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Abstract.Over the past decades, many different phenomenological models have been 
developed; the simple ones only consider isotropic hardening and a von Mises yield surface, 
whereas the advanced models simultaneously account for the material’s initial anisotropy 
and different types of hardening phenomena. The more advanced models are typically 
calibrated based on a rather extensive set of conventional mechanical tests such as tensile, 
tension-compression, tension-shear and tension-torsion tests. Furthermore, calibration is 
most often done in a sequential manner enabling to disentangle different phenomena.The 
Levkovitch-Svendsen model is such an advanced model accounting for isotropic, kinematic 
and distortional hardening and assuming Hill’s 1948 yield criterion to capture the initial 
plastic anisotropy. The motivation for this paper was the observation that an unrealistically 
high anisotropic shear parameter was required to reproduce a torsion test when calibrating 
this model for an X70 steel grade. This observation is scrutinized in this paper through a 
numerical study. 

Tensile tests in the rolling and transverse direction and a torsion test around the 
transverse direction were simulated with different hardening models, thereby always 
assuming the same Hill 1948 yield criterion. First, these tests were simulated using a purely 
isotropic hardening model and assuming arbitrary strain hardening. These virtual 
experiments served as the ground-truth material response. It was then evaluated if those 
virtual experiments could be reproduced by means of an isotropic-kinematic and an isotropic-
distortional hardening model. Even though monotonic stress paths were adopted in the virtual 
experiments, the isotropic-kinematic and the isotropic-distortional hardening model could not 
reproduce the virtual experiments generated by the purely isotropic hardening model. 
Thisseems to be an inconsistency complicating the calibration of more advanced constitutive 
models. However, in this paper it is shown that this inconsistency can be solved by scaling 
specific parameters in the evolution equations of the kinematic and distortional hardening 
model with a ratio of two equivalent stresses. 
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1 INTRODUCTION 

Material forming and shaping through plastic deformation is still one of the most efficient 
and economic manufacturing processes and is therefore extensively used in many industries 
such as automotive, appliance, energy, etc. Since many years, FEA (Finite Element Analysis) 
is adopted to optimize metal forming processes, as it reduces the cost of the trial-and-error 
phase and the time-to-market. 

An accurate description of the mechanical material behaviour is key for obtaining reliable 
FEA predictions. Over the past decades many phenomenological models have been 
developed; whereas the most simple ones assume that metals harden in an isotropic way, more 
advanced models are capable of capturing the metal’s initial anisotropy [1, 2] and reproducing 
phenomena such as the Bauschinger effect and differential work hardening [3].  

In general, one can distinguish between isotropic, kinematic and distortional hardening. 
Kinematic hardening refers to a translation of the yield surface in stress space and makes it 
possible to capture the Bauschinger effect. Well known kinematic hardening models are the 
linear models proposed by Prager [4] and Ziegler [5] and the non-linear model developed by 
Armstrong and Frederick [6]. Distortional hardening refers to a change of shape of the yield 
surface and allows reproducing phenomena such as cross-hardening, a phenomenon which 
manifests itself as an increase of the yield stress after orthogonal strain path changes [7, 8]. 

In 2007,Levkovitch and Svendsen proposed a phenomenological model which accounts for 
all three types of hardening and assumes Hill’s 1948 yield criterion [1] to capture the 
material’s initial anisotropy [9].A brief description of the model can be found in Section 2. 
The authors of this paper implemented this model in Abaqus by means of a UMAT user 
subroutine and adopted it to simulate spiral forming of large diameter welded pipes and to 
predict pipe properties from coil properties [10, 11]. To this end, the model was calibrated for 
an X70 steel grade, using data from tensile tests, cyclic tension-compression tests, torsion 
tests and tension-torsion tests. Furthermore, the different material parameters were calibrated 
in a sequential manner, enabling to disentangle different phenomena. However, it was 
observed that an unrealistically high anisotropic shear parameter was required to reproduce 
the torque–rotation angle curve from the torsion tests. 

