On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field

Sergio R. Idelsohn · Monica Mier-Torrecilla · Norberto Nigro · Eugenio Oñate

Abstract Heterogeneous incompressible fluid flows with jumps in the viscous properties are solved with the particle finite element method using continuous and discontinuous pressure fields. We show the importance of using discontinuous pressure fields to avoid errors in the incompressibility condition near the interface.

Keywords Heterogeneous fluids · Multi-fluids · Multiphase flows · Incompressible Navier–Stokes equations · Free-surfaces · Interfaces

1 Introduction

The simultaneous presence of multiple fluids with varying properties in external or internal flows is found in daily life, in marine environmental problems, and numerous industrial processes, among many other practical situations. These types of flow are labeled “multi-fluid” or simply “heterogeneous fluids” and they typically exist in different forms depending on their phase distribution. Examples are gas-liquid transport, magma chambers, fluid–fuel interactions, crude oil recovery, spray cans, sediment transport in rivers and floods, pollutant transport in the atmosphere, cloud formation, fuel injection in engines, bubble column reactors and spray dryers for food processing, to name only a few. This demonstrates the large incidence and also importance of multi-fluid flows, which probably occur even more frequently than single phase flows [1].

As a result of the interaction between the different fluid components, multi-fluid flows are rather complex and very difficult to describe theoretically. Despite the practical importance of the problem and the intensive work carried out in the last decade for the development of suitable mathematical and computational models, it is widely accepted that the numerical study of heterogeneous flows is still a major challenge [1].

Computing the interface between two immiscible fluids or the free-surfaces is difficult because neither the shape nor the positions of the domains between the fluids are a priori known. In this kind of flows there are basically two approaches for computing interfaces, which are, using the terminology in [2], interface-tracking and interface capturing. The former computes the motion of the flow via a mixed Lagrangian–Eulerian approach [3] or a space-time approach [4,5], where the numerical domain adapts itself to the shape and position of the interfaces. Standard interface-capturing methods consider both fluids as a single effective fluid with variable properties [6–8]. The interfaces are considered as a region of sudden change in the fluid properties. This approach requires an accurate modeling of the jump in the properties of the two fluids taking into account that the interfaces can move, bend and reconnect in arbitrary ways. Furthermore, prescribing exact boundary conditions in the interface is usually approximated. Non-standard interface-capturing methods have been developed to increase the accuracy in representing the interface, such as the Enhanced-Discretization Interface-Capturing Technique (EDICT) [9,10].
are number of powerful techniques in the interface-tracking category, such as the DSD/SST formulation [4,5], which has been applied to a large number of two-fluid or free-surface flows, and the particle finite element method (PFEM) [11–13], which we focus on here.

In a previous publication [14] the authors solve the numerical problems of a density jump at the interfaces. In this paper the focus is on the numerical solution of a viscosity jump at the interface of two different fluids using the particle finite element method. The need for using a discontinuous pressure across an interface when there is surface tension was also recognized in applying the DSD/SST formulation to free-surface and two-fluid flows [5] and in several interface-capturing applications [15–20].

The layout of the paper is the following. In Sect. 2 the governing equations of heterogeneous fluids are presented together with the boundary and interfacial conditions. Section 3 deals with the main difficulties of the numerical solution of heterogeneous fluids and the techniques proposed to overcome them, which are tested in two numerical examples in Sect. 4.

2 The governing equations

The equations to be solved are the standard Navier–Stokes equations for an incompressible flow in each of the fluid domains with the corresponding boundary conditions and some internal equations at the interfaces between the different fluids.

The momentum conservation equation in each of the fluid domains reads:

$$\frac{D\rho}{Dt} = \frac{\partial \sigma_{ij}}{\partial x_j} + \rho f_i$$

and the mass conservation:

$$D\frac{\rho}{Dt} + \rho \frac{\partial u_i}{\partial x_i} = 0$$

where \(\rho\) is the density, \(u_i\) are the Cartesian components of the velocity field, \(\sigma_{ij}\) the Cauchy stress tensor, \(f_i\) the source term (normally the gravity) and \(\frac{D\phi}{Dt}\) represents the total or material time derivative of a function \(\phi\).

