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On the ‘most normal’ normal
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SUMMARY

Given a set of normals in R3, two algorithms are presented to compute the ‘most normal’ normal. The
‘most normal’ normal is the normal that minimizes the maximal angle with the given set of normals.
A direct application is provided supposing a surface triangulation is available. The set of normals may
represent either the face normals of the faces surrounding a point or the point normals of the points
surrounding a point. The first algorithm is iterative and straightforward, and is inspired by the one proposed
by Pirzadeh (AIAA Paper 94-0417, 1994). The second gives more insight into the complete problem as
it provides the unique solution explicitly. It would correspond to the general extension of the algorithm
presented by Kallinderis (AIAA-92-2721, 1992). Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Surface triangulations are used in many computer applications. Point normals are usually required
in visualization, medical applications, boundary conditions in finite volume and elements solvers,
free surface problems, tangent plane computations, curvature estimations, etc. Various ways to
obtain such point normals are well known. In the context of a RANS mesh generator, where prisms
are extruded in one sweep from the surface triangulation along the point normals [1, 2], a fast
and accurate computation of the normal is required, particularly along corners and ridges, where
the visibility cone could be almost non-existent. In this kind of applications, the ‘best’ normal is
the normal that minimizes the maximal angle with the face normals surrounding a given point. It
must be noted, however, that this ‘best’ normal is the best one if considered independently of all
the other normals. A smoothing on the whole surface triangulation may be necessary to obtain the
best global normals, as opposed to considering only a subset of normals.
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Although some research on this subject has been done in the past [3, 4], these algorithms do not
rely on any theoretical background to prove that the ‘most normal’ normal is obtained. It is well
known that the mesh generation of very anisotropic elements with a ratio of order O(104–106)
gives rise to many problems, as it stresses the difficulty to take numerical decisions with contexts
of such different orders of magnitude. Therefore, an accurate algorithm to compute the ‘most
normal’ normal seems to be missing, at least in this field. This is what this paper tries to remedy.

The organization of this paper is as follows. In the first part, a short review of previously
proposed normal computations is given. Then, a straightforward iterative algorithm is proposed to
give a first idea of the problem at hand. In the third part, a direct algorithm is designed to find the
‘most normal’ normal. Finally, some examples and timings are given.

2. NORMAL SMOOTHING

The simplest and most commonly used normal smoothing consists in taking the average of all the
face normals connected to a given point and normalizing it. This is equivalent to take a least-square
approach of the normal computation. Various straightforward variations consist in taking a different
weighted average of the face normals according to Frey and George [5]:

• weighted with the surface area of each triangle;
• weighted with the inverse of the surface area;
• weighted with the angle made by the two edges connected in the point under consideration.

However, all these possibilities may fail to produce the ‘most normal’ normal because they are
not associated with any theoretical optimum. A simple example is given by Pirzadeh [3], where
the trailing edge of a wing is meshed with four elements on the upper part and three on the lower
part of the wing, producing an unbalanced weighting.

A different approach was followed by Engelman et al. [6], where the normals were computed
to satisfy the discrete incompressibility condition in a finite element context. The normals are then
fully imposed on the mass conservation criterion, not considering the geometrical aspect of the
boundary.

In [7], Connell and Braaten advocate the use of the normal of the analytic surface instead of
relying on the discrete surface. As noted, it is certainly more reliable for coarse meshes. However,
the geometrical model could not be available, substituted by sterereolithography data as noted in
Ito and Nakahashi [8]. Moreover, as problems usually occur at patch intersections, averages of the
geometrical surfaces are necessary, as discussed by Connell et al. Therefore, not much has been
gained. Finally, due to mappings from 2D to 3D or small angles, it is possible that the geometrical
surface itself be distorted. As the prisms will be extruded from the discrete surface exclusively,
there are many other advantages to rely on it.

Wang et al. solve the Eikonal equation in [9] to offset the surface in the direction of the gradient
of the solution. They also propose a classification of offset methods based on a direct or indirect
approach if the offset technique relies on the resolution of a partial differential equation (PDE)
or not. However, an extra grid is needed to solve this PDE, which may dramatically increase the
computer resources.

A first improvement of the pure geometrical approach would consist in creating discrete patches
around a point by evaluating the dihedral angle of the faces carried by all the edges connected
to this point. Given a user-defined threshold, the discrete ridges of the geometry are then defined
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(see Löhner [10] and Borouchaki et al. [11]). These ridges are the local boundaries of the discrete
patches surrounding the point. The averaging process is then performed for each discrete patch,
independently of the number of faces included in each patch. However, the averages may not as
well be optimal.

