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Universitat Politècnica de Catalunya, Barcelona Tech
Campus Nord UPC, 08034 Barcelona, Spain

e-mail: {alba.pros, pedro.diez}@upc.edu, web: http://www-lacan.upc.es
bDepartament d’Enginyeria de la Construcció
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Abstract

Double punch test is used to indirectly assess the tensile strength of plain
concrete, ft. For this normalized test, the tensile strength is obtained as a
function of the failure load, P , which is expressed as ft = F(P ). Different
authors have proposed different expressions for the relation F(·), yielding
scattered values of ft. None of these alternatives is universally recognized as
being more suitable than the others. In fact, these expressions are mainly
based on elastic models considering the maximum tensile stress under the
load P and ft is obtained as an output of the linear model. A numerical
simulation allows using models in which ft is an input of the material model
and the corresponding failure load P is obtained associated with each value
of ft. In the present work, double punch test is simulated numerically con-
sidering two alternatives for modeling plain concrete accounting for damage
and cracking: (a) the nonlocal Mazars damage model and (b) an heuristic
crack model including joint elements in an a priori defined crack pattern.
Numerical results are validated with experimental data and compared with
the analytical expressions available in the literature.
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1. Introduction

The Double Punch Test (DPT) ([6, 8, 7]) is used to indirectly measure the
tensile strength of plain concrete, ft. Indirect measures of tensile strength
(Brazilian test, DPT, 3 and 4 point bending test,...) are often preferred to
direct uniaxial tests because (1) they are much easier to perform, particu-
larly for controlling material production (for plain concrete, for example, the
Brazilian test is of common and standard use) and (2) they show a reduced
scattering of the results. The main focus of this work is proposing numerical
models for the DPT in which ft is an input parameter. The idea is to re-
place the naif linear elastic model by a more realistic one that has the tensile
strength, ft, already as one of material parameters and to identify the value
of this material parameter that better fits the experimental results. These
models are validated using experimental results and other analysis available
in the open literature ([8, 3, 14, 17]).

The information extracted from the experimental tests is translated into
the parameters characterizing the mechanical properties of the analyzed con-
crete. In this case, the parameter to be assessed is precisely the tensile
strength, ft. Essentially, the data provided by the experimental setup is a
force-displacement curve in which the peak points corresponding to the col-
lapse are easily identified. The force corresponding to the peak point, P , is
readily translated into the tensile strength value using a theoretical model
simulating the mechanical behavior of the test, ft = F(P ). Currently, the
underlying theoretical model used in this framework is an analytical solution
of the linear elastic problem [4, 5]. These models are a crude approximation
of the actual behavior of the specimen close to the collapse regime but they
still provide a good approach to the tensile strength by selecting a charac-
teristic tensile stress in the linear elastic solution for the peak force, P .

Two different approaches are considered in order to model the mechanical
behavior of the concrete in the DPT. Firstly (option A), a continuous model
which has been successfully used modeling the common Brazilian test [19],
the nonlocal Mazars damage model ([15, 1, 10, 18, 19]). Secondly (option B),
a model which introduces discontinuous fracture at the surfaces correspond-
ing to an a priori defined cracking pattern, based on the experimentally
observed fracture mechanisms ([9, 2, 20]). On the fracture surfaces, joint
elements with cohesive dilatant behavior are used to model the interfaces.
In the rest of the specimen, the mechanical behavior is assumed to be linear
elastic because the relevant deformation is concentrated in the fracture sur-
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faces. Here, 3D finite element approximations are used complemented (for
option B) with 2D joint elements. Both options A and B are solved using
3D finite elements.

Both options A and B provide approximations of the pre-peak and the
post-peak behavior. Therefore, the information that may be extracted from
the numerical tests is very rich and, in addition, to identify the parameters
it may allow gaining further knowledge on the phenomenon.

The goal of this study is to analyze the features of the different models and
their capabilities to properly approximate the experimental tests by fitting
the experimental data available. An objective comparison is performed by
setting a measure of the error between the experimental data and the model,
this is equivalent to define a fitting criterion. Correspondingly, the parameter
identification and the model validation are carried out both based on the same
criterion.

All the experimental results are from an experimental campaign which
consisted of the characterization of an specific concrete, including the double
punch test. Hence, experimental data is available not only from the double
punch test, but also from two different tests.

