and high Reynolds computational fluid dynamics and structural problems. The software
has been tested up to 128 working nodes (6144 CPUs), and showed a very good parallel
efficiency. The work developed will be submitted to a peer reviewed journal.
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Figure 1: Execution trace of asynchronous Multilevel Monte Carlo algorithm, running
with PyCOMPSs.

TS

Figure 2: Graph connection of Multilevel Monte Carlo algorithm dependencies, running
with PyCOMPSs.
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