A notable improvement was proposed in the context of the RANS gridding by Kallinderis and
Ward [4], based on the visibility cone of the each point. The algorithm consists in choosing the
pair of normals which produces the largest angle, to take a plane bisector of this faces, to limit the
visibility on this plane by projecting the other faces on this plane, and finally to take the bisector
of the angle created by the edges which limit at most the visibility in this plane. This normal is
always valid if the faces allow it. However, no guarantee is given that the method produces the
‘most normal’ normal. It is actually not true in general.

Finally, Pirzadeh [3] proposed an iterative method relying on a predictor corrector basis to give
the ‘most normal’ normal. No general convergence criterion is given. It is not obvious that all the
computed coefficients will remain positive.

3. A STRAIGHTFORWARD ITERATIVE ALGORITHM

Inspired by the algorithm proposed by Pirzadeh [3], an iterative version was developed to find the
‘most normal’ normal. Weights are given to each face normal depending on the angle created with

Figure 1. An iterative algorithm for computing the ‘most normal’ normal.
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the current normal. If the angle is high, more weight is given to the normal. Given the normals
Ni , i=1,n, the whole procedure consists in finding Np and is described in Figure 1.

The weights are always positive as they are fractions of angles, and lesser or equal to one due to
the normalization step. Apart from the convergence speed, which will be considered in Section 5,
a drawback of the algorithm is the repeated necessary use of the arccos function, which is expensive.
A shift of the scalar product values from [−1 :1] to [0 :1] could be a remedy but has not been
followed here.

4. THE DIRECT APPROACH

In this section, the approach followed is to find explicitly the normal that minimizes the maximal
angle given a set of normals. Some questions arise from the previous algorithm. Is it necessary
that all the weights be positive? And does the ‘most normal’ normal belong to the visibility cone?
Some characteristic sets of the problem must be firstly introduced.

Given Fp the set of faces around point P with their respective normal N j , j ∈Fp, the visibility
cone at point P is defined by Kim et al. [12] as

{M ∈R3 |−→PM·N j>0, ∀ j ∈Fp} (8)

Another cone playing an important part is the normal cone defined as

{M ∈R3 |−→PM=� jN j , � j�0 ∀ j ∈Fp} (9)

Both cones are duals in the sense that, according to Yamaguchi [13], the faces of the visibility
cone are normals to the edges of the normal cone and the faces of the normal cone are normals
to the edges of the visibility cones. Denoting by Ep the set of edges Ui of the visibility cone, the
dual definition of the visibility cone becomes:

{M ∈R3 |−→PM=�iUi , �i�0 ∀i ∈Ep} (10)

and the one of the normal cone becomes:

{M ∈R3 |−→PM·Ui>0, ∀i ∈Ep} (11)

so that the duality is highlighted. Figure 2 illustrates in two dimensions the visibility and normal
cone around point P in a convex situation. In this particular case, the visibility cone is contained
in the normal cone. The normal cone is convex and infinite, but as only the directions matter, the
important features are located at the intersection between the normal cone and the sphere of radius
one due to the normalization of the vectors. This intersection represents a curved convex polygon.
As the curvature is constant on the sphere, the length of a curved side between two normals is
equal to the angle created by these normals, the radius being equal to one. Hence, our initial
problem of finding the normal that minimizes the maximal angle given a set of normals is shifted
to the problem of finding a point inside (not necessarily strictly) the convex-curved polygon on
the surface of the sphere that minimizes the maximal distance from this point to the end point of
the normal vectors different from P .

In the plane, the problem of finding the point that minimizes the maximal distance from a
set of points is classical and has a long history (see [14, p. 248]). It is sometimes called the
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Figure 2. The visibility cone carried by vector Ui in particular and the normal cone carried by
vector Ni in particular around point P , surrounded by faces BP and PA in two dimensions

with point M inside the visibility cone.

facility location problem or the minimum spanning circle problem. Its solution consists in finding
the smallest circumscribed circle to the plane convex polygon created by the boundary of the
convex hull of the set of points. A naive but straightforward version of the algorithm is given by
Papadopoulos [15] in the linear fatigue context running in O(n4), where n is the number of given
points. An algorithm is given by Megiddo [16] that computes in linear time the smallest circle.
However, for the application at hand, the faces surrounding a point or the points surrounding a
point are expected to be between 4 and 8 so that it is difficult to beat the naive algorithm for such
small inputs. The main result relies on the fact that the smallest circumscribed circle to a plane
polygon must touch either two or three points [17]. It is then straightforward to build all the circles
created by all the combinations of two and three points and pick the one which contains all the
other points with the smallest radius. An important property of the smallest circle is recalled:

Lemma 4.1
The smallest enclosing ball of a set of points S has its center lying in the convex hull of at most
three points of S and is unique.