Thus, sophisticated models are used to identify the tensile strength from
the DPT, instead of the linear elastic model. The advantage of using this
approach is more relevant when DPT is used to identify the tensile behavior
of steel fiber reinforced concrete. For fiber reinforced concrete (FRC), taking
into account the post-peak behavior (and not only the peak) is extremely
relevant. The present work has to be seen as a first step towards including
steel fibers into these models in order to simulate the extension of the DPT
to assess the after cracking capacity of FRC (a test introduced in [17, 16],
named as the Barcelona Test).

The remainder of this paper is structured as follows. First, in section
2 the double punch test is presented, the problem statement is defined and
the analytical expressions relating the tensile strength and the value of the
maximum vertical load (ft = F(P )) are introduced, as well as the experimen-
tal campaign. Section 3 presents the numerical simulation: the continuous
model and the discontinuous one. Then, in section 4, the numerical results
are presented and contrasted. Moreover, the numerical results are validated
with the experimental and analytical results available. Finally, the most
important conclusions are listed.
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2. Double Punch test

2.1. Description of the Double Punch Test

Double punch test was introduced in [6, 8, 7] as a tool to assess indirectly
the tensile strength of plain concrete. It was presented as an alternative to
the Brazilian test, which was so far the most common indirect tension test.

The test layout is illustrated in figure 1 and consists in compressing axially
a cylindrical concrete specimen with two steel circular punches centered at
the top and the bottom of the specimen. The geometry of the specimen is
given by the height (l = 15cm) and the diameter (d = 15cm). The ratio
between the diameters of the punches and the specimen is one fourth (d′ =
1

4
d = 3.75cm). Occasionally, smaller specimens with identical geometrical

proportions are used to study the influence of size effect ([8]), concluding
that the tensile strength interpreted from the DPT is relatively insensitive
to the size of the specimen.

Figure 1: Double Punch Test layout

A typical failure mechanism presents three radial fracture planes. How-
ever, in the experimental results, the observed number of fracture planes
ranges from two to four. The geometry of the collapse pattern is completed
with two fracture cones beneath each punch. In figure 2 two different fracture
patterns are illustrated.
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Figure 2: Two possible collapse mechanisms with three and four radial fracture planes

The goal of the present simulations is to describe the collapse of the
specimen, with special interest in determining the peak load. Describing the
chronological sequence of the cracks appearance, as discussed in [11, 12], is
beyond the scope of this paper. In the models used here the fracture pattern
is such that the specimen is partitioned into blocks that behave as rigid-
bodies. Thus, the kinematics compatibility of the motion of these blocks
undergoes a simultaneous development of the two basic mechanisms, namely
the cone penetration and the separation of the crack planes.

The classical indirect tension test for plain concrete is the Brazilian test.
DPT is often preferred to the Brazilian test because it is easier to carry out
and the tensile strength is sampled in different cracked planes and, therefore,
the quantity obtained corresponds to an average. On the contrary, the Brazil-
ian test confines failure to a predetermined plane. Moreover, for Steel Fiber
Reinforced concrete DPT captures better fibers influence than Brazilian test,
due to their fracture mechanisms.

The experimental set up is a displacement controlled compression at a
velocity of 0.5mm/min.

2.2. Close-form expressions for tensile strength determination

Some analytical expressions of the tensile strength are available in the
literature for the DPT. The maximum compression load (P ) and the dimen-
sions of the test (d, d′ and l) are the inputs in each analytical expression.
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Chen and Yuan [8] applied a limit analysis idealizing concrete as a linear
elastic-perfectly plastic material with very large ductility obtaining

ft =
P

π(1.2
d

2
l − (

d′

2
)2)

. (1)

Moreover, in order to be more accurate, they carried out a finite ele-
ment analysis considering concrete as an elastic plastic strain-hardening and
fracture material and the final expression proposed is

ft =
0.75P

π(1.2
d

2
l − (

d′

2
)2)

. (2)

However, there are other analytical approximations of the tensile strength
in the DPT given by different authors as follows.

Based on a nonlinear fracture mechanics approach, Marti [14] proposed

ft = 0.4
P

4(
d

2
)2

√
1 +

d

λda

(3)

where da is the maximum aggregate size and λ is an experimental parameter
depending on the material. This expression is given in order to analyze the
size effect of the specimen on the tensile strength value.