For heterogeneous materials \(\rho\) is a function of the position \(\rho = \rho(x)\). For incompressible flows, \(\frac{D\rho}{Dt} = 0\). Nevertheless the spatial time derivative \(\frac{D\phi}{Dt}\) is not necessarily equal to zero \((\frac{\partial \rho}{\partial t} \neq 0)\). This is the reason why heterogeneous materials are more easily solved with Lagrangian formulations.

The constitutive equations for Newtonian fluids are:

$$\sigma_{ij} = \tau_{ij} - \rho \delta_{ij} = \mu \left(\frac{\partial u_j}{\partial x_j} + \frac{\partial u_i}{\partial x_i} \right) - \rho \delta_{ij}$$

where \(\mu\) is the viscosity and \(p\) the pressure assumed to be positive in compression.

Boundary and interface conditions

The standard boundary conditions for the Navier–Stokes equations are:

$$\tau_{ij} n_j - p n_i = \bar{\sigma}_{ni} \quad \text{on} \quad \Gamma_\sigma; \quad (4a)$$

$$u_i n_i = \bar{u}_n \quad \text{on} \quad \Gamma_n; \quad (4b)$$

$$u_i t_i = \bar{u}_t \quad \text{on} \quad \Gamma_t; \quad (4c)$$

where \(n_i\) and \(t_i\) are the components of the normal and tangential vectors to the boundary.

On the internal interfaces \(\Gamma\) the conditions are:

$$n_i [\sigma_{ij}] n_j = \gamma \kappa \quad (5a)$$

$$t_i [\sigma_{ij}] n_j = 0 \quad (5b)$$

$$\|u\| = 0 \quad (5c)$$

where \([\cdot]\) represents the variable jump at each side of the interface, \(\gamma\) is the surface tension coefficient, and \(\kappa\) the curvature of the interface. These boundary conditions express that the velocities and the tangential stresses are continuous across the interface, while the normal stresses are only continuous when the surface tension is neglected.

3 The main difficulties of the numerical solution of heterogeneous fluids

It is well known that one of the main advantages of many of the numerical methods (i.e. FEM, FVM, FDM, etc) is the easy way to introduce a variation in the physical properties of the materials involved. For instance, each element in the FEM may have a different viscosity and this does not change the mathematical formulation of the method.

However, for immiscible incompressible flows, there are some particular facts than can introduce large errors in the simulation that make the results useless. These main difficulties are:

1. a correct definition of the interface position
2. stabilization errors at the interface where density jumps occur
3. pressure jumps at the interface where viscosity jumps are present
4. surface tension at immiscible interfaces

Some of these aspects and the corresponding numerical solution have been previously discussed by the authors in [14] and in many other references, e.g. [4,16,21,22]. In particular many of the problems included in points 1 and 2 have
been solved in [14]. For this reason, only a brief description of points 1 and 2 will be exposed here. The objective of this paper is to discuss more deeply points 3 and 4.

3.1 Correct definition of the interface position

The main difference between an homogeneous fluid and an heterogeneous one is the presence of internal interfaces separating the different fluids. To know exactly where the interfaces are located is a key aspect for the accuracy of the algorithm to be employed. Two kinds of approaches may be used: (a) interface-tracking methods, in which the mesh follows the interfaces, and (b) interface-capturing methods (like level-set) in which the mesh is fixed in time and the interfaces move through the element domain. The first one has the advantage of providing an easy representation of interface jumps like pressure or pressure gradients. The main disadvantage is the need of frequent mesh updates. On the other hand, interface-capturing methods have difficulties in representing internal gradient jumps properly. In all the examples presented in this paper, interface-tracking techniques based on the particle finite element method will be used. For a more detailed description of the technique used to follow the interfaces, readers are referred to [14].

3.2 Stabilization at interfaces with density jumps

For incompressible flows using equal order velocity-pressure formulation stabilization procedures are needed. Many stabilization procedures have been proposed in the literature. The most common is the pressure gradient projection (PGP) based method [23, 24], where the pressure gradients are projected on a continuous field and the difference between the pressure gradients and their own projection is used as stabilization contribution:

$$\frac{\partial}{\partial x_i} \tau \left(\frac{\partial p}{\partial x_i} - \pi_i \right)$$

(6)

The term in brackets is interpreted as an approximation of the residual of the momentum equations and π_i is a continuous function obtained from the projection of the pressure gradient on the velocity field and τ is a stabilization parameter.

