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International Gentre for Numerical Methods A stabilized semi-implicit fractional step algorithm based on the finite element method for
_ inEnginegring, solving ship wave problems using unstructured meshes is presented. The stabilized gov-
Universidad Politecnica de Cataluna, erning equations for the viscous incompressible fluid and the free surface are derived at a
Gran Capitan s/n, differential level via a finite calculus procedure. This allows us to obtain a stabilized
08034 Barcelona, Spain numerical solution scheme. Some particular aspects of the problem solution, such as the

mesh updating procedure and the transom stern treatment, are presented. Examples of the
efficiency of the semi-implicit algorithm for the analysis of ship hydrodynamics problems
are presented[DOI: 10.1115/1.1530631

Introduction surface wave boundary effects are accounted for in the flow solu-

tion either by moving the free surface nodes in a Lagrangean

The prediction of the wave pattern and resistance joint to trP‘ﬁanner, or else for via the introduction of a prescribed pressure at
study of the flow around a ship are topics of major relevance We free surface computed from the wave height

naval architecture. The analytical and numerical solutions of this 1, =" it Of the paper is structured as follows. First the sta-
problem have challenged mathematicians and hydrodynamlug}ﬁzed semi-implicit fractional step approach using the finite ele-

forDover_ta centur;t/. d . tational fluid d .ment method is then described. Details of the computation of the
espite recent advances in computational fluld dynamitgy i ation parameters are also given. Finally some examples of

(CFD.) methods and computer hardware, the _nu_meric_al SOIUtiOQﬁplications of the unstructured-grid solver for ship hydrodynam-
of ship wave problems is still a challenge. This is mainly due g problems are presented

the difficulties in solving the incompressible flow equations

coupled to the free boundary constraint stating that at this boungyite Calculus (FIC) Formulation of Viscous Turbulent
ary the fluid particles must remain on the water surface, who??

position is in turn unknown. ow and Free Surface Equations

This paper presents advances in recent work of the authorsWe consider the motion around a body of a viscous incompress-
[1-10Q], to derive a stabilized finite element method which allowible fluid including a free surface.
us to overcome the above mentioned problems. The starting pointd he finite calculus form of the governing differential equations
are the modified governing differential equations for the inconfor the three-dimensional problem can be written[&s;10Q| fol-
pressible flow and the free surface condition incorporating tHews:
necessary stabilization terms vidiaite calculus(FIC) procedure Momentum
developed by the authors8—10]. The FIC technique is based on

writing the different balance equations over a domain of finite size r —Eh ﬁ: 0 on Q i,j=123 Q)

and retaining higher order terms. These terms incorporate the in- M2 ax ' -

gredients for the necessary stabilization of any transient amﬂ

steady-state numerical soluti@ready at the differential equa- MasS Balance

tions level In addition, the modified differential equations can be 1 arg _

used to derive a numerical scheme for computing the stabilization ra=5h; o 0 on Q j=123 (2
]

parameters,5,6,7,9.

The stabilized differential equations are first solved in time us-
ing a semi-implicit fractional step approach. Application of the
standard Galerkin finite element formulation to the fractional steps (a))
equations leads to a stabilized system of discretized equations
which overcomes the above-mentioned problems, allowing for
equal order linear interpolations of the velocity and pressure vari-
ables over the elements. Unstructured grids of linear tetrahedra
have been used in this work. The approach is similar to semi-
implicit fractional methods proposed {11-13. The particular
features of the algorithm here proposed are the additional stabili-
zation terms introduced by the FIC formulation. These terms en-
sure the stabilization of the algorithm for small time-step sizes and (b)
enhance the convergence towards the steady-state solution. Fre
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Fig. 2 DTMB 5415 model. Geometrical definition based on
NURBS surfaces.
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In the abovey; is the velocity along theth global reference

Fig. 3 DTMB 5415 model. Surface mesh used in the analysis.

where n; are the components of the unit normal vector to the
boundary and; andujP are prescribed tractions and displacements
on the boundarief; andTl",, respectively.

The underlined terms in Eq$1)—(3) introduce the necessary
stabilization for the numerical solution. Additional time stabiliza-
tion terms can be accounted for in E¢¥)—(3), [4,5,9], although
they have been found unnecessary for the type of problems solved
here.

The characteristic lengtidistancedy; represent the dimensions
of the finite domain where balance of momentum and mass is
enforced,[4,8]. The characteristic distancda%j in Eq. (3) repre-
sent the dimensions of a finite domain surrounding a point where
the velocity is constrained to be tangent to the free surfa;8].