In [3], Bortolotti assumed a modified Coulomb-like failure criterion for
concrete getting

ft =
P

π(
d

2
l − (

d′

2
)2 cotα)

(4)

considering α =
π

2
−φ

2
with φ being the internal friction angle in the modified

Coulomb’s yield criterion.
Finally, Molins et al. [17], presented another analytical expression based

on limit analysis,

ft =
P

9πl
d′

2

. (5)
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In the following, these expressions are used for comparision purposes and
we restrict ourselves to the expressions given in equations (1), (2) and (5).

2.3. Experimental campaign

The DPT is contrasted with two standard tests (the uniaxial compression
test and the Brazilian test). The set up of these two tests is recalled bellow.

2.3.1. Uniaxial compression test

The specimen of the uniaxial compression test, presented in figure 3, is a
concrete cylinder of size l = 30 cm and d = 15 cm. The compression load is
uniformly distributed at the top and bottom of the specimen.

Figure 3: Description of the uniaxial compression test

This is a direct compression test which provides the compressive strength,
fc. The relationship between the compressive strength fc and the maximum
vertical load Pu is given by
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fc =
4Pu

πd2
(6)

where d stands for the diameter of the specimen.
Experimentally, the value obtained is Pu = 8.9 · 105N, which is translated

into fc through equation (6): fc = 50.45MPa.

2.3.2. Brazilian Test

On the other hand, the Brazilian test is an indirect tension test consisting
in compressing a plain concrete cylinder placed horizontally by two steel
plates (as shown in figure 4). On the models presented in the remainder of
the paper, the effect of the plates on the top and bottom is accounted for by
distributing the prescribed displacements on a contact zone following [19].

Figure 4: Description of the Brazilian test

For the Brazilian test, the relation between the tensile strength with the
maximum vertical load is given by

ft =
2PB

πld
(7)

where l and d stand for the length and the diameter of the concrete specimen,
respectively.
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The given analytic expression is standard and there is agreement about
its accuracy.

Experimentally, the average value obtained is PB = 8.6 · 105N, which is
translated to the tensile strength, ft, using the equation (7). Thus, the value
of the tensile strength is set: ft = 3.84MPa.

2.3.3. Experimental results

The data presented in table 1 is the result of an experimental campaign
carried out in the Departament d’Enginyeria de la Construcció of the Uni-
versitat Politècnica de Catalunya (UPC). The uniaxial compression test, the
Brazilian test and the DPT are considered. The mean values are displayed
and, in brackets, the coefficient of variation (standard deviation divided by
the mean value) is presented. The Poisson ratio (ν) is assumed to be equal
to 0.2.

Table 1: Experimental data

Description Symbol Value

Young’s modulus E 35.5GPa
Compressive strength

(from the uniaxial compression test) fc 50.45MPa (2.69%)
Tensile strength

(from the Brazilian test) ft 3.84MPa (8.36%)
Maximum load
(from the DPT) P 1.52 · 105N (4.10%)

Vertical displacement
at the maximum load

(from the DPT) uz 8.6 · 10−4m (7.15%)

The DPT campaign consists in six test, three of them showed three frac-
ture radial planes and the other three showed four fracture radial planes.

In this case, the uniaxial compression test (giving fc), the Brazilian test
(giving ft as far as the Brazilian test is considered to be reliable) and the
output of the DPT (the maximum vertical load P ) are available for the same
material. Numerical models are needed to find the expected value P of the
DPT for a given ft. Although analytically some expressions relating ft and P
for the DPT are available, they present scattering. The relation ft = FB(PB)
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for the Brazilian test is reliable, therefore, the numerical models are validated
firstly for this test.

3. Numerical modeling

Two different techniques are considered to simulate numerically the dou-
ble punch test. On one hand, a continuous model, the nonlocal Mazars
damage model (based on [15] and [1]), which has already been used in pre-
vious simulations of indirect tension tests [19]. On the other hand, a discon-
tinuous model is considered based on introducing joint elements along the
cracks. This model defines a priori the cracking pattern (known through the
experimental tests and the analytical description of the DPT). Then, joint
elements are used to model the cracks. The rest of the specimen is modeled
as an elastic material.

The behavior of the DPT is a fully 3D phenomenon and, therefore, 3D
modeling is required for both cases.

3.1. Nonlocal Mazars damage model

In a damage model, the constitutive equation is given by σσσ = (1−D)Cεεε,
where D is a scalar parameter representing the damage and obeying 0 ≤ D ≤
1. If D = 0, the material is considered healthy and if D = 1, the material
is completely damaged. In the above, σσσ and εεε stand for stress and strain
tensor, respectively. Meanwhile, C is the elastic forth order tensor.