To investigate this observation, a numerical study was conducted, the results of which are 
presented in Sections 3 and 4 of this paper. The aim was to compare the mechanical behaviour 
predicted by an isotropic, a combined isotropic-kinematic and a combined isotropic-
distortional hardening model in the case of monotonic stress paths, thereby always assuming 
the same Hill 1948 yield criterion. As will be shown in Section 3, it appears that the combined 
hardening models cannot reproduce the mechanical behaviour predicted by the isotropic 
hardening model, which seems to be an inconsistency complicating the calibration of more 
advanced constitutive models. Eventually, this inconsistency could be solved by scaling 
specific parameters in the evolution equations of the kinematic and distortional hardening 
model with a ratio of two equivalent stresses. Section 4 describes how these scaling factors 
were derived and presents the results from simulations with the modified hardening models. 

2 LEVKOVITCH-SVENDSEN MODEL 

The original Levkovitch-Svendsen model is presented in [9]. A slightly modified version 
was implemented by the authors. The yield function takes the following form: 
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𝛷 = 𝜎௘௤ − 𝜎௬ ≤ 0 (1) 

The equivalent stress𝜎௘௤ is defined as: 

𝜎௘௤ = ඥ(𝝈ௗ௘௩ − 𝜶ௗ௘௩): (𝑴 + 𝑯): (𝝈ௗ௘௩ − 𝜶ௗ௘௩) (2) 

𝝈ௗ௘௩ and 𝜶ௗ௘௩ represent the deviatoric part of the Cauchy stress tensor 𝝈 and the backstress 
tensor 𝜶, respectively. 𝑴 is a fourth order tensor of constants which describes the initial 
anisotropy of the material, while 𝑯is a fourth order tensor which evolves with plastic 
deformation and thus describes the distortion of the yield surface. When assuming Hill’s 1948 
yield criterion and when using Voigt notation, the tensor 𝑴 is defined as: 

𝑴 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐺 + 𝐻 −𝐻 −𝐺

−𝐻 𝐻 + 𝐹 −𝐹
−𝐺 −𝐹 𝐺 + 𝐹

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

2𝑁 0 0
0 2𝑀 0
0 0 2𝐿⎦

⎥
⎥
⎥
⎥
⎤

 

(3) 

with𝐹, 𝐺, 𝐻, 𝑀, 𝑁 and 𝐿 the parameters of Hill’s 1948 yield criterion. 
𝜎௬ represents the size of the yield surface, which is a function of the equivalent plastic 

strain 𝜀௘௤
௣௟ . 

An associativeflow rule isapplied: 

𝑫௣௟ = �̇� ∙
𝜕𝛷

𝜕𝝈ௗ௘௩
 

(4) 

With𝑫௣௟ the plastic strain rate tensor and �̇� the plastic multiplier. 
Theequivalentplasticstrainrateiscomputedbasedontheconventionthattheplasticwork per unit 

time and per unitvolumeshouldequaltheproductofthework-equivalent stress and 
theequivalentplasticstrainrate, or: 

𝜀௘̇௤
௣௟

=
𝝈: 𝑫௣௟

𝜎௘௤
ௐ௢௥௞

 
(5) 

with𝜎௘௤
ௐ௢௥௞ the work-equivalent stress, which is defined as: 

𝜎௘௤
ௐ௢௥௞ = ඥ𝝈ௗ௘௩: 𝑴: 𝝈ௗ௘௩  (6) 

As proposedbyLemaître and Chaboche [12], the total backstress𝜶 is defined as a 
summation of different backstresses 𝜶௞, where the evolution of each backstress is defined by 
the Armstrong-Frederick model [6]: 

�̇� = ෍ �̇�௞

ே

௞ୀଵ

 

