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An Unstructured Finite Element
Solver for Ship Hydrodynamics
Problems
A stabilized semi-implicit fractional step algorithm based on the finite element metho
solving ship wave problems using unstructured meshes is presented. The stabilize
erning equations for the viscous incompressible fluid and the free surface are derive
differential level via a finite calculus procedure. This allows us to obtain a stabili
numerical solution scheme. Some particular aspects of the problem solution, such
mesh updating procedure and the transom stern treatment, are presented. Examples
efficiency of the semi-implicit algorithm for the analysis of ship hydrodynamics prob
are presented.@DOI: 10.1115/1.1530631#
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Introduction
The prediction of the wave pattern and resistance joint to

study of the flow around a ship are topics of major relevance
naval architecture. The analytical and numerical solutions of
problem have challenged mathematicians and hydrodynami
for over a century.

Despite recent advances in computational fluid dynam
~CFD! methods and computer hardware, the numerical soluti
of ship wave problems is still a challenge. This is mainly due
the difficulties in solving the incompressible flow equatio
coupled to the free boundary constraint stating that at this bou
ary the fluid particles must remain on the water surface, wh
position is in turn unknown.

This paper presents advances in recent work of the auth
@1–10#, to derive a stabilized finite element method which allo
us to overcome the above mentioned problems. The starting p
are the modified governing differential equations for the inco
pressible flow and the free surface condition incorporating
necessary stabilization terms via afinite calculus~FIC! procedure
developed by the authors,@8–10#. The FIC technique is based o
writing the different balance equations over a domain of finite s
and retaining higher order terms. These terms incorporate the
gredients for the necessary stabilization of any transient
steady-state numerical solutionalready at the differential equa
tions level. In addition, the modified differential equations can
used to derive a numerical scheme for computing the stabiliza
parameters,@5,6,7,9#.

The stabilized differential equations are first solved in time
ing a semi-implicit fractional step approach. Application of t
standard Galerkin finite element formulation to the fractional st
equations leads to a stabilized system of discretized equa
which overcomes the above-mentioned problems, allowing
equal order linear interpolations of the velocity and pressure v
ables over the elements. Unstructured grids of linear tetrah
have been used in this work. The approach is similar to se
implicit fractional methods proposed in@11–13#. The particular
features of the algorithm here proposed are the additional sta
zation terms introduced by the FIC formulation. These terms
sure the stabilization of the algorithm for small time-step sizes
enhance the convergence towards the steady-state solution.
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surface wave boundary effects are accounted for in the flow s
tion either by moving the free surface nodes in a Lagrang
manner, or else for via the introduction of a prescribed pressur
the free surface computed from the wave height.

The content of the paper is structured as follows. First the
bilized semi-implicit fractional step approach using the finite e
ment method is then described. Details of the computation of
stabilization parameters are also given. Finally some example
applications of the unstructured-grid solver for ship hydrodyna
ics problems are presented.

Finite Calculus „FIC … Formulation of Viscous Turbulent
Flow and Free Surface Equations

We consider the motion around a body of a viscous incompre
ible fluid including a free surface.

The finite calculus form of the governing differential equatio
for the three-dimensional problem can be written as,@8–10# fol-
lows:
Momentum

r mi
2

1

2
hj

]r mi

]xj
50 on V i , j 51,2,3 (1)

Mass Balance

r d2
1

2
hj

]r d

]xj
50 on V j 51,2,3 (2)

1;
the
art-

nta
afterFig. 1 Transom stern model. „a… Regular stern flow, „b … tran-
som stern flow.
2003 by ASME Transactions of the ASME



he
nts

y
a-

lved

s
s is

ere

f
ble
r in-
ight,

q.
Free Surface

r b2
1

2
hb j

]r b

]xj
50 on Gb j 51,2 (3)

where

r mi
5

]ui

]t
1

]

]xj
~uiuj !1

]p

]xi
2

]t i j

]xj

r d5
]ui

]xi
, i 51,2,3

r b5
]b

]t
1ui

]b

]xi
2u3 , i 51,2.

