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Abstract. Dielectric elastomers show promising performance as actuators for soft robotics. Thus, accu-
rate and efficient numerical algorithms for the simulation of Dielectric Elastomer Actuators (DEAs) are
required for the design and control of the soft robotic system. In this work, the Cosserat formulation of
geometrically exact beam dynamics is extended by adding the electric potential as an additional degree of
freedom to account for the electrical effects. A formulation of electric potential and electric field for the
geometrically exact beam model is proposed such that complex beam deformations can be generated by
the electrical forces. The kinematic variables in continuum electromechanics are formulated in terms of
beam strains. The electromechanically coupled constitutive model for the beam formulation is obtained
by integrating the strain energy in continuum electromechanics over the beam cross section, which leads
to a direct transfer of the dielectric constitutive models in continuum mechanics to the beam model. The
electromechanically coupled beam dynamics is solved with a variational time integrator scheme. By
applying different electrical boundary conditions to the beam nodes, different deformation modes of the
beam are obtained in the numerical example.

1 INTRODUCTION

Due to their better performances in energy efficiency, completing complex movements and safe interac-
tion with the environment, soft robotic systems are highly demanded in industrial production, medical
treatment and daily life. As a promising actuation approach for soft robotics, the Dielectric Elastomer
Actuators (DEAs) have been developed to serve as artificial muscles, see e.g. [4, 12, 10] and [8]. In
the DEA cell, the dielectric elastomer is sandwiched between two compliant electrodes. By applying
the external electric potential to the electrodes, the electric field is induced within the DEA cell and the
dielectric material is polarized, resulting in an electrostatic pressure, see the models in [14, 22, 20] and
[16] for instance. The contractive pressure leads to the contraction of the DEA such that it can be applied
as an actuator. The DEAs are essentially composed by multiple stacked capacitors.

The deformation behavior of the DEA is governed by the electromechanical coupling in the dielectric
material. In the past years, much effort has been made to address the electromechanical coupling prob-
lem, see e.g. the theory of interaction of electromagnetic and elastic fields in deformable continua in
[13], the nonlinear electroelasticity formulation for the finite deformation in [7] and the variational for-
mulations of the electro- and magneto-elastostatics in [21]. Additionally, the constitutive models for the
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dielectric elastomers have been investigated, see e.g. [23, 21] and [19]. In [17], a viscoelastic 3D fi-
nite element model of the DEA is developed for the dynamic analysis within a structure preserving time
integration scheme. This model is extended to flexible multibody system dynamics in [15].

In large 3D finite element models, huge amounts of degrees of freedom are usually required, which
leads to inefficient simulation of DEA. To simulate the long thin artificial muscles like the stacked DEA,
3D finite element model can be replaced by the reduced models, such as the geometrically exact beam.
The geometrically exact beam performs well concerning the tradeoff between computational cost and
accuracy. The Cosserat beam [6] is formulated by assigning the rotational degrees of freedom to points
in continuum, which leads to a consistent formulation of flexible multibody systems. The fundamental
formulations on geometrically exact beam can be found in [18] and [2] for instance.

In this work, an electromechanically coupled beam model for the simulation of stacked dielectric elas-
tomer actuators is developed, where the Cosserat beam formulation is obtained by relating the beam
kinematics to that in continuum electromechanics. The explicit beam specific expressions for this cou-
pled problem are discussed in [9]. A formulation of electric potential and electric field for the geomet-
rically exact beam model is proposed such that complex beam deformations can be generated by the
electrical forces. The deformation gradient and electric field are formulated in terms of beam strains.
The electromechanically coupled constitutive model for the beam formulation is obtained by integrating
the strain energy in continuum electromechanics over the beam cross section, which leads to the direct
application of the material models in continuum electromechanics to the beam model. The viscoelastic
effect is taken into account in the non-conservative force term. The electromechanically coupled problem
in beam dynamics is first semidiscretized with 1D spatial finite elements and then solved via variational
time integration. By applying different electric boundary conditions, different deformations of the beam
are obtained in the numerical example.

This paper is structured as follows: In Section 2, the governing equations for electromechanical coupling
in continuum electromechanics are presented. Then the formulation of kinematic variables including the
deformation gradient, the electric potential and the electric field are derived for the beam in Section 3.
Section 4 presents the strain energy function for the beam. In Section 5, the electromechanical coupling
problem is solved with a variational time integration scheme. A numerical example of the developed
model is presented in Section 6, followed by the conclusions in Section 7.