�̇�௞ = 𝐶௞ ∙ ൫𝑋௦௔௧,௞ ∙ 𝑫௣௟ − 𝜶௞ ∙ 𝜀௘̇௤
௣௟

൯ 

(7) 

with𝑋௦௔௧,௞ and 𝐶௞ material parameters whichneedto be calibrated. 
Theevolutionofthedistortionalhardening tensor 𝑯 is described by the following equation: 

�̇� = 𝜀௘̇௤
௣௟

 ∙ 𝐶஽ ∙ (𝐷௦௔௧ − 𝐻஽) ∙ 𝑵⨂𝑵 +  𝜀௘̇௤
௣௟

 ∙ 𝐶௅ ∙ [𝐿௦௔௧ ∙ (𝑰ௗ௘௩ − 𝑵⨂𝑵) − 𝑯௅] (8) 
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with: 
 𝐶஽, 𝐷௦௔௧, 𝐶௅ and 𝐿௦௔௧, material parameters which havetobe calibrated 
 𝑵, a second order tensor with Eucledian norm 1, parallel to 𝑫௣௟ 
 𝑵⨂𝑵, a fourth order tensor 
 𝐻஽, the projection of 𝑯 on 𝑵⨂𝑵, i.e. 𝐻஽ = 𝐻௜௝௞௟ ∙ 𝑁௜௝ ∙ 𝑁௞௟ 
 𝑯௅ = 𝑯 − 𝐻஽ ∙ 𝑵⨂𝑵 
 𝑰ௗ௘௩, the deviatoric fourth order unit tensor, whichisdefined as: 

𝐼௜௝௞௟
ௗ௘௩ = −

1

3
∙ 𝛿௜௝ ∙ 𝛿௞௟ +

1

2
∙ 𝛿௜௞ ∙ 𝛿௝௟ +

1

2
∙ 𝛿௜௟ ∙ 𝛿௝௞ (9) 

Theterm “ 𝜀௘̇௤
௣௟

 ∙ 𝐶஽ ∙ (𝐷௦௔௧ − 𝐻஽) ∙ 𝑵⨂𝑵” is referred to as directional hardening, as it results 

in hardening along the plastic strain rate direction𝑵, while the term “ 𝜀௘̇௤
௣௟

 ∙ 𝐶௅ ∙ [𝐿௦௔௧ ∙

(𝑰ௗ௘௩ − 𝑵⨂𝑵) − 𝑯௅] ” is called the latent hardening part, because it generates hardening on 
the directions orthogonal to 𝑵. 

3 PROBLEM STATEMENT 

To investigate the inconsistency described in the introduction, a numerical study was 
conducted in which tensile tests in RD (rolling direction) and TD (transverse direction) and a 
torsion test around TD were simulated with different hardening models. In all simulations, the 
initial plastic anisotropy was described by the Hill 1948 yield criterion, using the anisotropy 
parameters shown in ¡Error! No se encuentra el origen de la referencia.. 

First, the mechanical tests were simulated using a purely isotropic hardening model 
assuming arbitrary strain hardening. The stress-strain and torque-rotation angle curves 
obtained from those simulations were considered to be the ground-truth material response in 
the remainder of the study, referred to as the reference curves. Next, the same mechanical 
tests were simulated using a combined isotropic-kinematic hardening model and a combined 
isotropic-distortional hardening model. Kinematic and distortional hardening were described 
by the evolution equations presented in Section 2. Given that monotonic mechanical tests are 
considered in this study, only the directional hardening part plays a role of importance in the 
case of distortional hardening. Arbitrarily chosen values were assigned to the kinematic and 
directional hardening parameters. The isotropic hardening part of the combined hardening 
models was calibrated based on the reference stress-strain curve from the tensile test in RD. In 
theory, the combined hardening models should be able to reproduce the monotonic ground-
truth mechanical tests, irrespective of the chosen kinematic and directional hardening 
parameters. 

All results from those simulations are summarized in Figure 1. As can be observed, the 
combined hardening models predict the exact same behaviour as the purely isotropic 
hardening model for the tensile test in RD. However, they predict significantly different 
behaviour for the tensile test in TD and the torsion test. Thus, there seems to be an unexpected 
incompatibility between the hardening models considered in this study.  