In order to take into account the jumps at the interfaces for the density, in [14] the π_i functions are defined as projections of the pressure gradients divided by $\rho(x)$. Thus, the stabilization term becomes:

$$\frac{\partial}{\partial x_i} \tau \left(\frac{\partial p}{\partial x_i} - \rho(x)\pi_i \right)$$

(7)

Expression (7) has been proved to be a better PGP stabilization term for heterogeneous fluid with large jumps in the density properties.

3.3 Pressure discontinuity at interfaces with viscosity jumps

Incompressible fluids need the introduction of the pressure variable because the solution cannot be obtained only as a function of the velocity field. In order to improve the efficiency of the method, standard approximations work with C^0 pressure functions which improve the stabilization terms with a minimum number of degrees of freedom [11]. However, pressure is a physical discontinuous function in heterogeneous fluids in which there are jumps in the viscosity parameter. The use of a continuous pressure field is an approximation that introduces errors in the incompressibility condition that in certain cases produces unacceptable results. One of the main goals of this paper is to show the importance of using a discontinuous pressure field instead of a continuous one at least at the interface level.

The value of the pressure jump at the interface between two different fluids has been derived in [25]:

$$\| p \| = 2\mu \frac{\partial u_n}{\partial n} - \gamma \kappa$$

(8)

Expression (8) shows that the jump in the pressure field is not only a consequence of the surface tension, but also occurs when $\gamma = 0$. The jump in the pressure field in these cases is a function of the viscosity jump and the normal derivative of the normal velocity to the interface, i.e.:

$$p^+ - p^- = 2(\mu^+ - \mu^-) \frac{\partial u_n}{\partial n}$$

(9)

The main contribution of our work is to show with numerical examples the importance of taking into account the pressure discontinuity at interfaces with viscosity jumps, specially in terms of local mass conservation.

3.4 Surface tension at immiscible interfaces

The existence of two different fluids with different intermolecular attraction forces put in contact introduces the physical phenomena of surface tension. Surface tension is proportional to the curvature of the interface κ and a parameter γ that depends on the materials involved and has to be measured experimentally.

Surface tension effects are normally added in the numerical simulation as concentrated forces f_i normal to the interface in the momentum equation:

$$f_in_i = -\gamma \kappa$$

(10)

and, as mentioned before, they induce the following jump in the pressure field:

$$p^+ - p^- = -\gamma \kappa$$

(11)
The importance of a correct simulation of the pressure jumps will be illustrated in the numerical examples presented in the next section.

4 Numerical examples

One of the questions that arises about the above theoretical results is why this discontinuous behavior of the pressure at the interface, in absence of surface tension, has not been usually taken into account. Pressure jumps have been previously treated connected with surface tension effects, see [15–20], and references therein. For example, a very common and well analyzed problem with a definite interface between fluids is the sloshing of a free surface separating water and air. Typically in this problem it is assumed that the pressure at the free surface is in equilibrium with the atmospheric pressure (the pressure in the air) and this assumption violates the results found above. The answer to this question is that being the viscosities of air and water so small, the pressure jump is also small, regardless the convective acceleration magnitude of the free surface, and therefore this jump is usually unnoticed. Fluid flow with different and high viscosities may be found in several applications, for example in metal extrusion problems, magma flow simulation or fluid-structure interaction problems where the structure is modeled as a very viscous fluid. However, it is important to verify the theoretical result of (8) in practical examples. Although there are several problems where two fluids with very different viscosities are separated by an interface, it is not obvious to find an example where \(\frac{\partial u}{\partial x} \) is relevant. In this section we propose two benchmark examples for which an analytical solution exist and that may serve as good tests to assess the ability of a given numerical method to represent the pressure discontinuity at the interface between two different fluids. Both examples consist in the extrusion against a wall of a rectangular domain composed by two fluids. In the first example the mesh is fixed and the solution stationary, while in the second example the mesh deforms in time with the domain. We will investigate the pressure solution and the volume conservation around the interface when continuous and discontinuous pressure discretizations are used. Table 1 shows an overview of the physical parameters taken in the simulations.