2 GOVERNING EQUATIONS FOR ELECTROMECHANICAL COUPLING

We consider a dielectric elastic solid occupying the domain B⊂ R3, where the boundary ∂B of the solid
is composed by the Dirichlet type sections ∂uB and ∂φB, and the Neumann type sections ∂σB and ∂DB.
The position of a material point in the deformed configuration at time t is given by the motion

x = X+u(X, t), (1)

where X is the position of the material point in the initial configuration and u is the displacement. The
deformation of the solid is governed by the balance law of momentum and the Maxwell equations. In
this part, the governing equations of continuum electromechanics are summarized. The corresponding
beam equations are formulated in [9].
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2.1 Balance of linear and angular momentum

The balance law of linear momentum and the mechanical boundary conditions in the electro-elastodynamic
process is given by

∇X ·P+ρ0b̄ = ρ0ü in B, (2)

u = ū on ∂uB, (3)

P ·N = T̄ on ∂σB, (4)

with P the first Piola-Kirchhoff stress tensor, ρ0 the mass density in initial configuration, b̄ the body force
vector, ü the acceleration, ū the prescribed displacement, N the outward unit normal vector and T̄ the
prescribed traction. The local balance of angular momentum reads

FPT = PFT , (5)

in which F is the deformation gradient defined as F = ∂x(X, t)/∂X.

2.2 Maxwell equations

By neglecting the magnetic field, the Maxwell equations and the electrical boundary conditions are given
by

∇X×Ee = 0, ∇X ·D = 0 in B, (6)

φ = φ̄ on ∂φB, (7)

D ·N = Q̄ on ∂DB, (8)

with Ee the electric field, D the electric displacement in the initial configuration, φ the electric potential,
φ̄ the prescribed electric potential and Q̄ the prescribed charges per unit area. The Eq. (6) leads to the
definition of the electric field as the gradient of a scalar electric potential

Ee =− ∂φ

∂X
. (9)

2.3 Electromechanical coupling

By imposing the external electric field on the body of dielectric elastomer, the contractive pressure is
induced and thus the deformation of the body is generated. The electromechanically coupled constitutive
behavior of the DEA is described by the strain energy function Ω(F,Ee) with the additive form

Ω(F,Ee) = Ω
m(F)+Ω

em(F,Ee)+Ω
e(Ee) (10)

with Ωm(F) referring to the purely mechanical behavior, Ωem(F,Ee) referring to the electomechanical
coupling and Ωe(Ee) referring to the pure electric behavior. Accordingly, the constitutive equations are
given by

D =−ρ0
∂Ω(F,Ee)

∂Ee , P = ρ0
∂Ω(F,Ee)

∂F
. (11)
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3 RELATION OF THE BEAM AND CONTINUUM KINEMATICS

To apply the material model Ω(F,Ee) of DEA to the beam, the kinematic variables F and Ee have to be
formulated in terms of the beam strain measures.

3.1 Mechanical kinematics of the beam

As shown in Fig. 1, the deformation of an initially straight beam is distinguished by the initial configura-
tion and the current configuration, where the origin O of the global Cartesian coordinate system is set to
one end of the beam. The body of the beam is described by a family of cross sections. The cross-section
centroids are connected by a curve also known as line of centroids. The arc-length of the line of centroids
in the initial configuration is denoted by s ∈ I ⊂ R. At each point of the curve s ∈ I→ ϕ(s,0) ∈ R3, the
orientation of the cross section is defined by an orthogonal frame di(s,0),(i = 1,2,3).

1

X
O

d1(s, 0)

d2(s, 0)

d3(s, 0)
ϕ(s, 0)

ϕ(s, t)

d2(s, t)

d1(s, t)

d3(s, t)

x(X, t)

Figure 1: Initially straight and deformed configuration of the beam.

The position of a material point on the cross section at s can be described in the initial configuration as

X(Xk,s) = ϕ(s,0)+Xkdk(s,0), k = 1,2. (12)

The deformation gradient at a point (X1,X2,s) in the beam can be written as, see [3],

F(X1,X2,s, t) =
∂x
∂X

=
∂x
∂Xi
⊗di(s,0)

=

[
I+
(

∂ϕ(s, t)
∂s

−d3(s, t)+X1 ∂d1(s, t)
∂s

+X2 ∂d2(s, t)
∂s

)
⊗d3(s, t)

]
Λ(s) (13)

with the rotation tensor Λ(s) = di(s, t)⊗di(s,0) and Λ(s)−1 = Λ(s)T . Since the derivatives in Eq. (13)
are related to the beam strains κ and γ by

∂dk(s, t)
∂s

= κ(s, t)×dk(s, t) = (κ jd j)×dk,(k = 1,2)
∂ϕ(s, t)

∂s
−d3(s, t) = γ(s, t), (14)
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the deformation gradient F in Eq. (13) can be further formulated in terms of the beam strain measures as