In the above,ui is the velocity along thei th global reference
axis,p is the dynamic pressure (p̄5r(p2gz) wherep̄ is the total
pressure,r is the density andg is the gravity acceleration,b is the
wave elevation, andt i j are the deviatoric viscous stresses relat
to the kinematic viscositym by the standard expression

t i j 5mS ]ui

]xj
1

]uj

]xi
2d i j

2

3

]uk

]xk
D . (4)

The boundary conditions for the stabilized problem are writt
as

njt i j 2t i1
1

2
hjnj r mi

50 on G t (5)

uj2uj
p50 on Gu (6)

Fig. 2 DTMB 5415 model. Geometrical definition based on
NURBS surfaces.
Journal of Applied Mechanics
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where nj are the components of the unit normal vector to t
boundary andt i anduj

p are prescribed tractions and displaceme
on the boundariesG t andGu , respectively.

The underlined terms in Eqs.~1!–~3! introduce the necessar
stabilization for the numerical solution. Additional time stabiliz
tion terms can be accounted for in Eqs.~1!–~3!, @4,5,9#, although
they have been found unnecessary for the type of problems so
here.

Thecharacteristic lengthdistanceshj represent the dimension
of the finite domain where balance of momentum and mas
enforced,@4,8#. The characteristic distanceshb j

in Eq. ~3! repre-
sent the dimensions of a finite domain surrounding a point wh
the velocity is constrained to be tangent to the free surface,@2,9#.

Equations~1!–~6! are the starting point for deriving a variety o
stabilized numerical methods for solving the incompressi
Navier-Stokes equations with a free surface using equal-orde
terpolations for the velocities, the pressure, and the wave he
@1–4,8,9#.

Fractional Step Approach
Let us discretize in time the stabilized momentum Eq. (1a) as

ui
n112ui

n

Dt
1

]

]xj
~uiuj !

n1
]pn

]xi
2

]t i j
n

]xj
2

1

2
hj

]r mi

n

]xj
50. (7)

A fractional step method can be simply derived by splitting E
~7! as follows:

ui* 5ui
n2DtF ]

]xj
~uiuj !2

]t i j

]xj
2

1

2
hj

]r mi

n

]xj
G n

(8)

Fig. 3 DTMB 5415 model. Surface mesh used in the analysis.
Fig. 4 DTMB 5415 model. Wave profile on the hull.
JANUARY 2003, Vol. 70 Õ 19
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Fig. 5 DTMB 5415 model. Wave profile at y ÕLÄ0.082. -* - experimental values,
†24‡. –numerical results.
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ui
n115ui* 2Dt

]p

]xi
. (9)

Note that addition of Eqs.~8! and~9! gives the original stabilized
momentum Eq.~7!.

Substitution of Eq.~9! into Eq. ~2! gives

Dt
]2pn

]xi]xi
5

]ui*

]xi
2t iui

]r d
n

]xi
(10)

wheret i are intrinsic time parameters defined ast i5hi /2ui .
The free surface wave Eq.~3! can be also discretized in time t

give, @2,7,9#,

bn115bn2DtFui
n

]bn

]xi
2u3

n2
1

2
hb j

]r b
n

]xj
G i , j 51,2. (11)

Pressure Stabilization
Using Eq. ~1! and neglecting high-order terms it can be o

tained:

ui

]

]xi
S ]uj

]xj
D5

]r mi

]xi
. (12)

Substituting Eq.~12! into Eq. ~10! gives

~Dt1t i !
]2pn

]xi]xi
5

]ui*

]xi
2t iF]r i8

]xi
Gn

(13)

with

Fig. 6 Wave map of the DTMB 5415 model obtained in the
simulation „above … compared to the experimental data „below …
Y 2003
b-

r i85
]ui

]t
1

]~uiuj !