4.1 Fixed-mesh example

Figure 1 shows the definition of the first example. It deals with a rectangular 2D domain with a flow entering with velocity \(\bar{u}_x = 1 \text{ m/s} \) from the left boundary and flowing to the right where it finds an impermeable slip wall that deviates the flow upwards and downwards. The symmetry axis \((y = 0) \) serves as a material curve separating fluid 1 from fluid 2. Even though we have solved the problem with different cases of viscosities with similar conclusions, for brevity reasons here we include only one of the most relevant cases where the viscosities are \(\mu_1 = 5 \) and \(\mu_2 = 1 \text{ Pa s} \) for the two different fluids and they have the same density value \(\rho_1 = \rho_2 = 1 \text{ kg/m}^3 \).

The analytical solution for each region may be found as:

\[
\begin{align*}
\frac{\partial u}{\partial t} + \frac{\partial (u u)}{\partial x} + \frac{\partial (u v)}{\partial y} &= f, \\
\rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= f, \\
\rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= f,
\end{align*}
\]

with \(L_x = 1 \text{ m} \) the domain length in the \(x \) direction and \(L_y = 0.5 \text{ m} \) in the \(y \) direction.

Then, \(\frac{\partial u}{\partial x} = -\frac{1}{L_x} + \frac{1}{L_x} = 0 \).

In order to compute the pressure field using the momentum balance Eq. (1) we note that the acceleration is \(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \) with

\[
\frac{\partial u_i}{\partial x_j} = \begin{bmatrix} \frac{\partial u_x}{\partial x} & \frac{\partial u_x}{\partial y} \\ \frac{\partial u_y}{\partial x} & \frac{\partial u_y}{\partial y} \end{bmatrix} = \begin{bmatrix} -\frac{1}{L_x} & 0 \\ 0 & \frac{1}{L_x} \end{bmatrix}
\]

and

\[
\frac{\partial u_i}{\partial x_j} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \end{bmatrix} = \begin{bmatrix} -\frac{L_x}{L_x^2} & 0 \\ 0 & \frac{L_y}{L_y^2} \end{bmatrix}
\]

Table 1 Overview of the examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Solution</th>
<th>Mesh</th>
<th>(\mu_1)</th>
<th>(\mu_2)</th>
<th>(\rho_1)</th>
<th>(\rho_2)</th>
<th>(\gamma)</th>
<th>(\bar{u}_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Steady</td>
<td>Fixed</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4.1</td>
<td>Unsteady</td>
<td>Moving</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Therefore, the pressure gradient is such that compensates this force term,
\[
\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} + \frac{1}{\rho} \frac{\partial \rho}{\partial x_i} = 0, \quad \frac{\partial u_i}{\partial t} = 0
\]
\[
\implies \frac{\partial p}{\partial x} = -\rho \frac{x - L_x}{L_x^2}, \quad \frac{\partial p}{\partial y} = -\rho \frac{y}{L_y^2}
\]
\[
\implies p = p(x, y) = \frac{\rho}{L_x^2} \left(xL_x - \frac{1}{2}(x^2 + y^2) \right) + C \quad (14)
\]

The above velocity vector field (12) with the pressure field (14) is a solution for the Navier-Stokes problem for each region: \(\rho \frac{\partial u_i}{\partial t} = \frac{\partial}{\partial x_j} \tau_{ij} - \frac{\partial}{\partial x_i} p + \rho f_i\). Due to the fact that a linear velocity field is proposed as the steady solution of this problem, \(\tau_{ij}\) is constant with no contribution on the right hand side.

Finally, we have to match both solutions at the interface and verify the stress equilibrium there. We found that the pressure at the interface is discontinuous, with a jump given by (8). For this problem the pressure jump is
\[
p^+ - p^- = 2(\mu^+ - \mu^-) \frac{\partial u_n}{\partial n} = 2(\mu_1 - \mu_2) \frac{1}{L_x} \quad (15)
\]

In the following figures we show the pressure along a vertical cut line placed at \(x = 0.5\) for both a continuous and a discontinuous pressure approximation. For brevity we have not included here neither results with different viscosity values, nor the influence of different stabilization approaches. Nevertheless the conclusions are the same as before: 1. a sharp definition of the discontinuous pressure field, against a diffusive behavior of the pressure field requiring several cell layers to capture the pressure jump; and 2. a better fulfillment of the incompressibility constraint for the discontinuous pressure approach than for a continuous pressure formulation.