Equationg1)—(6) are the starting point for deriving a variety of
stabilized numerical methods for solving the incompressible
Navier-Stokes equations with a free surface using equal-order in-
terpolations for the velocities, the pressure, and the wave height,

axis, p is the dynamic pressur@& p(p—gz) wherep is the total [1-4,8,9.

pressurep is the density and is the gravity acceleratiorg is the

wave elevation, and;; are the deviatoric viscous stresses related ]

to the kinematic viscosity: by the standard expression Fractional Step Approach

au;  du; 2 duy

Let us discretize in time the stabilized momentum Ecp)(&s

= +—=6iz—]|. 4
T a3 @ ut—ul Loop" am 1 rm,
The boundary conditions for the stabilized problem are written At + (9_xj(uiui) + X (9_)(] N Ehi a_xl =0. (7
as . . . o
A fractional step method can be simply derived by splitting Eq.
1 (7) as follows:
anij—tiJrEhjnjrmi:O on T (5) .
JE— %x_.n A d (77'”' 1 h armi 8
u-uP=0 on T, (6) e P L ®
DTMB 5415
‘Yvave Profile on Hull
i = f\
’\ x Experimental L \
7 <[
AR Vo
T YA | .
42 -0.00% 04 * X ¥y " x“x t x 12

Fig. 4 DTMB 5415 model. Wave profile on the hull.
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Fig. 5 DTMB 5415 model. Wave profile at y/L=0.082. -*- experimental values,
[24]. —numerical results.

ap" au;  d(ujup) T
Ntl_, %k _ As P [ L A §
Ui T=ui - At ax; ©) A" X X b
Note that addition of Eq¥8) and(9) gives the original stabilized  Equation(13) is used to compute the pressure. The left-hand
momentum Eq(7). side is a Laplacian equation for the pressure values at time

=1,23. (14)

Substitution of Eq(9) into Eq. (2) gives whereas the right-hand side includes known values of the frac-
Ppt ou* orn tional velocities, the velocit_ies and the viscous stresses atrtime
= oy (10) Remark 1 Standard fractional step procedures neglect the con-
axiox;  axax tribution from the terms involvingr, in Eq. (13). These terms

where, are intrinsic time parameters definedas h;/2u; . improve the stabilization properties of the algorithm as they en-

The free surface wave E€B) can be also discretized in time toSU"® the solution of Eq13) when the values okt are small. Also
the influence of the; terms has proven to be essential for obtain-

give,[2,7,9, el ) .
ing improved and fully converged solutions in steady-state prob-
he1 o a0 1 Bl lems.
BT =B AU - —us— Shg =) 1j=12. (11)  The finite calculus procedure can be also applied to derive a
' ! stabilized pressure increment split scheme. This can be simply
Pressure Stabilization derived by splitting Eq(7) only for the pressure increment simi-
) ) ] ) larly as described if14].
Using Eq.(1) and neglecting high-order terms it can be ob- Remark 21n Eq.(13) the cross derivative terms of the pressure
tained: have been neglected. These terms can be accounted for if a proper
definition of ther; parameters is used. For details $8¢
J [ du: I
ui—(—’) — (12) Remark 3 The residualr{ can be discretized using the finite
X\ 9x; ) X elements method15] as
Substituting Eq(12) into Eg. (10) gives f =N (15)
#p"  aut ar! " . '
(At+7)——=——1| — (13) whereN=[Ny,N,, ---,N,] contains the shape functioi and
XidX; - IX IXi (*) denotes nodal values.

Application of the Galerkin method to E@L3) gives after in-

with .
tegration by parts

Fig. 6 Wave map of the DTMB 5415 model obtained in the Fig. 7 KVLCC2 model. Geometrical definition based on
simulation (above) compared to the experimental data (below) NURBS surfaces.
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where 7} is the Reynolds stress tensor. In this wetkhas been
modeled using the standard Boussinesq’s approximation.

Remark 5 The value of the intrinsic time parametershave
been taken a$8,9],

4 2u;\ 7t
Ti_(3_hi2+ h_l) . (20)

Equation(20) provides the standard values of the intrinsic time

parameter for the convective limiu{—0) and the viscous limit

(u—0).
The characteristic length distandesare defined here using the

Fig. 8 KVLCC2 model. Surface mesh used in the analysis. SUPG assumptions giving4,8,16
h={ihzf =hro 1)
oN oN
Hk@":f (?—kufdﬂ—f — N "dQ (16) s
o X o 7% whereh=[V®1¥3 whereV® is the volume of the tetrahedral

where Hy = [ o(At+7)dN, /dx;(IN, /9%, )dQ is the standard element. o _ )
Laplacian matrix. The characteristic lenght distandeg in the free-surface Egs.

s(3) are defined by an identical expression to Egl) with h
=[A®1¥2 A pheing the area of the triangular element over the
sea surface.

