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SUMMARY

Interface treatment methods for the contact problem between non-matching meshes have traditionally
been based on a direct coupling of the contacting solids employing a master–slave strategy or classical
Lagrange multipliers. These methods tend to generate strongly coupled systems that is dependent on
the discretization characteristics on each side of the contact zone. In this work a displacement frame
is intercalated between the interface meshes. The frame is then discretized so that the discrete frame
nodes are connected to the contacting substructures using the localized Lagrange multipliers collocated
at the interface nodes. The resulting methodology alleviates the need for master–slave book-keeping
and provides a partitioned formulation which preserves software modularity, facilitates non-matching
mesh treatment and passes the contact patch test. Frictional contact problems are used to demonstrate
the salient features of the proposed method. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In computational structural mechanics, problems presenting frictional contact surfaces com-
bined with non-matching meshes remain as a di�cult task. The source of this di�culty comes
not only from the strong non-linearity of the frictional contact law, involving multi-valued
relationships between kinematic and static variables, but also from the severe discontinuity
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forced by the di�erent meshes used to model the contact interface. Most existing interface
treatment methods for the contact problem between non-matching meshes have traditionally
been based on a direct coupling of the contacting solids employing a master–slave strategy,
classical Lagrange multipliers or mortar-like methods [1–4].
The present work is an extension of the formulation proposed by Rebel et al. [5] to solve

the contact problem with non-matching meshes introducing an intermediate contact surface,
or contact frame, endowed with independent degrees of freedom and treated with a FEM
discretization. This frame is connected to the contacting substructures using localized Lagrange
multipliers [6] and can be constructed in order to preserve the constant–stress interface patch
test [7]. In the work of Rebel et al. a general formulation of the problem is derived using
the variational framework proposed by Park and Felippa [8, 9] and then is particularized to
the two-dimensional case. However, they considered the contact zone to be a priori known
after applying a two stages predictor–corrector algorithm and decided the contact point states
using a trial and error based algorithm.
In the present work, we extend [5] so that the contact frame may separate from the sub-

structures in all directions, that is, the frame now is a completely free system that moves while
maintaining the contact zone as an unknown. Another new feature is in the way of �nding
contact states; in the present work contact conditions are imposed mathematically using the
augmented Lagrangian formulation and projection functions, making the contact search to be
part of the overall contact algorithm.

2. THE CONTACT FRAME

Let us suppose two solids in contact and denote their domains � and ��. To formulate the
contact problem, instead of considering the direct interaction between the two bodies during
the contact process, we will insert a deforming non-physical surface � between them and
reformulate the contact problem in terms of interaction of the two solids with this new element,
called the contact frame, using localized Lagrange multipliers on each side of the frame.
The contact tractions acting on the frame are represented in the exploded view of

Figure 1 where the localized Lagrange multipliers connecting solid � with the frame are
named using the vector quantity [=(�n; �t1 ; �t2)t and the multipliers connecting solid �� are
named �[=(��n; ��t1 ; ��t2)t . These forces are expressed using two locally orthonormal base sys-
tems connected to the frame; B=[n; a1; a2] used to describe [ and �B=[�n; �a1; �a2] used for �[.
These local systems for describing the frame kinematics are de�ned in the following way;
a1 and a2 are the orthogonal vectors contained in the frame tangent plane at the considered
point and vector n points towards solid ��. The barred base system �B at the same position,
will be de�ned in opposite direction to B.
In order to describe the motion of the two solids we use the displacement �elds u and �u

de�ned on � and ��, respectively, which when added to the reference con�gurations X and
�X, provide us with the current positions x and �x

x = X+ u

�x = �X+ �u
(1)
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Figure 1. Left: Contact interfaces with intercalated frame. Right: Exploded view
with localized Lagrange multipliers.