]xj
2

]t i j

]xj
i , j 51,2,3. (14)

Equation~13! is used to compute the pressure. The left-ha
side is a Laplacian equation for the pressure values at timen,
whereas the right-hand side includes known values of the fr
tional velocities, the velocities and the viscous stresses at timen.

Remark 1. Standard fractional step procedures neglect the c
tribution from the terms involvingt i in Eq. ~13!. These terms
improve the stabilization properties of the algorithm as they e
sure the solution of Eq.~13! when the values ofDt are small. Also
the influence of thet i terms has proven to be essential for obtai
ing improved and fully converged solutions in steady-state pr
lems.

The finite calculus procedure can be also applied to deriv
stabilized pressure increment split scheme. This can be sim
derived by splitting Eq.~7! only for the pressure increment simi
larly as described in@14#.

Remark 2. In Eq. ~13! the cross derivative terms of the pressu
have been neglected. These terms can be accounted for if a pr
definition of thet i parameters is used. For details see@8#.

Remark 3. The residualr i8 can be discretized using the finit
elements method,@15# as

r i85Nr̄ i8 (15)

whereN5@N1 ,N2 , ¯ ,Nn# contains the shape functionsNj and
( •̄) denotes nodal values.

Application of the Galerkin method to Eq.~13! gives after in-
tegration by parts

Fig. 7 KVLCC2 model. Geometrical definition based on
NURBS surfaces.
Transactions of the ASME
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Hklp̄l
n5E

V

]Nk

]xi
ui* dV2E

V

]Nk

]xi
Nr̄ i8

ndV (16)

where Hkl5*V(Dt1t i)]Nk /]xi(]Nl /]xi )dV is the standard
Laplacian matrix.

The values ofr i8 can now be computed by projecting the pre
sure gradients. Neglecting the stabilization terms in Eq.~1! we can
write

r i852
]p

]xi
. (17)

Application of the Galerkin method to Eq.~17! gives using Eq.
~15!

Mr̄ i8
n5qn (18a)

with

Mkl5E
V

NkNldV and qk
n52E

V
Nk

]pn

]xi
dV. (18b)

Equation (18a) can be solved for the values ofr̄ i8
n using an

iterative Jacobian scheme.
Remark 4. The above formulation can also be aplied to t

Reynolds~RANSE! equations. In this case the value ofr mi
in the

stabilized momentum equations is given by,@7#:

r mi
5

]ui

]t
1

]

]xj
~uiuj !1

]p

]xi
2

]~t i j
n 1tRi j

n !

]xj
(19)

Fig. 8 KVLCC2 model. Surface mesh used in the analysis.
Journal of Applied Mechanics
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wheretR
n is the Reynolds stress tensor. In this worktR

n has been
modeled using the standard Boussinesq’s approximation.

Remark 5. The value of the intrinsic time parameterst i have
been taken as,@8,9#,

t i5S 4m

3hi
2 1

2ui

hi
D 21

. (20)

Equation~20! provides the standard values of the intrinsic tim
parameter for the convective limit (ui→0) and the viscous limit
(m→0).

The characteristic length distanceshi are defined here using th
SUPG assumptions giving,@4,8,16#,

h5H h1

h2

h3

J 5h
u

uuu
(21)

whereh5@V(e)#1/3, whereV(e) is the volume of the tetrahedra
element.

The characteristic lenght distanceshb i in the free-surface Eqs
~3! are defined by an identical expression to Eq.~21! with h
5@A(e)#1/2, A(e) being the area of the triangular element over t
sea surface.

More details on the computation of the stabilization parame
can be found in@4–10#.

Finite Element Discretization
Space discretization is carried out using the finite elem

method,@15#. A linear interpolation over four-node tetrahedra f
both ui and p is chosen in the examples shown in next sectio
Similarly, linear triangles are chosen to interpolateb on the free-
surface mesh.