Table 1:parametersof Hill 1948 yieldcriterion 

F G H M N L 
0.4 0.45 055 1.8 1.9 1.95 
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Figure 1:Resultsfromsimulationswithoriginalevolutionequations 
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4 HOW TO SOLVE THE INCONSISTENCY 

The inconsistency illustrated in Section 3 can be solved by scaling the saturation 
parameters 𝑋௦௔௧ and 𝐷௦௔௧in the evolution equation of the backstress tensor 𝜶 (Equation (7)) 
and the distortional hardening tensor 𝑯(Equation (8)), respectively. The key point is that 
those scaling factors should depend on the direction along which the material is deformed and 
were determined by the following reasoning. Assume two pure shear tests on the same 
material, one in the RD-TD plane and another in the RD-ND (normal direction) plane. In the 
formulas below, the directions RD, TD and ND are referred to as 1, 2 and 3, respectively. 
Furthermore, assume that the material’s anisotropy is described by means of Hill’s 1948 yield 
criterion and suppose that Hill parameter 𝑁, i.e. the anisotropy parameter related to shear 
stress 𝜎ଵଶ, equals 3

2ൗ , i.e. the von Mises value. Based on the principle of equivalent plastic 
work (Equation (5)), the following relations can be derived: 

𝜎௘௤
ௐ௢௥௞ ∙ 𝜀௘̇௤

௣௟
= 2 ∙ 𝜎ଵଶ ∙ 𝜀ଵ̇ଶ

௣௟
= 2 ∙ 𝜎ଵଷ ∙ 𝜀ଵ̇ଷ

௣௟ 

𝜀௘̇௤
௣௟

= 2 ∙
𝜎ଵଶ

𝜎௘௤
ௐ௢௥௞

∙ 𝜀ଵ̇ଶ
௣௟

= 2 ∙
𝜎ଵଶ

√3 ∙ 𝜎ଵଶ

∙ 𝜀ଵ̇ଶ
௣௟

=
2

√3
∙ 𝜀ଵ̇ଶ

௣௟ 

𝜀௘̇௤
௣௟

= 2 ∙
𝜎ଵଷ

𝜎௘௤
ௐ௢௥௞

∙ 𝜀ଵ̇ଷ
௣௟

= 2 ∙
𝜎ଵଷ

√2 ∙ 𝑀 ∙ 𝜎ଵଷ

∙ 𝜀ଵ̇ଷ
௣௟

=
2

√2 ∙ 𝑀
∙ 𝜀ଵ̇ଷ

௣௟ 

(10) 

With 𝑀 the anisotropy parameter related to shear stress 𝜎ଵଷ. 
In the case of purely kinematic hardening and assuming that the backstress evolves as 

described by Equation (7), the shear stresses 𝜎ଵଶ and 𝜎ଵଷ can be computed as specified in 
Equations (11) and (12): 