The damage parameter evolves depending on y, D = D(y), which is
called state variable and depends on the strain field, y = y(ε). Commonly,
the damage starts when the state variable reaches a given threshold Y0 and
it always increases.

The Mazars Damage Model considers the damage as a linear combination
of the damage generated under tension, Dt, and the damage under compres-
sion, Dc,: D = αtDt + αcDc. Herein, the damage follows an exponential law
and the state variable is defined as y = ε̂.

The Mazars damage model can be written as

Dt = 1− Y0(1− At)

ε̂
− Ate

−Bt(bε−Y0) αt =
∑

i

εti〈εi〉
ε̂2

Dc = 1− Y0(1− Ac)

ε̂
− Ace

−Bc(bε−Y0) αc =
∑

i

εci〈εi〉
ε̂2
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with αt + αc = 1 and

〈εi〉 =
εi + |εi|

2
ε̂ =

√√√√∑
i

(
εi+ | εi |

2

)2

where εi are the main strains.
Moreover, εti and εci are calculated following the next scheme:

σσσ → σσσprin


σσσ+

prin → σσσ+ → εεε+ → εεε+
prin → εεεti

σσσ−prin → σσσ− → εεε− → εεε−prin → εεεci

with σσσ = σσσ+ + σσσ− and εεεi = εεεti + εεεci.
The parameters At, Bt, Ac, Bc and the threshold Y0 are set depending on

the material modeled, taking into account the relationship between damage
parameters and experimental parameters.

The constitutive equation under tension for a uniaxial test can be written
as

σ =


E · ε, ε ≤ Y0[
Y0(1− At)

ε
+ At · e−Bt(ε−Y0)

]
· E · ε, ε > Y0

(8)

and the constitutive equation under compression is deduced for a uniaxial
test

σ =


E · ε, ε ≤ Y0[
Y0(1− Ac)

ε
+ Ac · e−Bc(ε−Y0)

]
· E · ε, ε > Y0

(9)

Now, the damage parameters deduction is presented based on (8) and
(9).

• Imposing that if ε = Y0 ⇒ σ = ft in (8), it results

Y0 =
ft

E
(10)
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• Under tension, lim
ε→∞

σ = σ∞, with σ∞ standing for the residual tensile

strength, is considered. Therefore, using (8),

E · Y0 · (1− At) = σ∞ ⇒ At = 1− σ∞
E · Y0

(11)

• Bt = 10000 · (1 + ξ), where ξ is a parameter measuring the material
ductility.

• Under compression, σ′(εmax) = 0. Let us derivate (9), getting

Bc =
1

εmax

(12)

• Imposing σ(εmax) = fc under compression in (9) and using Bc =
1

εmax

,

Ac is obtained:

Ac =
fc − E · Y0

−E · Y0 + E · εmax · e
(−1+

Y0

εmax

)

(13)

• To ensure, under compression, that 0 ≤ D ≤ 1 it is necessary to impose
that

0 ≤ Ac ≤ 1 (14)

In figure 5, the plain concrete damage model is presented in two graphics,
one corresponding to the tension behavior (5(a)) and another to compression
(5(b)).

Up to now, the damage has been calculated in each point depending on
the state variable y = ε̂ at the same point, but this localization brings to a
pathological mesh dependence and the results are not realistic. In order to
solve this problem, a nonlocal damage model is considered, as introduced in
[10]. The main idea of a nonlocal damage model is that the damage evolution
depends on the state variable averaged in a neighborhood (associated to
a characteristic length) of the current point, instead of depending on the
state variable in the same point (as in a local model). Therefore a nonlocal
state variable ỹ is considered and it is defined as an average of the state
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(a) (b)

Figure 5: Uniaxial test. (a) Tension. (b) Compression.

variable in a neighborhood of each point. The characteristic length (lcar) is
another material parameter and its function is to localize the nonlocality. In
general, the value of the characteristic length is such that the neighborhood
of each point involves two or three elements. Therefore, the nonlocal damage
is D = D(ỹ). This is an integral nonlocal damage model because of the
procedure employed for averaging the state variable, [18, 19].

3.2. Heuristic crack model with joints

An alternative to the damage model is a discontinuous model which con-
siders the whole specimen as an elastic material and the cracking pattern
defined using joint elements. In [13], all possible fracture paths are modeled
using joint elements allowing any possible failure direction. Otherwise, in the
double punch test, the cracking pattern is known a priori, therefore, only this
cracking path is allowed (modeled using joint elements).