The motion of the contact frame is described using its displacements v from its initial
con�guration Y, providing a current position

y=Y+ v (2)

however, this motion will be restricted to permanently maintain the frame just in the middle
between the two contact interfaces. To do that, the relative frame–contact interface distance
vectors k=(kn; kt1 ; kt2)t and �k=(�kn; �kt1 ; �kt2)t are expressed in a local co-ordinate system of
the frame by

k = Bt(x − y)
�k = �Bt( �x − y)

k − �k = 0

(3)

With previous de�nitions [5] the contact frame matches the contact zone 	c where kn is
equal to zero. Also kt will give us the direction of the relative motion of the contact interfaces,
is a variable needed to formulate the frictional behaviour.

3. ENFORCEMENT OF THE CONTACT CONDITIONS

The behaviour of the contact interface is governed by the non-penetration condition and the
Coulomb friction law. To formulate the contact conditions, let us introduce the augmented
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Lagrange multiplier variable [(r)= [+ rk with a penalty parameter r¿0, and the Coulomb
disk of radius g projection operator PCg(:) :R2→R2

PCg(x; y)=

⎧⎪⎨
⎪⎩
[x; y]t if x2 + y26 g2

g√
x2 + y2

[x; y]t otherwise
(4)

then, the complete ful�lment of contact conditions can be assured using the cone projection
operator PC(:) :R3→R3 applied to the augmented Lagrangian multipliers in the following
way:

PC([(r))=
[
max(0; �n(r))

PC� max(0; �n) ([t(r))

]
(5)

This de�nition allows us to express the contact conditions with the �nal expression

PC([(r))= [ (6)

that permits to satisfy exactly the contact constraints and friction criteria contrary to penalty
techniques.

4. VARIATIONAL FORMULATION

To derive the equilibrium equations of the constrained system we use the variational for-
mulation proposed by Park and Felippa [8, 9] where the problem is treated as if all bodies
were entirely free, formulating the virtual work by summing up the contributions of each
body. The localized constraint conditions are constructed and then multiplied by unknown
coe�cients, denoted herein as the localized Lagrange multipliers. The resulting constraint
functional is added to the virtual work of the free substructures to yield the total work of
the system.
The variational functional that represents the total energy of the system �
, is then com-

posed by the energy of the two completely free substructures plus the interface constraint
functional associated with the contact phenomena

�
= ��free + � ��free + ��totali (7)

where the contact interface potential ��totali consists of contributions from both sides

��totali = ��i + � ��i (8)

which will be derived in this section.
To do that, let us decompose each one of the two interface functionals into two terms

��i = ��k + ��c

� ��i = � ��k + � ��c
(9)
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the �rst one is related with the kinematic positioning of the frame, Equation (3), that is
enforced in a weak sense using the variational form

��k =
∫∫

	c
(�{[ · [Bt(x − y)− k]}) d	c (10)

and the second one represents the virtual work of the contact forces, contribution to the weak
form that can be expressed in the following way:

��c=
∫∫

	c
([ · �k) d	c (11)

where the contact forces [ have to satisfy the unilateral contact law and the frictional law.
These restrictions can be automatically satis�ed replacing the Lagrange multipliers by the
projection operator (5) obtaining

��c=
∫∫

	c
(PC([(r)) · �k) d	c (12)

Substituting (12) and (10) into the �rst of (9) provides the expression for the total variation
of the interface potential at the non-barred side

��i=
∫∫

	c
([ · �{Bt(x − y)}+ �[ · {Bt(x − y)− k}+ �k · {−[+ PC([(r))}) d	c (13)

Similarly, one can obtain � ��i as

� ��i=
∫∫

	c
(�[ · �{ �Bt( �x − y)}+ ��[ · { �Bt( �x − y)− k}+ �k · {−�[+ PC(�[(r))}) d	c (14)

for the barred side.
To deal with the �rst terms of Equations (13) and (14) we decompose them in the following

way:

[ · �{Bt(x − y)} = (�u − �v) · {B[}+ �n�n · (x − y) + �t��a� · (x − y) (15)