4.2 Moving-mesh example

Next we consider an example with moving-mesh, gravity and where the bottom free-surface is fixed \((u_y = 0\) at \(y = 0\), see Fig. 4. All walls are considered to be slip. Identical conclusions as in the previous example will be obtained concerning the pressure jump.

In this example, due to the choice of the physical parameters, viscous effects dominate over inertial ones, i.e. the quadratic pressure coming from the unsteady terms of the Navier–Stokes equations and described in the previous

Fig. 2 \(\mu_1 = 5, \mu_2 = 1, \rho_1 = \rho_2 = 1\). Pressure cut at \(x = 0.5\) for continuous versus discontinuous pressure approximations, compared with the analytic solution.

Fig. 3 \(\mu_1 = 5, \mu_2 = 1, \rho_1 = \rho_2 = 1\). Volume variation at \(x = 0.5\) for continuous versus discontinuous pressure approximations.
The following numerical tests will be solved to compare the solution using continuous and discontinuous pressure approximations:

1. Jump in the viscosity, with equal density and no surface tension
2. Equal density and viscosity, with surface tension
3. Jumps in the viscosity and density, including surface tension

In all these cases we will compare the pressure fields obtained and the volume variation of the incompressible fluid along a vertical cut. Figure 6 depicts the kind of mesh deformation we have encountered in all the three tests. Figure 6a shows the mesh at time $t = 0$ and Fig. 6b and c the final mesh at $t = 2$ s due to the extrusion effect. Figure 6b corresponds to the solution with discontinuous pressure, while Fig. 6c shows the approximation with the continuous pressure field. One can easily distinguish the “not divergence-free” solution (Fig. 6c) close to the interface for the continuous pressure approximation.

It is important to remark that linear shape functions for velocity and pressure (P_1/P_1 elements) have been used for the calculations. In the discontinuous pressure results, as the interface is tracked with the moving mesh and lies at element edges, we have duplicated the pressure degrees of freedom at the interface nodes to allow for the pressure jump.

The volume variation we use to quantify $\frac{\partial u_i}{\partial x_i}$ in the following moving-mesh examples has been computed as $\varepsilon_v = \frac{Vol^n - Vol^0}{Vol^0}$, where Vol^n is the area associated to a node at time n (Fig. 7).

Example 4.2.1 Jump in the viscosity, equal density, no surface tension

In this case the physical parameters used are: $\mu_1 = 1$, $\mu_2 = 10$, $\rho_1 = \rho_2 = 1$, $\gamma = 0$. Figure 8 shows the good agreement of the discontinuous pressure solution against the exact value, while the continuous pressure approximation leads to an excessive diffusive behavior. Figure 9 plots the error in the volume conservation showing a similar conclusion as in the previous example.
Fig. 6 Mesh deformation:
\(a \) initial mesh, \(t = 0 \) s; \(b \) mesh at \(t = 2 \) s and discontinuous pressure; \(c \) mesh at \(t = 2 \) s and continuous pressure showing a not divergence-free solution around the interface.

Fig. 7 Area associated to a node

Fig. 8 \(\mu_1 = 1, \mu_2 = 10, \rho_1 = \rho_2 = 1, \gamma = 0 \). Pressure cut at \(t = 2 \) s and \(x = 0.3 \) for continuous versus discontinuous pressure approximations, compared with the exact solution.

Example 4.2.2 No jumps in the density and viscosity but with surface tension

The weak form of the Navier–Stokes equations already includes the interfacial condition (5a) as a natural boundary condition in the case of no surface tension. In interfaces where the surface tension is present the following surface force must be computed: \(f_i n_i = -\gamma \kappa \). In order to avoid the problems of evaluating the curvature and to have an analytical solution to compare the results with, we will consider a fictitious tension for planar surfaces [20]: \(f_i n_i = -\gamma \). In this example the normal to the interface is taken as \(\mathbf{n} = (0, -1) \).

In interface-capturing methods, the non-alignment of the interface with the mesh causes severe difficulties in the discretization of this localized surface tension force and spurious velocities appear if pressure is not allowed to be discon-
Fig. 10 Vertical velocity field at $t = 1s$ for continuous pressure approximation. a Case with viscosity jump. b Case with surface tension.