As introduced in [9], [2] and [20], the nodes in the interface zone must be
defined twice in order to define the joint elements, which correspond to the
duplicated geometry. Joint elements allow interfaces sliding and separating.
The constitutive equations must incorporate both contact and noncontact
conditions. When the interfaces are in contact, frictional sliding is possible,
with dilatant behavior.

Any constitutive equation modeling a joint element in a three-dimensional
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problem has three components. The first one corresponds to the normal
direction of the joint plane and the other two are the tangential directions of
the plane. The normal one corresponds to the contact or separation between
the joint interfaces. Meanwhile, the ones in the joint plane correspond to the
sliding directions.

The nonlinear behavior of joints is characterized by slide and separation
taking place at the joint plane. For a joint with no tensile strength, separation
of joint planes occurs when the tension normal to the joint plane becomes
positive. Alternatively, a tensile strength can be given to the joint. If the
shear strength of the joint is exceeded, irreversible slide occurs.

Herein, the Mohr-Coulomb Joint model is selected to model the collapse
pattern of the double punch test. Therefore, the governing equations of the
joint model can be written as

σ = kn1 · u if
−fc

kn1

≤ u ≤ u0 (15)

σ = (kn1 · u0 − kn2 · u0) + kn2 · u if u ≥ u0 (16)

τ = −τmax if
−τmax

ks

≤ v (17)

τ = ks · v if | v |≤| τmax

ks

| (18)

τ = τmax if v ≥ τmax

ks

(19)

where τmax = c+ σ tan(ϕ).
In equations (15)-(19), stresses applied are divided into two components

(normal (σ) and shear (τ)), and the displacements are also divided into u
and v, corresponding to σ and τ , respectively. Moreover, figure 6 reflects
this constitutive law using two graphics: the normal (figure 6(a)) and shear
(figure 6(b)) stresses.

In figure 7, it is shown (a) the relationship between stresses and displace-
ments and (b) joint elements defined twice. There is a normal component
and two shear components with the same behavior, but in an orthogonal
direction.

The parameter deduction of the joint model is presented as follows: The

first normal stiffness (N/m3) is defined as kn1 =
E

l
, where l stands for the

specimen height, as well as the shear stiffness, (N/m3), ks =
E

l
. Other-
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(a) (b)

Figure 6: (a) σ and (b) τ evolution depending on the displacements for the joint model.

Figure 7: Stresses applied to a joint model and the corresponding displacements

wise, the second normal stiffness (N/m3) must satisfy that kn2 ≤ 0, because
the negative branch is a modeling artifact to account for the sudden loss of
strenght associated with cracking, while preserving the mathematical regu-
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larity of the model. The threshold from kn1 to kn2 is defined as u0 =
ft

kn1

and

the cohesion (N/m2) is c = fc. Finally, the friction angle is fixed as ϕ = 54◦,
as found in the literature ([3]).

4. Numerical results and validation

All the results obtained considering both the continuous and the discon-
tinuous model are presented. Both the Brazilian test and the double punch
test are simulated. Moreover, the results are validated and compared with
the analytical expressions and with the experimental data.

4.1. Nonlocal Mazars damage model

For simulating numerically considering the nonlocal Mazars damage model,
six material parameters must be set: damage threshold (Y0), characteristic
length (lcar), tension parameters (At and Bt) and compression parameters
(Ac and Bc).

From the experimental campaign, the value of the compressive strength
obtained through the uniaxial compression test is available, fc = 50.45MPa.
Therefore, through the uniaxial compression test, any parameter may be
evaluated, but the relation between the two compression parameters is set.
Hence, when Ac and Bc satisfy the given equation (13), the value of the
compressive strength is set (fc).

The value given by the experimental campaign from the Brazilian test is
the tensile strength, ft = 3.84MPa. Therefore, through the equation (10),
the value of Y0 is set.

Hence, herein, some consideration must be taken into account:

• Y0 =
ft

E
=

3.84 · 106

35.5 · 109
= 1.08 · 10−4

• Considering any value of Ac satisfying 0 ≤ Ac ≤ 1 is enough to ensure
that 0 ≤ D ≤ 1 and the chosen value does not influence on the results,
therefore, Ac = 1.