�[ · �{ �Bt( �x − y)} = (��u − �v) · { �B�[}+ ��n��n · ( �x − y) + ��t�� �a� · ( �x − y) (16)

where the variation of the normal and tangential frame unitary vectors can be written, see
Reference [5], as

�a� = Q��v; �; � �a�= �Q��v; � (17)

�n = e��(a�× I)Q��v; �; ��n=e��(�a�× I) �Q��v; � (18)
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Substituting into (13) and (14) leads to the �nal expression for the interface potentials

��i =
∫∫

	c
(�[ · {Bt(x − y)− k}+ (�u − �v) · {B[}

+ �v; � · {Q���(x − y)}+ �k · {−[+ PC([(r))}) d	c (19)

with ��= �t�I+ �ne��(a�× I), and for the barred: side

� ��i =
∫∫

	c
(��[ · { �Bt( �x − y)− k}+ (��u − �v) · { �B�[}

+ �v; � · { �Q���( �x − y)}+ �k · {−�[+ PC(�[(r))}) d	c (20)

with ���= ��t�I − �ne��(a�× I).
It is important to mention that preceding interface constraint functional will not lead to a

standard minimization problem, for the Coulomb disk Cg inside the cone projection operator
(5) is a function of the normal contact through the friction limit g which depends on the
solution u. To overcome this di�culty and following Alart and Curnier [10] we have ob-
tained a particular form of quasi-variational functional by substituting g by the convex set
�max(0; �n); for this reason, the minimization problem associated with (7) is considered as
a quasi-variational problem.

5. DISCRETE EQUATIONS

The discrete contact problem will be de�ned in terms of contact pairs, i.e. couples formed by
a set of interface nodes and its associated frame element. Those contact pairs are established
before starting each time step, calculating for every potentially contacting boundary node its
nearest frame element and projecting geometrically on it, see Figure 2.
The frame displacements v(�1; �2) and its average distance to the solids k(�1; �2) are inter-

polated using isoparametric �nite elements in the following form:

v(�1; �2)=N(�1; �2)

⎡
⎢⎢⎢⎣
v1

...

vnf

⎤
⎥⎥⎥⎦ ; k(�1; �2)=N(�1; �2)

⎡
⎢⎢⎢⎣
k1

...

knf

⎤
⎥⎥⎥⎦ (21)

where nf is the number of nodes in the frame element, and

N(�1; �2)=

⎡
⎢⎢⎣
N1 0 0 : : : Nnf 0 0

0 N1 0 : : : 0 Nnf 0

0 0 N1 : : : 0 0 Nnf

⎤
⎥⎥⎦ (22)

is the shape functions approximation matrix.
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Figure 2. Contact pairs between the barred contact interface node p and the frame. Contact pairs
between the non-barred contact interface node and the frame element is independently de�ned.

The localized Lagrange multipliers are collocated with the contacting interface nodes so
that they can be expressed in terms of Dirac’s delta functions

[(�1; �2)= [p · �(^− ^p) (23)

with ^=(�1; �2) and ^p the frame co-ordinates of the node projection, Figure 2. This de�nition
of contact forces will reduce integrations over the contact zone to summations over the contact
pairs, i.e. ∫∫

	c
[(�1; �2) · f(�1; �2) d	c=

np∑
p=1

[p · f(^p) (24)

with np the total number of contact pairs. Expression (24) is useful in order to maintain the
contact interface generic, leading to modular coupling software.
To manage the interface discrete variables we introduce the substructural interface nodal

indicator L, the well known Boolean �nite element assembling operator de�ned in the
following way:

up = Lupu; [p=L�p[

vp = Lvpv; kp=Lkpk
(25)

where Lp is used to extract the variable associated with a contact interface node p from the
global unknowns vector.
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Using the preceding de�nitions, the discrete variational form of the total energy functional
can be �nally written