F =
[
I+
(

γ(s, t)+κ(s, t)×Xkdk(s, t)
)
⊗d3(s, t)

]
Λ(s) = [I+a(s, t)⊗d3(s, t)]Λ(s) (15)

with a = γ+κ×Xkdk in the current configuration. The determinant of the deformation gradient reads

J = det(F) = 1+a(s, t) ·d3(s, t). (16)

The material time derivative of the location of a material point in the current configuration reads

ẋ(Xk,s, t) = ϕ̇(s, t)+Xkḋk(s, t), (17)

by which the time derivative of deformation gradient can be evaluated with

Ḟ(X1,X2,s, t) =
∂ẋ
∂X

=
∂ẋ
∂Xi
⊗di(s,0)

= Λ̇(s)+
(

∂ϕ̇(s, t)
∂s

− ḋ3(s, t)+X1 ∂ḋ1(s, t)
∂s

+X2 ∂ḋ2(s, t)
∂s

)
⊗d3(s,0). (18)

3.2 Electrical kinematics in the beam

In this work, the electric potential at the point (X1,X2,s) is formulated by the electric potential at the
beam node plus the increments in the directions of dk, which leads to a linear electric potential on the
cross section as shown in Fig. 2. The initial electric potential on the cross section is given by

φ(X1,X2,s,0) = φo(s,0)+X1
α(s,0)+X2

β(s,0) (19)

with φo(s,0) the electric potential at the beam node, α(s,0) and β(s,0) the incremental parameters of the
electric potential in the directions of d1(s,0) and d2(s,0), respectively. According to Eq. (9), the electric
field at (X1,X2,s) in the beam can be computed as

Ee =−∂φ(s, t)
∂Xi

⊗di(s,0)

=−
[

α(s, t)d1(s,0)+β(s, t)d2(s,0)+
(

∂φo(s, t)
∂s

+X1 ∂α(s, t)
∂s

+X2 ∂β(s, t)
∂s

)
d3(s,0)

]
. (20)

4 STRAIN ENERGY FUNCTION FOR THE BEAM

To apply the material models of continuum electromechanics to a beam formulation, the rewriting of
the strain energy function in terms of the beam strains is required, which can be achieved by applying
the kinematic relations introduced in Section 3. The extended Neo-Hookean model for the dielectric
elasticity in [17] is adopted in this work, where the strain energy density is given by

Ω(C,Ee) =
µ
2
(C : 1−3)−µlnJ+

λ

2
(lnJ)2︸ ︷︷ ︸

Neo−Hookean

+c1Ee ·Ee + c2C : (Ee⊗Ee)︸ ︷︷ ︸
Polarization in dielectric material

− 1
2

ε0JC−1 : (Ee⊗Ee)︸ ︷︷ ︸
Free space term in vacuum

(21)
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ϕ(s, t)

φ(X1, X2, s)

Figure 2: Linear distribution of electric potential on a cross section.

with ε0 the vacuum permittivity, c1 and c2 the electrical parameters, λ and µ the Lamé parameters. Apart
from the dielectric elasticity, the viscoelastic effect in the dielectric material is accounted for by means
of the first Piola-Kirchhoff stress Pvis, see [16],

Pvis =
1
2

Jη
(
F−T · ḞT ·F−T + Ḟ ·C−1) , (22)

in which η is the damping parameter.

The strain energy function for the beam corresponding to the continuum model in Eq. (21) can be derived
by integrating Ω(C,Ee) over the beam cross section

Ωb(Γ,K,ε) =
∫

Σ

Ω(C,Ee)dA, (23)

where ε is the strain-like variable conjugated with electric displacement of beam. The area integral is
evaluated with the numerical approach in this work.

5 DISCRETE VARIATIONAL INTEGRATION SCHEME

In this work, the electromechanically coupled beam dynamics is approximated using a constrained dis-
crete variational scheme. The Lagrange-d’Alembert principle for the constrained system reads

δ

∫ T

0

[
L(q, q̇)−gT (q) ·λ

]
dt +

∫ T

0
fext(t) ·δqdt = 0, (24)

with q the configuration, L(q, q̇) the Lagrangian, g the holonomic constraints, λ the Lagrangian multiplier
and fext(t) the external load. By treating the electric potential φo and the incremental variables (α,β) as
the electric degrees of freedom φ =

[
φo α β

]
, the configuration of the beam model is extended to

q =
[
ϕ d1 d2 d3 φ

]T
. (25)

According to the kinematic assumptions in geometrically exact beam, the directors have to fulfill the
orthonormality. The continuous Lagrangian is composed by the kinetic energy T (q̇) and the internal
potential energy V (q) with

L(q, q̇) = T (q̇)−V (q). (26)
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Since the electric variables do not contribute to the kinetic energy, the kinetic energy for the geometrically
exact beam is computed as

T =
∫

l

(
1
2

Aρ |ϕ̇|2 +
1
2

2

∑
i=1

Mi
ρ

∣∣ḋi
∣∣2)ds, (27)

where Aρ is the mass density per reference arc-length and Mi
ρ are the principle mass moments of inertia

of cross section.