• the relationship obtained from the uniaxial compression test between
Ac andBc must be satisfied (equation (13)), considering fc = 50.45MPa.
Thus, Bc = 266.
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• At = 1−σ∞
E

= 1, because the residual strength under tension is σ∞ = 0

for plain concrete

• Bt = 10000 ·(1+ξ), with 0 < ξ < 1, depending on the material. Hence,
Bt = 2500, as appeared in [19].

• Observing the specimen size of the test and the expected fracture pat-
tern, the caracteristic length (lcar) is set.

4.1.1. Brazilian test

Considering the previous information for simulating numerically the Brazil-
ian test, the value of the tensile strength can be obtained (calculated through
the value of the maximum vertical load, considering the equation (7)). All
the material parameters are set previously, except lcar which depends on the
fracture pattern of the test and its sizes. Therefore, lcar is set for obtaining
the expected results. Hence, the optimal material parameters are presented
in table 2.

Table 2: Optimal values of the material parameters of the nonlocal Mazars damage model
for the Brazilian test

Material
parameter Value

Y0 1.08 · 10−4

lcar 2 · 10−2m
At 1
Bt 2500
Ac 1
Bc 266

Vertical displacements are prescribed at the top of the specimen through
one steel plate, which is modeled as an elastic material. Moreover, both hor-
izontal and vertical symmetric conditions are imposed, thus, only a quarter
of the specimen is taken into account during the whole simulation.

After the simulation, in figure 8, the value of the maximum vertical load
depending on the vertical displacement is presented and, as expected, the
maximum value is PB = 8.8 · 105N, which corresponds to ft = 3.74MPa
(considering the equation (7)).
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Figure 8: Brazilian test with the nonlocal Mazars damage model. uz(m) - PB(N).

In order to analyze the fracture pattern of the Brazilian test, the damage
distribution obtained numerically is presented in figure 9.

1

0.50.5

0

Figure 9: Damage distribution at the load peak
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4.1.2. Double Punch Test

In this case, again, taking into account all the experimental information
there is only one degree of freedom when setting the material parameters,
lcar, which depends on the test size and the fracture pattern. lcar is set to
adjust the numeric results with the experimental ones. Hence, the same
parameter combination suitable for the Brazilian test is chosen, but with a
different value of the characteristic length (as presented in table 3).

Table 3: Optimal values of the material parameters of the nonlocal Mazars damage model
for the double punch test

Material
parameter Value

Y0 1.08 · 10−4

lcar 2.5 · 10−3m
At 1
Bt 2500
Ac 1
Bc 266

Displacements are imposed at the top punch which are modeled as an
elastic material. Symmetric conditions are imposed in order to work with
half of the problem.

The vertical load versus the maximum vertical displacement is presented
in figure 10. It is possible to observe that the maximum value (1.92 · 105N)
is close to the one obtained experimentally (1.52 · 105N) and the vertical
displacement value (2.55 · 10−4m) also is next to the experimental one. In
addition, after the peak, it is possible to capture the behavior.

Figure 11 shows different views of the specimen with the damage distribu-
tion to be able to observe the whole cracking pattern. Looking at the damage
distribution, four radial vertical cracking planes are observed (figures 11(a)
and 11(b)). Moreover, the cone formation under the punch is presented, as
expected, in the inside view of the specimen (figure 11(c)). Although the
cracking pattern is detected, it is not possible to capture the whole pattern.

Although different meshes (for the same geometry) have been used with
the numerical simulation of the double punch test considering the nonlocal
Mazars damage model, the fracture pattern is always the same, as expected,
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Figure 10: Double punch test with the nonlocal Mazars damage model. uz(m) - P (N).

and placed as observed in figure 11, as well as the value of the maximum
vertical load.
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(a) (b)

(c)
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Figure 11: Damage distribution at the end of the simulation. (a) Top view. (b) Bottom
view. (c) Inside view.

21



4.2. Heuristic model with joint elements in the cracking pattern

4.2.1. Brazilian test

Observing the damage distribution (figure 9), the Brazilian test is simu-
lated modeling the cracking pattern with joint elements, meanwhile the rest
of the specimen is considered elastic. In figure 12, joint elements are in red,
meanwhile, the linear ones are in blue.

Figure 12: Brazilian test mesh for the discontinuous model

All the material parameters of the joint elements for the Brazilian test
are set based on the experimental data (ft = 3.84MPa and fc = 50.45MPa)
and the specimen height (l = 0.1m), as presented in table 4.

Vertical displacements are prescribed at the top and bottom sheets, mod-
eled under an elastic model, and the whole specimen is taken into account.