�̇�ଵଶ = 𝐶 ∙ ൫𝑋௦௔௧,ଵଶ ∙ 𝜀ଵ̇ଶ
௣௟

− 𝛼ଵଶ ∙ 𝜀௘̇௤
௣௟

൯ = 𝐶 ∙ ቆ𝑋௦௔௧,ଵଶ ∙
√3

2
∙ 𝜀௘̇௤

௣௟
− 𝛼ଵଶ ∙ 𝜀௘̇௤

௣௟
ቇ 

ఌ೐೜
೛೗

ୀන ఌ̇೐೜
೛೗

∙ௗ௧

ሳልልልልልልልልሰ 𝛼ଵଶ = 𝑋௦௔௧,ଵଶ ∙
√3

2
∙ ቀ1 − 𝑒ି஼∙ఌ೐೜

೛೗

ቁ 

�̇�ଵଷ = 𝐶 ∙ ൫𝑋௦௔௧,ଵଷ ∙ 𝜀ଵ̇ଷ
௣௟

− 𝛼ଵଷ ∙ 𝜀௘̇௤
௣௟

൯ = 𝐶 ∙ ቆ𝑋௦௔௧,ଵଷ ∙
√2 ∙ 𝑀

2
∙ 𝜀௘̇௤

௣௟
− 𝛼ଵଷ ∙ 𝜀௘̇௤

௣௟
ቇ 

ఌ೐೜
೛೗

ୀන ఌ̇೐೜
೛೗

∙ௗ௧

ሳልልልልልልልልሰ 𝛼ଵଷ = 𝑋௦௔௧,ଵଷ ∙
√2 ∙ 𝑀

2
∙ ቀ1 − 𝑒ି஼∙ఌ೐೜

೛೗

ቁ 

(11) 

Please note that, in the model, it is assumed that 𝑋௦௔௧,ଵଶ equals 𝑋௦௔௧,ଵଷ, but here we 
differentiate between both to derive the scaling factor. Because we assume purely kinematic 
hardening, the size of the yield surface, defined as 𝜎௬ (Equation (1)), does not evolve. Thus: 

𝜎௘௤ = 𝜎௬ = √3 ∙ (𝜎ଵଶ − 𝛼ଵଶ) = √2 ∙ 𝑀 ∙ (𝜎ଵଷ − 𝛼ଵଷ) (12) 

And, consequently, the shear stresses 𝜎ଵଶ and 𝜎ଵଷ read as: 

𝜎ଵଶ =
𝜎௬

√3
+ 𝑋௦௔௧,ଵଶ ∙

√3

2
∙ ቀ1 − 𝑒ି஼∙ఌ೐೜

೛೗

ቁ 
(13) 
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𝜎ଵଷ =
𝜎௬

√2 ∙ 𝑀
+ 𝑋௦௔௧,ଵଷ ∙

√2 ∙ 𝑀

2
∙ ቀ1 − 𝑒ି஼∙ఌ೐೜

೛೗

ቁ 
 

By combining Equations (10) and (13), a relation between 𝑋௦௔௧,ଵଶ and 𝑋௦௔௧,ଵଷ can be derived: 

2 ∙ 𝜎ଵଶ ∙ 𝜀ଵ̇ଶ
௣௟

= 2 ∙ 𝜎ଵଷ ∙ 𝜀ଵ̇ଷ
௣௟ 

→ 𝜎ଵଶ ∙
√3

2
∙ 𝜀௘̇௤

௣௟
= 𝜎ଵଷ ∙

√2 ∙ 𝑀

2
∙ 𝜀௘̇௤

௣௟  

→  
𝜎ଵଶ

𝜎ଵଷ

=

√ଶ∙ெ

ଶ

√ଷ

ଶ

 

→  

ఙ೤

√ଷ
+ 𝑋௦௔௧,ଵଶ ∙

√ଷ

ଶ
∙ ቀ1 − 𝑒ି஼∙ఌ೐೜

೛೗

ቁ

ఙ೤

√ଶ∙ெ
+ 𝑋௦௔௧,ଵଷ ∙

√ଶ∙ெ

ଶ
∙ ቀ1 − 𝑒ି஼∙ఌ೐೜

೛೗

ቁ
=

√ଶ∙ெ

ଶ

√ଷ

ଶ

 

→ 𝑋௦௔௧,ଵଷ = 𝑋௦௔௧,ଵଶ ቆ
√3

√2 ∙ 𝑀
ቇ

ଶ

 

(14) 

The ratio ቀ
√ଷ

√ଶ∙ெ
ቁ

ଶ

 can be written in a general way as the ratio of two equivalent stresses, 

namely ൬
ఙ೐೜

ಾ೔ೞ೐ೞ

ఙ೐೜
ೈ೚ೝೖ൰

ଶ

, with 𝜎௘௤
ெ௜௦௘௦ the work-equivalent Mises stress: 