�
= �u · f + ��u · �f + �[ · g+ ��[ · �g− �v · (q+ �q) + �k · (p+ �p) (26)

where

f =
np∑
p=1

Lt
upfp; g=

np∑
p=1

Lt
�pgp

q =
np∑
p=1

Lt
vpqp; p=

np∑
p=1

Lt
kppp

(27)

with the corresponding expressions for the barred quantities.
For each contact pairs, the following equations hold:

fp = {f int − f ext + B[}p; �fp= {�f int − �f ext + �B�[}p (28)

gp = {Bt(x − y)−Nk}p; �gp= { �Bt( �x − y)− �Nk}p (29)

qp = {−NtB[+Nt; �Q���(x − y)}p; �qp= {− �Nt �B�[+ �N
t
; �
�Q� ���( �x − y)}p (30)

pp = {Nt(−[+ PC([(r)))}p; �pp= { �Nt(−�[+ PC(�[(r)))}p (31)

where Equation (28) represents the equilibrium equation of each substructure (term −B[ are
the contact forces expressed in the global system), Equation (29) governs the relative motion
between the frame and the substructures, Equation (30) evaluates the forces acting on the
frame and Equation (31) imposes the ful�lment of the contact conditions.
The stationary of the above variational equation, viz. �
=0, is obtained by solving for the

unknown z=(u; �u; [; �[; v;k) the following B-di�erentiable system:

F(z)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

�f

g

�g

−q − �q

p+ �p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=0 (32)

where non F-di�erentiability occurs because equation p+ �p can present non-linear directional
derivatives.
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The partitioned equations of motion for the frame-based contact problem are obtained from
the Jacobian of system (32), that can be expressed as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K 0 B 0 −Lv 0

0 �K 0 �B −�Lv 0

Bt 0 0 0 −Lb −Nk
0 �Bt 0 0 −�Lb − �Nk
−Ltv −�Ltv −Ltb −�Ltb −Dv − �Dv 0

0 0 P� �P� 0 Pk + �Pk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u

��u

�[

��[

�v

�k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−f
−�f
−g
− �g
q+ �q

−p− �p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

where only non-di�erentiable terms P[, �P[, Pk and �Pk need a special treatment.
For example, components of the preceding equation for the non-barred quantities are

obtained by assembling contributions of each contact pairs p

B =
np∑
p=1

Lt
upBpL�p; L v=

np∑
p=1

Lt
upL vpLvp

Lb =
np∑
p=1

Lt
�pLbpLvp; Nk =

np∑
p=1

Lt
�pNkpLkp

Dv =
np∑
p=1

Lt
vpDvpLvp

P� =
np∑
p=1

Lt
kpP�pL�p; Pk =

np∑
p=1

Lt
kpPkpLkp

(34)

with sums extended to the np contact pairs from that side and where each term comes from
di�erentiation of Equations (28)–(29)

Lvp = {−�t
�Q

�N; �}p (35)

Lbp =

⎧⎪⎪⎨
⎪⎪⎩B

tN −

⎡
⎢⎢⎣
−(x − y)t(a2 × I)

(x − y)t

0

⎤
⎥⎥⎦Q1N;1 −

⎡
⎢⎢⎣
(x − y)t(a1 × I)

0

(x − y)t

⎤
⎥⎥⎦Q2N;2

⎫⎪⎪⎬
⎪⎪⎭
p

(36)

Nkp = {N}p (37)

Dvp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Nt[�t

�Q
�]N; � +Nt; �[Q

���]N+Nt; �
1
‖y; �‖

×{Q���(x − y)⊗ a� + a� ⊗Q���(x − y)
+[��(x − y)] · a�Q�}N; �

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
p

(38)

Expressions for the barred side can be similarly obtained.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:319–333



328 J. A. GONZ �ALEZ, K. C. PARK AND C. A. FELIPPA

On the other hand, terms P[p and �P[p are decomposed into their normal and tangential
parts