Figure 13 presents the maximum vertical load (PB) depending on the
vertical displacement (uz) and the maximum value of PB is PB = 8.8 · 105N,
which corresponds to ft = 3.72MPa, considering the equation 7.
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Table 4: Values of parameters for the Brazilian test

Symbol Value

kn1
35.5 · 109

0.1
N/m3

kn2
−35.5 · 109

0.1
N/m3

u0
3.84 · 106

35.5 · 109
m

ks
35.5 · 109

0.1
N/m3

ft 3.84MPa
c 50.45MPa
ϕ 54o
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Figure 13: Brazilian test with the joint model. uz(m) - PB(N).
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4.2.2. Double punch test

In order to simulate the double punch test considering the heuristic crack
model with joint elements defined here, two different meshes are considered
(as presented in figure 14): one with three radial planes and another with
four radial planes.

(a) (b)

Figure 14: Double punch test including joint elements meshes. (a) three radial cracking
planes. (b) four radial cracking planes.

Although double punch test is modeled in 3D, all joint elements are two-
dimensional and triangular for the fracture planes and quadrilateral for the
cone. The tip of the cone is not included in the mesh because it would be
a point defined too many times. Besides, three auxiliary planes are defined
corresponding to the specimen’s cracking planes, but inside the cone. They
are necessary to define properly the joint elements. For the case of four radial
planes, also four auxiliary planes are defined inside the cone (corresponding
to the intersection between the cone and the two diametral planes).

Firstly, three fracture radial planes are considered. All the material pa-
rameters are set using the experimental data and they are the same than
for the Brazilian test, except the specimen height (herein, l = 0.075m) as
presented in table 5. Moreover, the material parameters in the auxiliar joint
elements inside the cone are defined in order to not influence on the results.

Vertical displacements are imposed at the top punch which is modeled as
an elastic material. Horizontal symmetric condition is taken into account,
thus, only half of the specimen is considered in the current simulation.
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Table 5: Values of parameters for the Double Punch Test

Symbol Value

kn1
35.5 · 109

0.075
N/m3

kn2
−35.5 · 109

0.075
N/m3

u0
3.84 · 106

35.5 · 109
m

ks
35.5 · 109

0.075
N/m3

ft 3.84MPa
c 50.45MPa
ϕ 54o

In figure 15, the maximum vertical load obtained is presented versus
vertical displacement. As observed, it is possible to capture the behavior
after reaching the peak load. The maximum vertical load (1.55 · 105N) is in
the same rang of values than the load obtained experimentally (1.52 · 105N).
Moreover, the value of the vertical displacements corresponding to the peak
load (5.25 · 10−4m) is also close to the corresponding experimental value.
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Figure 15: Double punch test modeled using joint elements considering three cracking
planes. uz(m) - P (N).

It is also observed that both the horizontal displacement (∆h) and the
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vertical displacement (∆v), corresponding to the peak load, keep the same
ratio than the relation between the two cathetus of the cone’s generator
triangle. That is, if the horizontal cathetus measures ch = 1.875 cm and the

vertical one, cv = 3 cm,
ch
∆h

=
cv
∆v

is satisfied.

Figure 16 represents the deformed mesh after the simulation from different
points of views. The cone is penetrating the specimen, meanwhile the three
cracking planes are opening in their normal directions.

Figure 16: Double punch test modeled using joint elements considering three cracking
planes. Deformed meshes amplified ×10.
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Once the results considering three cracking planes defined a priori are
analyzed, four radial cracking planes are considered with the same material
parameters (presented in table 5) than in the previous case. However, herein,
the fracture pattern is different, so the same value of the maximum vertical
load under the same conditions is not expected.

In figure 17 the results are presented and it is observed that the behavior
is the same both with three and four radial cracking planes. Moreover, after
the load peak, it is possible to obtain further results. Besides, the maximum
vertical load (1.56 · 105N) is still the same as the experimental value, and
very close to the value obtained with three cracking planes. The value of the
vertical displacement (5.25 · 10−4m) is also in the expected range of values.

0 1 2 3 4 5 6
x 10

−4

0

0.5

1

1.5

2x 10
5

U
z
 (m)

P
 (

N
)

Figure 17: Double punch test modeled using joint elements considering four radial cracking
planes. uz(m) - P (N).