The values of | can now be computed by projecting the pre
sure gradients. Neglecting the stabilization terms in(Egwe can

write . . I
More details on the computation of the stabilization parameters
, ap can be found if4-10|.
ri=—-—. a7
IXi
Application of the Galerkin method to E@L7) gives using Eq. Finite Element Discretization

(15 Space discretization is carried out using the finite element

Mr/"=q" (18a) method,[15]. A linear interpolation over four-node tetrahedra for
with both u; and p is chosen in the examples shown in next section.

Similarly, linear triangles are chosen to interpol@ten the free-
ap" surface mesh.
Mk':f NN dQ  and qg= —f NdeQ. (18) The discretized integral form in space is obtained by applying
Q Q Xi the standard Galerkin procedure to E¢R), (13), (9), and (11
and the boundary condition&) and (6). Solution of the dis-
cretized problem follows the pattern given below.
tep 1. Solve Eq.(8) for the nodal fractional velocities. The
irichlet boundary conditions on the nodal velocities are imposed
when solving Eq(8). Note that the fractional step method can be
interpreted as an incomplete block LU factorization of the mono-

Equation (1&) can be solved for the values of" using an
iterative Jacobian scheme.

Remark 4 The above formulation can also be aplied to th
Reynolds(RANSE) equations. In this case the valuer(p,fi in the

stabilized momentum equations is given Bgj}:

U 9 op A Tinj +70) lithic problem,[14,17]. _
M= — + —(Uu;) + — — —— (19) Step 2. Solve Eq(13) for the nodal pressures at time nt+1. The
Poodt o ox; 7 ax X pressures computed from Step 4 are used as a boundary condition
KvLcc2
Wave Profile on Hull
0.012
0.01
0.006
-3+ Experimental ==—Numerical
0.008

0.002 \
A
-0.002 EX ) j‘

-0.004

-0.000

Fig. 9 KVLCC2 model. Wave profile on the hull compared to experimental
data, [25]. Thick line shows numerical results.
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Fig. 10 KVLCC2 model. Wave profile on a cut at  y/L=0.0964 compared to
experimental data, [25]. Thick line shows numerical results.
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Fig. 11 KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, [25].

Fig. 12 KVLCC2 model. Map of the X component of the velocity on a plane at 2.82 m from the
orthogonal aft. Comparison with the experimental data, [25].
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Fig. 13 KVLCC2 model. Map of the eddy kinetic energy ~ (K) on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, [25].

when solving Eq(9).
Step 4. Solve for the new free surface height at time-h1. The
new free-surface elevatiof”*? in the fluid domain is computed
from Eq. (12).

The pressure at the free surface is obtained from the balance of
tractions at the surfac¢l18],

_ Y
anTij_niP:anaTﬁ—niﬁa"‘niﬁ (22)

wherep is the pressure field on watg? is the air pressure:f} is
the air viscous stress tenset, is the air density;y is the surface
tension coefficientR is the average curvature radius of the free
surface, and; is the vector in the normal direction to the free
surface. Assuming/B/dx<1 and dB/dy<<1 it can be takem
=[0,0,-1].

In Eq. (22) the turbulent stresses are neglected close to the free
surface as shown experimentall$.8,19.

Assuming that air is at respf=0 andr{"}=0), Eq.(22) can be
Fig. 14 Bravo Espan a sail racing boat. Mesh used in the simplified as
analysis.

— Y
njpTij—nip=ni§. (23)
The third component of above equation gives

— Y
P=pTt - (24)

The dynamic pressure is finally obtained from

Fig. 15 Bravo Espan a. Velocity contours.

for solution of Eq.(13) (viz. Eq. (18)).
Step 3. Solve Eq(9) for the nodal velocities at time m-1. The
Dirichlet boundary conditions on the nodal velocities are imposed Fig. 16 Bravo Espan a. Streamlines.
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Fig. 17 Bravo Espan” a. Resistance test. Comparison of numerical results with experimental data.