P�p=P�np + P�tp and Pkp=Pknp + P�tp (39)

with the following de�nition for the normal part:

1. Case �n(r)¡0

P�np=

⎧⎪⎪⎨
⎪⎪⎩N

t

⎡
⎢⎢⎣
−1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
p

2. Case �n(r)¿ 0

Pknp=

⎧⎪⎪⎨
⎪⎪⎩N

t

⎡
⎢⎢⎣
r 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦N

⎫⎪⎪⎬
⎪⎪⎭
p

In the preceding equations one can see that instead of calculating a complicated non-linear
directional derivative for the non-di�erentiable case �n(r)=0, it has been replaced by a more
simple linear derivative coming from the right side. A similar technique is used for non-
di�erentiable points of the tangential contribution:

1. Case �n6 0

P�tp=

⎧⎪⎪⎨
⎪⎪⎩N

t

⎡
⎢⎢⎣
0 0 0

0 −1 0

0 0 −1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
p

2. Case �n¿0

(a) When ‖[t(r)‖6��n

Pktp=

⎧⎪⎪⎨
⎪⎪⎩N

t

⎡
⎢⎢⎣
0 0 0

0 r 0

0 0 r

⎤
⎥⎥⎦N

⎫⎪⎪⎬
⎪⎪⎭
p

(b) otherwise, if ‖[t(r)‖¿��n

P�tp=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
Nt

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

�
�t1 (r)
�n

�11 �12

�
�t2 (r)
�n

�21 �22

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
p
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Pktp=

⎧⎪⎪⎨
⎪⎪⎩N

t

⎡
⎢⎢⎣
0 0 0

0 r11 r12

0 r21 r22

⎤
⎥⎥⎦N

⎫⎪⎪⎬
⎪⎪⎭
p

with �=��n=(
√
�2t1 (r) + �

2
t2 (r)), �=��n=(�

2
t1 (r) + �

2
t2 (r))

3=2, �=(� − 1)I − �R,
�= �I − �R and R= [t(r)⊗ [t(r).

In the above expressions we are using a linearized substitute for the non-linear directional
derivative appearing when any of these equalities hold �n=0, �n(r)=0 or ‖[t(r)‖=��n,
although the function can be expected to be normally di�erentiable in the large majority of
practical cases.

6. SOLVING THE NON-LINEAR SYSTEM

To solve system (32) the Generalized Newton’s Method with Line Search (GNMLS) has been
used. GNMLS is an e�ective extension of the Newton’s method for B-di�erentiable functions
proposed by Pang [11] in a general context and particularized by Alart [12] and Christensen
[13] for the contact case. This method is based on the computation of the non-linear directional
derivative of the objective function; however, it is well known that in contact problems this
non-linear directional derivative rarely needs to be computed and can be substituted by a
linearized version without a�ecting the algorithm convergence; this is the approach adopted
herein in obtaining (39).
If we de�ne the scalars �∈ (0; 1), �∈ (0; 1=2), and 	¿0 but small, the application of

GNMLS algorithm to solve the non-linear equations F(z)=0, can be summarized in the
following steps:

1. Time integration t: Solve for zt+�t with the known state variable vector zt .

(a) Inner GNMLS iterations, loop k.
(b) Use GMRES to solve for �ztk in the system @F(ztk ;�z

t
k)= − F(ztk).

(c) Obtain �rst integer m=1; 2; : : : that ful�lls H(ztk +�
m�ztk)6 (1− 2��m)H(ztk) with

H(z)= 1
2F

t(z)F(z).
(d) Update the solution ztk+1 = z

t
k + 
k�z

t
k with 
k =�

m.
(e) If H(ztk+1)6 	 continue, else compute new GNMLS iteration k ← k + 1.