Once all the material parameters are set (for both cases, three and four
radial fracture planes), a geometric parameter is studied: the cone’s height.
When defining a priori the fracture pattern, cone’s height is an input. After
considering different values of the cone height, it has been found that the
value providing results in agreement with the experimental outcome is h =
3cm. Note that this is also coinciding with the cone height observed in
experiments.
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4.3. Validation

Considering fc = 50.45MPa and ft = 3.84MPa set, in table 6 all the nu-
merical results are presented and compared both with analytical expressions
and experimental results.

• Analytical expressions:

– P1 = ftπ(1.2l
d

2
− (

d′

2
)2), from [8].

– P2 =
ftπ(1.2l

d

2
− (

d′

2
)2)

0.75
, from [8].

– P3 = ft9πl
d′

2
, from [17].

• Experimental value: Pexp = 1.52 · 105N

These values are compared to the numerical results considering the con-
tinuous model, Pcont, and the discontinuous one with three fracture radial
planes, Pdisc3, and four fracture radial planes, Pdisc4.

The errors are computed considering Error(Pi) = |Pi − Pj

Pi
| · 100%, being

Pi the maximum vertical load obtained analytically or experimentally, and
Pj the rest of the values.

Table 6: Model Validation

Description P (N) Error(P1) Error(P2) Error(P3) Error(Pexp)
P1 1.51 · 105 0% 24.4% 4.1% 0.6%
P2 2.01 · 105 33.11% 0% 38.6% 32.2%
P3 1.45 · 105 3.4% 27.8% 0% 5%
Pexp 1.52 · 105 0.6% 24.4% 5% 0%
Pcont 1.92 · 105 27% 4.5% 32% 26.3%
Pdisc3 1.55 · 105 2.7% 22.9% 6.9% 2%
Pdisc4 1.56 · 105 3.3% 22.4% 7.6% 2.6%
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5. Concluding remarks

To sum up, all the important conclusions of the present work are presented
in the following.

The double punch test has been simulated using two different techniques:
(a) the nonlocal Mazars damage model and (b) an elastic model considering
the cracking pattern modeled with joint elements. In both cases, results are
as expected, very close to the experimental and analytical ones (i.e. in the
same range of values, as shown in table 6). These two numerical models are
validated through the Brazilian test, taking into account the experimental
information from the uniaxial compression test, the Brazilian test and the
double punch test.

All the parameters (both the material and the geometrical ones) are set
for both numerical models for each test. However, it is not proved that
these material parameter combinations are unique. Experimental results are
necessary to set all the parameters and, in general, the definition of the test.

After trying different material combinations for the nonlocal Mazars dam-
age model, always taking into account all the conditions found during the
present work, the optimal parameter combination is found. In this case,
the only different parameter for the two different indirect tension tests (the
Brazilian test and the double punch test) with the same concrete is the char-
acteristic length which depends on the fracture pattern and the test size.
Therefore, lcar is also seen as a numeric parameter which allows the numeri-
cal results fit with the experimental ones.

For the joint model, it is again observed that with a different fracture pat-
tern (three or four planes), the same material parameters is used. Likewise,
for the Brazilian test and the double punch test, except for the specimen
height.

Compared with the available experimental results and some of the analyti-
cal expressions, the most suitable model is the discontinuous one considering
both, three and four cracking radial planes because fits better the experi-
mental results. However, using the joint model, it is necessary to know the
fracture pattern before the simulation. Meanwhile, with the nonlocal Mazars
damage model, the failure pattern is not set a priori. Moreover, the fracture
pattern obtained considering the damage model fits with the experimental
one and the obtained peak value corresponds to other analytical expressions.

Time calculation and computational cost are shorter using the discontin-
uous model than with the nonlocal Mazars damage model, due to the number
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of nonlinear elements in each model.
Both the nonlocal Mazars damage model and the model including joint

elements in the cracking pattern are valid alternatives to simulate the dou-
ble punch test, which was designed for studying the tensile strength (ft) of
concrete. Therefore, these numerical simulations allow to control ft, for any
material parameters considering both models. In both cases, ft is an input of
the problem and the maximum vertical load, P , is the output of the problem.

Having at hard these two alternatives allows reproducing numerically the
behavior of the DPT described by different authors and also with experimen-
tal results available.

Up to now, the double punch test has been simulated numerically for
plain concrete. Then the next step is including fibers into these models in
order to simulate the double punch test for steel fiber reinforced concrete (a
test introduced in [17] and [16], defined as the Barcelona Test).
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