𝜎௘௤
ெ௜௦௘௦ = ඥ𝝈ௗ௘௩: 𝑴ெ௜௦௘௦: 𝝈ௗ௘௩  (15) 

In Voigt notation, the fourth order tensor 𝑴ெ௜௦௘௦ can be written as: 

𝑴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1 −1

2ൗ −1
2ൗ

−1
2ൗ 1 −1

2ൗ

−1
2ൗ −1

2ൗ 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

3 0 0
0 3 0
0 0 3⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

(16) 

The inconsistency between the isotropic and the combined isotropic-kinematic hardening 

model can be solved by multiplying the saturation parameters 𝑋௦௔௧ with the ratio ൬
ఙ೐೜

ಾ೔ೞ೐ೞ

ఙ೐೜
ೈ೚ೝೖ൰

ଶ

, as 

will be illustrated further in the paper. The evolution equation of the backstress tensor then 
becomes: 

�̇�௞ = 𝐶௞ ∙ ൭ቆ
𝜎௘௤

ெ௜௦௘௦

𝜎௘௤
ௐ௢௥௞

ቇ

ଶ

∙ 𝑋௦௔௧,௞ ∙ 𝑫௣௟ − 𝜶௞ ∙ 𝜀௘̇௤
௣௟

൱ 
(17) 

In the same way, the scaling factor for the saturation parameter 𝐷௦௔௧ can be derived. In the 
case of purely distortional hardening (or purely directional hardening to be more precise) and 
assuming that distortional hardening is defined by Equations (1) and (8), the shear stresses 
𝜎ଵଶand 𝜎ଵଷ can be computed as specified in Equations (18) and (19): 
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�̇�ଵଶଵଶ = �̇�ଵଶଶଵ = �̇�ଶଵଶଵ = �̇�ଶଵଵଶ = 𝐶஽ ∙ ൫𝐷௦௔௧,ଵଶ − 𝐻ଵଶଵଶ൯ ∙ 𝜀௘̇௤
௣௟  

ఌ೐೜
೛೗

ୀන ఌ̇೐೜
೛೗

∙ௗ௧

ሳልልልልልልልልሰ 𝐻ଵଶଵଶ = 𝐻ଵଶଶଵ = 𝐻ଶଵଶଵ = 𝐻ଶଵଵଶ = 𝐷௦௔௧,ଵଶ ∙ ቀ1 − 𝑒ି஼ವ∙ఌ೐೜
೛೗

ቁ 

�̇�ଵଷଵଷ = �̇�ଵଷଷଵ = �̇�ଷଵଷଵ = �̇�ଷଵଵଷ = 𝐶஽ ∙ ൫𝐷௦௔௧,ଵଷ − 𝐻ଵଷଵଷ൯ ∙ 𝜀௘̇௤
௣௟  

ఌ೐೜
೛೗

ୀන ఌ̇೐೜
೛೗

∙ௗ௧

ሳልልልልልልልልሰ 𝐻ଵଷଵଷ = 𝐻ଵଷଷଵ = 𝐻ଷଵଷଵ = 𝐻ଷଵଵଷ = 𝐷௦௔௧,ଵଷ ∙ ቀ1 − 𝑒ି஼ವ∙ఌ೐೜
೛೗

ቁ 

(18) 

The parameter 𝜎௬ does not evolve. Hence: 

𝜎௘௤ = 𝜎௬ = ඥ4 ∙ 𝐻ଵଶଵଶ + 3 ∙ 𝜎ଵଶ = ඥ4 ∙ 𝐻ଵଷଵଷ + 2 ∙ 𝑀 ∙ 𝜎ଵଷ 

→ 𝜎ଵଶ =
𝜎௬

ට4 ∙ 𝐷௦௔௧,ଵଶ ∙ ቀ1 − 𝑒ି஼ವ∙ఌ೐೜
೛೗

ቁ + 3

 