2. Make zt+�t = ztk+1 and solve for next time step t ← t +�t.

The algorithm uses two nested loops, the external one cares for time marching and the
internal loop does the Newton subiterations. On each one of these subiterations a linear system
has to be solved to compute the search direction, where we use a sparse matrix storage scheme
combined with the GMRES solver. When a direction �ztk is obtained, it is scaled by a factor
of 
k obtained from the decreasing error condition given by (c).

7. APPLICATIONS

The problem considered is the Hertzian contact of two geometrically identical elastic spheres
of radius R1 =R2 = 8 mm indented applying an external load P=1 N normal to the contact

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:319–333



330 J. A. GONZ �ALEZ, K. C. PARK AND C. A. FELIPPA

Figure 3. Mesh and frame used for the Hertzian problem.

zone. The material properties for the �rst sphere are E1 = 100GPa, �1 = 0:2 and E2 = 100GPa,
�2 = 0:4 for the second. This di�erence in the Poisson’s ratio, together with a friction coe�cient
�=0:25 will produce a distribution of tangential stresses in the contact zone that will not
a�ect considerably the normal pressure, which will be very close to the Hertz solution that
predicts a contact zone radius of 0:378 mm.
The meshes for both spheres are completely identical, generated using 1280 hexahedral

elements and 1569 nodes for each one of them, and re�ning the potentially contact zone (a
square of 1 mm2) with 100 quadrilateral elements and 121 contact nodes, see Figure 3. The
contact frame is a plane of 1 mm2 that uses the same discretization as the potential contact
zone and the normal load is applied using ten time steps. It should be noted that because
Poisson’s ratios for the two contacting spheres are di�erent, the initially matching interface
meshes will lead to non-matching meshes.
The convergence rate for one step solution is presented in Figure 4 in terms of relative

error H(zk)=H(z1) for each GNMLS subiteration k together with the scaling parameter 
k .
On the right side of the same �gure is shown the normal distance from the frame to the
spheres in the deformed state where the contact zone is de�ned by kn≈ 0 and with the mesh
resolution used its radius is estimated to be around 0:35 mm.
The normal Lagrange multipliers are presented in Figure 5 compared with the Hertz

solution (right) for three cross sections along the x direction. The maximum normal
Lagrange multiplier �nmax =0:035 N is obtained at the centre of the contact zone and the
di�erences between the numerical results and the Hertz solution can be attributed to a coarse
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Figure 4. Convergence rate of the GNMLS algorithm and normal distance kn
between the deformed spheres and the frame.
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Figure 5. Distribution of normal multipliers in the contact zone and comparison with Hertz solution.

discretization combined with the use of linear elements. It is well known that the coupling
between the normal and tangential stresses for this problem is very low, meaning that normal
tractions are not considerably a�ected by the frictional phenomena. It was also observed that
the number of steps used to apply the normal load did not modify the normal solution but
a�ected considerably the tangential multipliers inside the central stick zone.
Finally, the tangential Lagrange multipliers in x direction can be seen in Figure 6 obtaining

the same solution rotated 90◦ for the orthogonal direction y. It represents a complex shape
that has to satisfy the slip condition at the external annular region making the tangential forces
equal to the friction limit.
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8. CONCLUSION

A formulation of the frictional contact problem using localized Lagrange multipliers to con-
nect the contacting substructures to an adaptative contact frame is presented. The contact
conditions are mathematically formulated using projection functions and the contact frame is
allowed to move freely between the substructures maintaining the contact zone as an unknown.
The GNMLS is applied to solve the non-smooth system of equations representing the equa-
tions of motion and di�erent regularization techniques to improve convergence are proposed
and tested.
The algorithm and introduced formulations prove to be very robust and e�cient when

solving 3D non-matching contact problems. Suggested methodology simpli�es the procedure
to solve these kind of problems, minimizing geometrical knowledge of the contacting sub-
structures needed to formulate the contact interface behaviour. This fact can facilitate further
extensions for contact problems, like iterative parallel computations or connection between
di�erent numerical techniques like the FEM and the Boundary Element Method.
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