For the coupled hyperelastic material in DEA, the internal potential energy is computed by an integration
of the beam strain energy density Ωb in Eq. (23) over the line of centroids

V (q) =
∫

l
Ωb(s)ds. (28)

The external load fext contains all non-conservative loading, such as the gravity and the viscoelastic effect
in this work. Based on the Kelvin-Voigt model in Eq. (22), the non-conservative work contributed by the
viscoelastic effect is given by

W vis =
∫

Ω

Pvis : FdV. (29)

In this case, the external load corresponding to the viscoelastic effect can be formulated as

fvis(q, q̇) =
∂W vis

∂q
=

∫
Ω

∂W vis

∂F
:

∂F
∂q

dV =
∫

l

∫
Σ

Pvis :
∂F
∂q

dAds. (30)

The beam is first spatially discretized with the 1D finite elements. Then the variational integration scheme
(see e.g. [11]) is applied to discretize the variational principle of the dynamic system. In the variational
time integration scheme, the action integral within the time interval (tn, tn+1) is approximated with the
discrete Lagrangian Ld as∫ tn+1

tn
L(q, q̇)dt ≈ Ld(qn,qn+1) = ∆tL(

qn+1 +qn

2
,
qn+1−qn

∆t
), (31)

where the discrete Lagrangian Ld is computed by applying the finite difference approximation to the
velocity q̇ and the midpoint rule to the configuration q, i. e.

q̇≈ qn+1−qn

∆t
, q≈ qn+1 +qn

2
. (32)

To eliminate the constraint forces λ from the system, the null space method, see e.g. [5], is applied. The
discrete Euler-Lagrangian equations can be obtained by taking the variation of the discrete action and
requiring stationarity. The nonlinear equation system is solved by use of the Newton-Rapson algorithm.
In this work, the residual vector and the tangent matrix are derived by using the automatic differentiation
tool CasADi [1].
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Figure 3: Boundary conditions on the beam.

Table 1: Material parameters

ρ λ µ ε0 c1 c2

g/mm3 Mpa Mpa C/V m N/V 2 N/V 2

1 999.8 233 8.854×10−12 5×10−8 1×10−9

6 NUMERICAL EXAMPLE

As a numerical example, a beam fixed at one end is considered to simulate a soft robotic arm holding a
package as shown in Fig. 3. The package is represented by an additional point mass concentrated at the
beam’s free end. The beam has the length l = 0.1mm and a square cross section with width b= 0.005mm.
The material parameters of the dielectric elastomer applied in this work are shown in Table 1.

To conduct a specific task, different deformation modes have to be generated in the robotic arm. Thus,
different electric boundary conditions φi will be imposed on nodes i such that the desired deformations
in the beam can be generated. For instance, the uniaxial contraction can be generated by applying a
constant electric potential on the cross section, i.e. α,β = 0.

In this example, the motion of the beam discretized with 21 nodes is computed with the time step of
1×10−3ms. As shown in Fig. 4(a) and 4(b), the package is fist lifted by the uniaxial contraction of the
beam, where the constant electric potentials φ1 = 8×104V and φ21 = 0V are applied to the beam’s fixed
and free end, respectively, until t = 0.2ms. Then, from t = 0.201ms to the end time, the bending of the
beam is generated by changing the electric boundary conditions to φi = 4×103+3×104X1V (i= 2,4, ...)
and φi = 0V (i = 1,3, ...), which leads to the moving of the package from ground to a desk, as shown in
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Fig. 4(c) and 4(d). In the simulation, the damping effect is imposed by setting η = 0.6 in the viscoelastic
model such that the beam is gradually approaching a steady state.

(a) t = 0ms (b) t = 0.2ms

(c) t = 0.201ms (d) t = 1ms

Figure 4: A soft robotic arm moving a package from the ground to a desk.

7 CONCLUSIONS

In this work, an electromechanically coupled beam model is developed. The proposed formulation of
electric potential allows for different types of the dielectrically induced deformations in the beam, such as
contraction and bending. The damping effect in the motion of the beam is accounted for by introducing
a viscoelastic effect. The effectiveness of the developed beam model for DEA is demonstrated in a
numerical example, where a soft robotic arm holding a package is presented.
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