The proof is given in Elzinga and Hearn [18], and relies on the Kuhn–Tucker conditions [19]
of the associated convex programming problem.

Coming back to the 3D problem on the surface of the sphere, it was seen before that the distances
are angles due to the constant curvature on the sphere. Therefore, the point that minimizes the
maximal distance on the sphere will trivially minimize the maximal angle, which is exactly what is
sought. The algorithm in the plane is straightforward to extend on the sphere surface. In particular,
Lemma 4.1 is directly inherited. Figure 3 displays the minimum circumcircle for point P with its
center C , PC being the ‘most normal’ normal, and its radius R with some normal N j . Only two
extreme normals N1 and N2 have been depicted for the sake of clarity. The center of an edge is
the extremity of the normed bisector of the angle made by an edge, and the center of the circle
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Figure 3. The smallest circumscribed circle around point C for point P .

Figure 4. Computing the circles created by the diameter of all pairs of points.

made by three vectors is the extremity of the vector which gives the same scalar product with
the three vectors forming the three points. For the sake of completeness, full details of the naive
algorithm are given, reordering efficiently the sequence of computation. As seen before, it mainly
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Figure 5. Computing the circles created by all triples of points.

consists in two parts, the first part evaluating the circles created with two points and the second
part computing the circles created with three points. Given the normals Ni , i=1,n, the first part
consisting in finding all the circles with two points is displayed in Figure 4. The second part
consisting in finding all the circles with three points is described in Figure 5. It may be noticed
that if a circle with two points is found to enclose all the points after the first part, those two points
forming the diameter of the cloud of points, then this is the smallest circumscribed circle as, in
the plane, all the triangles formed by a third point inside this circle and this diameter will then be
obtuse with their circumscribed circle having a larger radius, supposing that it also encloses all
the points.

When computing the center of the circle, which is the vector with the same scalar product with
vectors Ni , N j , and Nk , an expression like r xi j means

r xi j =(Ni )x−(N j )x (21)

Copyright q 2007 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2008; 24:1641–1652
DOI: 10.1002/cnm



1648 R. AUBRY AND R. LÖHNER

Equations (12)–(17) give the vector producing the same scalar product for three given vectors. As
two vectors only differing by the orientation are solutions of this problem, orientation is checked
to consider only the one which has a positive scalar product with the three other vectors. The
monotony of the arccos function has been used to compare scalar products instead of angles. As
all the algorithms dealing with circle computations, some tolerances must be introduced to handle
multiple cospherical point configurations. The input data can be checked during the first part by
verifying that no two normals are opposed. It should also be noticed that the denom term chosen is
just one of nine possible permutations, three on the coordinates and three on the triplet of points.
A robust implementation should take these permutations into account.

Finally, the relevant lemma for the application at hand is given:

Lemma 4.2
The ‘most normal’ normal belongs to the visibility cone.

Supposing that the input is valid, all the pairs of faces surrounding the point make an angle
strictly lesser than �. In case of two extreme faces, the ‘most normal’ normal procedure creates
a vector that divides this angle by two. As the largest angle between these extreme faces should
be less than �, the largest angle between the ‘most normal’ normal and each of the extreme faces
is less than �/2 so that it belongs to the visibility cone. The same idea applies for the case of
three extreme faces. It was then valid to find a representation of the ‘most normal’ normal as a
combination of the set of normal with positive coefficients. It is now easy to see that the algorithm
proposed by Kallinderis and Ward [4] does not in general produce the ‘most normal’ normal.