The discretized integral form in space is obtained by apply
the standard Galerkin procedure to Eqs.~8!, ~13!, ~9!, and ~11!
and the boundary conditions~5! and ~6!. Solution of the dis-
cretized problem follows the pattern given below.
Step 1. Solve Eq.„8) for the nodal fractional velocities. The
Dirichlet boundary conditions on the nodal velocities are impos
when solving Eq.~8!. Note that the fractional step method can
interpreted as an incomplete block LU factorization of the mon
lithic problem,@14,17#.
Step 2. Solve Eq.„13) for the nodal pressures at time n¿1. The
pressures computed from Step 4 are used as a boundary con
Fig. 9 KVLCC2 model. Wave profile on the hull compared to experimental
data, †25‡. Thick line shows numerical results.
JANUARY 2003, Vol. 70 Õ 21
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Fig. 10 KVLCC2 model. Wave profile on a cut at y ÕLÄ0.0964 compared to
experimental data, †25‡. Thick line shows numerical results.

Fig. 11 KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, †25‡.

Fig. 12 KVLCC2 model. Map of the X component of the velocity on a plane at 2.82 m from the
orthogonal aft. Comparison with the experimental data, †25‡.
ANUARY 2003 Transactions of the ASME
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Fig. 13 KVLCC2 model. Map of the eddy kinetic energy „K … on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, †25‡.
s

e of

ee
e

free
for solution of Eq.~13! ~viz. Eq. ~18!!.
Step 3. Solve Eq.„9) for the nodal velocities at time n¿1. The
Dirichlet boundary conditions on the nodal velocities are impo

Fig. 14 Bravo Españ a sail racing boat. Mesh used in the
analysis.

Fig. 15 Bravo Españ a. Velocity contours.
d Mechanics
ed

when solving Eq.~9!.
Step 4. Solve for the new free surface height at time n¿1. The
new free-surface elevationbn11 in the fluid domain is computed
from Eq. ~11!.

The pressure at the free surface is obtained from the balanc
tractions at the surface,@18#,

njrt i j 2ni p̄5njrat i j
a 2ni p̄

a1ni

g

R
(22)

wherep̄ is the pressure field on water,p̄a is the air pressure,t i j
a is

the air viscous stress tensor,ra is the air density,g is the surface
tension coefficient,R is the average curvature radius of the fr
surface, andni is the vector in the normal direction to the fre
surface. Assuming]b/]x!1 and ]b/]y!1 it can be takenn
5@0,0,21#.

In Eq. ~22! the turbulent stresses are neglected close to the
surface as shown experimentally,@18,19#.

Assuming that air is at rest (pa50 andt i j
a 50), Eq.~22! can be

simplified as

njrt i j 2ni p̄5ni

g

R
. (23)

The third component of above equation gives

p̄5rt331
g

R
. (24)

The dynamic pressure is finally obtained from

Fig. 16 Bravo Españ a. Streamlines.
JANUARY 2003, Vol. 70 Õ 23
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Fig. 17 Bravo Españ a. Resistance test. Comparison of numerical results with experimental data.
e
c
e

s

e

e

c
i

r
e

r

f

a

r

h
t

ace
ndi-

som
val-
the

low
ns
ell-
hoc

ce
for
d to

hip
h as
ce

tted
d of
un-
the
to a
free-
s.

ssor

n

s
e-
urg

ntal
e

ur-
p5t332
g

rR
1gb (25)

whereg is the modulus of the acceleration of the gravity.
Reaching this point the fluid domain has to be updated du

the new position of the free surface. This is an expensive pro
and a simplified solution can be found by neglecting the chang
the free surface and taking into account its effects by prescrib
the pressure acting on the free surface. In order to increase
accuracy of the solution, the free-surface equation is modified
making use of a Taylor series expansion ofb in theOz direction,
@20#.