$\mu_1 = 1, \mu_2 = 10, \rho_1 = \rho_2 = 1, \gamma = 0$. b $\mu_1 = \mu_2 = 1, \rho_1 = \rho_2 = 1, \gamma = 3$

In order to investigate the influence in the velocity field of the pressure jump due to different viscosities and to the surface tension, we have set the viscosity, the density and the surface tension force to have an equal jump. We know that $\Delta p = 2(\mu_2 - \mu_1) \frac{\partial u_n}{\partial n} + \gamma$, then for the following parameters:

case (a) $\mu_1 = 1, \mu_2 = 10, \rho_1 = \rho_2 = 1, \gamma = 0$

one obtains $\Delta p = 3$ at $t = 2s$.

On the other hand, for

case (b) $\mu_1 = \mu_2 = 1, \rho_1 = \rho_2 = 1, \gamma = 3$

one also has $\Delta p = 3, \forall t$.

Figure 10a and b shows the velocity results for the continuous pressure approximation. In both cases the pressure profiles are quite similar (Fig. 11), but in the case with surface tension, the non-physical velocities lead to much larger volume variations (Fig. 12). All these difficulties are avoided using a discontinuous pressure approximation (case (a) in Example 4.2.1 and Figs. 8 and 9, and case (b) in Figs. 11 and 12).

Example 4.2.3 Jumps in the viscosity and density, including surface tension

A density jump at the interface does not introduce a jump in the pressure field but in the pressure gradient. In this case accurate results can only be achieved with a discontinuous pressure gradient in the stabilization term at the interface [14] as explained in Sect. 3.2.

In the following example, we consider the case where a jump in both the pressure field and also in the pressure gradient is needed to obtain accurate results. We introduce now a jump in the viscosity, in the density and also surface tension:

$\mu_1 = 1, \mu_2 = 10, \rho_1 = 1, \rho_2 = 10, \gamma = 5$. Figures 13 and 14 respectively show the pressure profile and the volume variation along $x = 0.3$ at time $t = 2s$. The continuous pressure solution shows a volume variation over 15% while
Incompressible fluid flows cannot be solved only as a function of the velocity field. They need the introduction of the pressure field as main unknown. This pressure field must satisfy the Babuska-Brezzi condition in order to avoid pressure oscillations. The most efficient way is to introduce stabilized continuous pressure fields of the same order of approximation as the velocity field. Nevertheless, continuous pressure fields are sometimes non-physical. This is the case for heterogeneous fluids with jumps in the viscous properties or surface tension. In these cases the introduction of discontinuous pressure approximations, compared with the exact solution in the discontinuous solution the variation is almost zero, as the divergence-free condition requires.

5 Conclusions

Incompressible fluid flows cannot be solved only as a function of the velocity field. They need the introduction of the pressure field as main unknown. This pressure field must satisfy the Babuska-Brezzi condition in order to avoid pressure oscillations. The most efficient way is to introduce stabilized continuous pressure fields of the same order of approximation as the velocity field. Nevertheless, continuous pressure fields are sometimes non-physical. This is the case for heterogeneous fluids with jumps in the viscous properties or surface tension. In these cases the introduction of discontinuous pressure approximations, compared with the exact solution in the discontinuous solution the variation is almost zero, as the divergence-free condition requires.

References

Fig. 13 \(\mu_1 = 1, \mu_2 = 10, \rho_1 = 1, \rho_2 = 10, \gamma = 5 \). Pressure cut at \(t = 2 \) s and \(x = 0.3 \) for continuous versus discontinuous pressure approximations, compared with the exact solution.

Fig. 14 \(\mu_1 = 1, \mu_2 = 10, \rho_1 = 1, \rho_2 = 10, \gamma = 5 \). Volume variation at \(t = 2 \) s and \(x = 0.3 \) for continuous versus discontinuous pressure approximations, compared with the exact solution.

Acknowledgments M. Mier-Torrecilla thanks the Catalan Agency for Administration of University and Research Grants (AGAUR), the European Social Fund and CIMNE for their support. N. Nigro thanks the financial support received from “Consejo Nacional de Investigaciones Científicas y Tecnicas” and “Universidad Nacional del Litoral”. He also thanks the International Center for Numerical Methods in Engineering for inviting him to Barcelona to work in this topic.

Register for free at https://www.scipedia.com to download the version without the watermark