5. NUMERICAL EXAMPLES

Two examples have been chosen to compare the timing and robustness of the proposed algorithms.
Figure 6 illustrates a detail of an hypersonic flyer where two very convex parts converge with
two very concave parts on the bottom of the flyer. Some faces are almost coplanar. The face
normals are displayed with the ‘most normal’ normal. Figure 7 shows a detail of the normals. The
most vertical normals are the one of the three upper faces. Then the normals of the three lower
faces appear, almost superimposed. Then the ‘most normal’ normal is displayed. Finally, the most
horizontal normal corresponds to the face which presents a cusp. Both algorithms were tested on
the supersonic flyer presenting many convex and concave ridges and corners. The surface mesh
contains 121×103 points and five iterations were performed. Computations were made on an Intel
Pentium 4 HT with Suse 9.0. For the standard smoothing, the whole process requires 1 s. The
algorithm of Section 3 is rather slow. Almost 300 iterations are necessary most of the time to
converge to a precision of 10−4 on the angle difference. The value of the relaxation seems to play
no influence on the convergence. Relying on the above discussion, it is to be expected that points on
the same circle will slow down convergence. Furthermore, beyond a convergence criterion of 10−4,
convergence is not reached. The whole process requires 14 s for this tolerance. The algorithm of
Section 4 gives the ‘most normal’ normal explicitly. Even though the naive algorithm is in O(n4)
for each point, so O(n5) globally, the number of points surrounding points or faces surrounding
points is bounded, giving a global linear complexity in the application considered. As the coding
is straightforward, it is the algorithm of choice, giving always as good or better results that the
iterative version. The whole process requires 8 s.
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Figure 6. A ‘most normal’ normal at a cusp point on an hypersonic flyer.

Figure 7. Detail of the normals with the ‘most normal’ shown by the arrow.

The second example is a Micro Tactical Expandable Flyer (MITE) [20] displayed in Figure 8.
The surface mesh contains 109×103 points. Various intersections of concave and convex ridges
make the ‘most normal’ normal computation difficult. The example displayed in Figure 8 shows
the intersection of a concave ridge with a convex ridge. On the convex ridge, multiple normal
faces are used, as explained in [2]. However, as the ridge ends, a cusp point is created, which
is also connected to a concave ridge. The cusp point is pointed by an arrow in Figure 8. The
multiple normals are displayed at the neighbor of the cusp point along the convex ridge and the
curved concave ridge is also depicted. The ‘most normal’ normal clearly minimizes the maximal
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Figure 8. A ‘most normal’ normal at a concave/convex point on a MITE flyer.

angle with all the first-order neighboring face normals. The timings are similar to the supersonic
flyer. For the whole process, 7 s are required for the ‘most normal’ normal computation for the
same iteration number as before, while 13 s are needed for the iterative version. As before, no
convergence is observed for some points beyond a convergence criterion of 10−4.

Even if the previous algorithm is expected to behave linearly for the application in mind, much
more operations are involved than in a standard normal smoothing as shown by the difference in
CPU time. It must be noted, however, that all the operations are performed on the neighboring
normals plus some temporary variables. It is advisable to first copy all the neighboring normals
in a small array, and then to work on this array, minimizing the cache misses. An immediate
improvement of the previous algorithm consists in first computing the standard smoothed normal,
evaluate the deviation with the other normals, and only if the maximal deviation is higher than a
given threshold, activate the ‘most normal’ normal procedure. This idea is motivated by the fact
that it is expected that cusp, ridge, and corner points represent a small fraction of the total point
surface, the rest of the surface being smooth. With this improvement, only 3 s are needed for the
hypersonic flyer for a conservative threshold of 0.95 on the scalar product for the whole procedure,
which confirms that the ‘most normal’ normal procedure is triggered only for few configurations.
Similar results are obtained with the MITE.

6. CONCLUSION

Two algorithms have been given to compute the normal that minimizes the maximal angle given
a set of normals. The algorithm of Section 3 is original, iterative and was found slow in practice.
The algorithm of Section 4 is due to the shifting of the problem to the smallest circumscribed
circle of the concave polygone formed by the extreme points of the normals in the plane, made
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possible by the constant curvature of the sphere, and for which optimal algorithms are available.
This is the algorithm of choice when applied to a surface triangulation.

Both algorithms are given in full details, particularly the second one, and some direct improve-
ments have been commented. It could be interesting to compare timings with the implementation
proposed by Megiddo [16], although it is expected that the improvement could be limited due to
the few numbers of surfaces surrounding points or points surrounding points, in practice less than
10 in average. The algorithm proposed by Elzinga and Hearn [21] may be a better option due to
its greatest simplicity.

It is straightforward now to generalize the classical normal smoothing on the whole surface by
the most sophisticated smoothing by the ‘most normal’ normal. It is sufficient to replace the face
normals surrounding a given point by the point normals or the first-order neighborhood of the
point.

Finally, all the smoothing procedures are very sensitive to the boundary conditions created by
the imposed normals. There are cases where it is difficult to determine satisfactorily appropriate
boundary conditions, and a first smoothing on these imposed boundary conditions may cause
unacceptable shrinkage. The fair surface design of Taubin [22] eliminates shrinkage by producing
a low-pass filter. Therefore, a coupling of the ‘most normal’ normal procedure with the one of
Taubin for difficult imposed boundary conditions appears to be a good solution. This algorithm is
currently tested with success and will be reported in further work.
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