Remark 6. The conceptually simplest way to carry out the me
updating due to the new position of the free surface and of
ship is by remeshing the new fluid domain. A number of alg
rithms for computation of moving boundaries and interfaces
cluding free-surface flows using interface-tracking and interfa
capturing techniques and remeshing algorithms have b
proposed in recent years,@13,21#. Indeed, the use of tetrahedr
elements and unstructured grids simplifies this process. Howe
remeshing is nowadays too expensive if industrial application
the algorithm are sought.

Chiandussi, Bugeda, and On˜ate @22# have proposed a simpl
method for movement of mesh nodes ensuring minimum elem
distorsion, thereby reducing the need of remeshing. The metho
based on the iterative solution of a fictitious linear elastic probl
on the mesh domain. In order to minimize mesh deformation
‘‘elastic’’ properties of each mesh element are adequately sele
so that elements suffering greater distortions are stiffer. Appl
tions of this technique to ship hydrodynamic problems can
found in @3,7,9#.

Transom Stern Model
It is well known that the transom flow occuring at a sufficie

high speed has a singularity for the standard solution of the f
surface Eq.~11!. Several authors have proposed solutions to th
problem,@23,24#, mainly based on experimental observations
this phenomena. Next, a more natural solution to solve the t
som flow is presented.

The standard solution of convective equations such as the
surface equation requires prescribing the Dirichlet conditions
the inflow. As the transom causes a discontinuity in the dom
the solution of the free-surface equation close to this region
inconsistent with the convective nature of the equation. The di
solution of the free surface equation in this case results in
instability of the wave height close to the transom region. T
instability is found experimentally for low speeds. The flow a
sufficient high speed is physically more stable although it s
cannot be reproduced by standard numerical techniques.
l. 70, JANUARY 2003
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The solution to this problem is to apply adequate free-surf
boundary conditions at the transom boundary. The obvious co
tion is to fix both the free-surface elevationb and its derivative
along the corresponding streamline to values given by the tran
position and the surface gradient. However, prescribing those
ues can influence the transition between the transom flux and
lateral flux, resulting in unaccurate wave maps.

The method here proposed is to extend the free surface be
the ship. In this way the neccesary Dirichlet boundary conditio
imposed at the inflow domain are enough to achieve the w
possessed properties of the problem. We note that is not an ad
condition, as Eq.~11! has to be satisfied also in the wetted surfa
below the ship. Obviously, this way to proceed is valid both
the wetted and dry transom cases and it can be also applie
ships with regular stern. In Fig. 1 the nodes marked with ‘‘a’’
include the standard degrees-of-freedom~b! of the free-surface
problem; those nodes marked with ‘‘b’’ introduce the new
degrees-of-freedom, while wave elevationb is prescribed at the
nodes marked as ‘‘c. ’’

Indeed, accounting for every surface element of the wetted s
surface is not neccesary. Just the first row of elements is enoug
the rest usually have a fixed wave elevation and will not influen
the results.

This scheme can not be used in the case of partially we
transom when the flow remains adhered to the transom instea
a detatched flow. These phenomena usually appear for highly
steady flows where wake vortex induces the deformation of
free surface. To favor the convergence of the free surface
stable state an artificial viscosity term has been added to the
surface equations in the vecinity of the transom in these case

Examples
All examples have been solved in a standard single proce

PC using the computer code SHYNE,@25# based on the algorithm
here presented and the pre/postprocessorGiD developed at CI-
MNE, @26#. Recent industrial applications of the CFD formulatio
presented can be found in@27#.

Example 1. DTMB 5415 Model. The first case analyzed i
the David Taylor Model Basin 5415 benchmark model. The g
ometry used in the analysis was obtained from the Gothenb
2000 Workshop database,@28#. The NURBS definition is shown
in Fig. 2. The obtained results are compared with experime
data available,@28#. The main characteristics of the analysis ar