→  𝜎ଵଷ =
𝜎௬

ට4 ∙ 𝐷௦௔௧,ଵଷ ∙ ቀ1 − 𝑒ି஼ವ∙ఌ೐೜
೛೗

ቁ + 2 ∙ 𝑀

 

(19) 

By combining Equations (10) and (18), a relation between 𝐷௦௔௧,ଵଶ and 𝐷௦௔௧,ଵଷ can be derived: 

𝜎ଵଶ

𝜎ଵଷ

=

√ଶ∙ெ

ଶ

√ଷ

ଶ

 

→  

ఙ೤

ඨସ∙஽ೞೌ೟,భమ∙ቆଵି௘
ష಴ವ∙ഄ೐೜

೛೗

ቇାଷ

ఙ೤

ඨସ∙஽ೞೌ೟,భయ∙ቆଵି௘
ష಴ವ∙ഄ೐೜

೛೗

ቇାଶ∙ெ

=

√ଶ∙ெ

ଶ

√ଷ

ଶ

 

→ 𝐷௦௔௧,ଵଷ = 𝐷௦௔௧,ଵଶ ቆ
√2 ∙ 𝑀

√3
ቇ

ଶ

 

(20) 

The ratio ቀ
√ଶ∙ெ

√ଷ
ቁ

ଶ

 can also be written in a more general way as the ratio of two equivalent 

stresses, namely ൬
ఙ೐೜

ೈ೚ೝೖ

ఙ೐೜
ಾ೔ೞ೐ೞ൰

ଶ

. The inconsistency between the isotropic and the combined 

isotropic-distortional hardening model can thus be solved by multiplying the saturation 

parameter 𝐷௦௔௧ with the ratio ൬
ఙ೐೜

ೈ೚ೝೖ

ఙ೐೜
ಾ೔ೞ೐ೞ൰

ଶ

. The evolution equation of the fourth order distortional 

hardening tensor then becomes: 

�̇� = 𝜀௘̇௤
௣௟

 ∙ 𝐶஽ ∙ ൭ቆ
𝜎௘௤

ௐ௢௥௞

𝜎௘௤
ெ௜௦௘௦

ቇ

ଶ

∙ 𝐷௦௔௧ − 𝐻஽൱ ∙ 𝑵⨂𝑵 + 𝜀௘̇௤
௣௟

 ∙ 𝐶௅ ∙ [𝐿௦௔௧ ∙ (𝑰ௗ௘௩ − 𝑵⨂𝑵) − 𝑯௅] 
(21) 

One can raise the question if the saturation parameter 𝐿௦௔௧ should also be scaled, but there 
is no reason to do so from a numerical point of view. 

Finally, the tensile and torsion tests described in Section 3 were simulated with the 
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modified evolution equations for kinematic and distortional hardening. The results from those 
simulations are summarized  inFigure 2. As can be observed, the different hardening laws 
predict exactly the same behaviour for the monotonic virtual mechanical tests considered in 
this study. Thus, scaling the saturation parameters 𝑋௦௔௧ and 𝐷௦௔௧ with a ratio of two equivalent 
stresses could solve the observed inconsistency. By scaling those saturation parameters, the 
amount of kinematic and directional hardening depends on the loading direction with respect 
to the principal material directions. 

5 CONCLUSIONS 

A numerical study was performed to compare the mechanical behaviour predicted by an 
isotropic, a combined isotropic-kinematic and a combined isotropic-distortional hardening 
model in the case of monotonic tests. It was expected that the different hardening models 
would be able to predict the same behaviour for monotonic stress paths, but this was not the 
case for the models considered in this study. This seems to be an inconsistency complicating 
the calibration of more advanced constitutive models. As shown and substantiated in this 
paper, this inconsistency can be solved by scaling the saturation parameters in the evolution 
equations of the kinematic and distortional hardening model with a ratio of two equivalent 
stresses. 
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Figure 2:Resultsfromsimulationswithmodifiedevolutionequations 
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