• length: 5.72 m, beam: 0.5 m, draught: 0.248 m, wetted s
face: 4.861 m2,

• velocity: 2.1 m/seg, Froude number: 0.28, and
• viscosity: 0.001 Kg/mseg, density: 1000 Kg/m3, Reynolds

number: 12.3106.
Transactions of the ASME
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The analysis was carried out for three different grids~from
150,000 to 600,000 linear tetrahedra, corresponding to 25,000
115,000 nodes! in order to qualitatively analyze the influence
the element size in the solution. Here only the results correspo
ing to the finest grid are shown. The smallest element size u
was 0.002 m and the maximum 0.750 m. The surface mesh o
DTMB 5415 used in the last analysis is shown in Fig. 3. T
Smagorinsky turbulence model with the extended law of the w
was chosen. The tramsom stern flow model presented was u

Figures 4 and 5 show the wave profile on the hull and in a
at y/L50.082, respectively. Numerical results obtained are co
pared with the experimental data.

Figure 6 shows the comparison of the wave map obtained w
the experimental data available.

Example 2. KVLCC2 Model. The next example is the analy
sis of the KVLCC2 benchmark model. Here a partially wett
tramsom stern is expected due to the low Froude number of
test. Figure 7 shows the NURBS geometry used obtained from
Hydrodynamic Performance Research team of Korea~KRISO!.
The obtained results are compared with the experimental
available in the KRISO database,@29#.

The smallest element size used was 0.001 m and the la
0.50 m. The surface mesh chosen is shown in Fig. 8. A tota
550,000 tetrahedra were used in the analysis. The tramsom
flow model presented in the previous section was used.

Test 1. Wave pattern calculation. The main characteristics o
the analysis are listed below:

• length: 5.52 m, beam~at water plane!: 0.82 m, draught: 0.18
m, wetted surface: 8.08 m2,

• velocity: 1.05 m/seg, Froude number: 0.142, and
• viscosity: 0.00126 Kg/mseg, density: 1000 Kg/m3, Reynolds

number: 4.63106.

The turbulence model used in this case was theK model. Fig-
ures 9 and 10 show the wave profiles on the hull and in a cu
y/L50.082 obtained in Test 1, compared to the experimental d
The obtained results are quantitatively good close to the hul
lost of accuracy is observed in the profiles away from the h
This is probably due to the fact that the element sizes are
small enough in this area.

Test 2. Wake analysis at different planes. Several turbulence
models were used~Smagorinsky,K, andK-e model! in order to
verify the quality of the results. Here, only the results from t
K-e model are shown. We note that the velocity maps obtai
even for the simplest Smagorinsky model were qualitatively go
showing the accuracy of the fluid solver scheme used. The m
characteristics of this analysis are listed below:

• length: 2.76 m, beam~at water plane!: 0.41 m, draught: 0.09
m, wetted surface: 2.02 m2,

• velocity: 25 m/seg, Froude number: 0.0, and
• viscosity: 3.051025 Kg/mseg, density: 1.01 Kg/m3, Rey-

nolds number: 4.63106.

Figures 11 to 13 present the results corresponding to the Te
Figures 11 and 12 show the contours of the axial (X) component
of the velocity on planes at 2.71 m and 2.82 m from the ortho
nal aft, respectively. Figure 13 shows the maps of the kin
energy on the first of these planes. Experimental results are sh
for comparison in all cases.

Example 3. AMERICAN CUP BRAVO ESPAÑA Model
The final example is the analysis of the Spanish American C
racing sail boatBravo Espan˜a. The finite element mesh used
shown in Fig. 14. The results presented in Figs. 15–17 corresp
to the analysis of a nonsymmetrical case including appenda
Good comparison between the experimental data and the num
cal results was again obtained.
Journal of Applied Mechanics
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Conclusions
The finite calculus method provides modified forms of the go

erning differential equations for a viscous fluid with a free surfa
Solution of the modified equations with a semi-implicit fraction
step finite element method provides a straight forward and st
algorithm for analysis of ship hydrodynamic problems.

Numerical results obtained in the three-dimensional visc
analysis of complex ship geometries indicate that the propo
numerical method can be used with confidence for practical
drodynamic design purposes in naval architecture.
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