The solution to this problem is to apply adequate free-surface

Y " . -
p=1733— R +9B8 (25) boundary conditions at the transom boundary. The obvious condi-
P tion is to fix both the free-surface elevatighand its derivative
whereg is the modulus of the acceleration of the gravity. along the corresponding streamline to values given by the transom

Reaching this point the fluid domain has to be updated due position and the surface gradient. However, prescribing those val-
the new position of the free surface. This is an expensive process can influence the transition between the transom flux and the
and a simplified solution can be found by neglecting the changelaferal flux, resulting in unaccurate wave maps.
the free surface and taking into account its effects by prescribingThe method here proposed is to extend the free surface below
the pressure acting on the free surface. In order to increase the ship. In this way the neccesary Dirichlet boundary conditions
accuracy of the solution, the free-surface equation is modified byposed at the inflow domain are enough to achieve the well-
making use of a Taylor series expansiongoih the Oz direction, possessed properties of the problem. We note that is not an ad hoc
[20]. condition, as Eq(11) has to be satisfied also in the wetted surface

Remark 6 The conceptually simplest way to carry out the meshelow the ship. Obviously, this way to proceed is valid both for
updating due to the new position of the free surface and of tilee wetted and dry transom cases and it can be also applied to
ship is by remeshing the new fluid domain. A number of algcships with regular stern. In Fig. 1 the nodes marked wigf “
rithms for computation of moving boundaries and interfaces ifRclude the standard degrees-of-freed¢@) of the free-surface
cluding free-surface flows using interface-tracking and interfacproblem; those nodes marked withb™ introduce the new
capturing techniques and remeshing algorithms have begegrees-of-freedom, while wave elevatignis prescribed at the
proposed in recent yeargl3,21. Indeed, the use of tetrahedranodes marked asc:”
elements and unstructured grids simplifies this process. Howeverlndeed, accounting for every surface element of the wetted ship
remeshing is nowadays too expensive if industrial applications sidirface is not neccesary. Just the first row of elements is enough as
the algorithm are sought. the rest usually have a fixed wave elevation and will not influence

Chiandussi, Bugeda, and & [22] have proposed a simple the results.
method for movement of mesh nodes ensuring minimum elementThis scheme can not be used in the case of partially wetted
distorsion, thereby reducing the need of remeshing. The methodrsnsom when the flow remains adhered to the transom instead of
based on the iterative solution of a fictitious linear elastic problemdetatched flow. These phenomena usually appear for highly un-
on the mesh domain. In order to minimize mesh deformation tisteady flows where wake vortex induces the deformation of the
“elastic” properties of each mesh element are adequately selecfeee surface. To favor the convergence of the free surface to a
so that elements suffering greater distortions are stiffer. Applicatable state an artificial viscosity term has been added to the free-
tions of this technique to ship hydrodynamic problems can tsurface equations in the vecinity of the transom in these cases.
found in[3,7,9.

Examples

Transom Stern Model All examples have been solved in a standard single processor

It is well known that the transom flow occuring at a sufficien£ C using the computer code SHYNE25] based on the algorithm

high speed has a singularity for the standard solution of the fr ere presented anq the pre/post_pro_cem developed at Cl-

surface Eq(11). Several authors have proposed solutions to the E, [26]. Recent industrial applications of the CFD formulation

problem,[23,24], mainly based on experimental observations d?resented can be found [@7].

this phenomena. Next, a more natural solution to solve the tran-Example 1. DTMB 5415 Model. The first case analyzed is

som flow is presented. the David Taylor Model Basin 5415 benchmark model. The ge-
The standard solution of convective equations such as the fregnetry used in the analysis was obtained from the Gothenburg

surface equation requires prescribing the Dirichlet conditions 2000 Workshop databasg28]. The NURBS definition is shown

the inflow. As the transom causes a discontinuity in the domaiim, Fig. 2. The obtained results are compared with experimental

the solution of the free-surface equation close to this region dgta available[28]. The main characteristics of the analysis are

inconsistent with the convective nature of the equation. The direct

solution of the free surface equation in this case results in the® length: 5.72 m, beam: 0.5 m, draught: 0.248 m, wetted sur-

instability of the wave height close to the transom region. This face: 4.861 m,

instability is found experimentally for low speeds. The flow at a * velocity: 2.1 m/seg, Froude number: 0.28, and

sufficient high speed is physically more stable although it still * viscosity: 0.001 Kg/mseg, density: 1000 KgimReynolds

cannot be reproduced by standard numerical techniques. number: 12.31%
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The analysis was carried out for three different gri®m Conclusions
150,000 to 600,000 linear tetrahedra, corresponding to 25,000 anci.h - . -
) e . e finite calculus method provides modified forms of the gov-
115,000 nodesin order to qualitatively analyze the influence of ning differential equations for a viscous fluid with a free surface.

A : e
the element size in the solution. Here only the resuilts COrreSpoggglution of the modified equations with a semi-implicit fractional

ing to the finest grid are shown. The smallest element size us . . .
> p finite element method provides a straight forward and stable
was 0.002 m and the maximum 0.750 m. The surface mesh of @J orithm for analysis of ship hydrodynamic problems.

DTMB 5415 used in the last analysis is shown in Fig. 3. The Numerical results obtained in the three-dimensional viscous

Smagorinsky turbulence model with the extended law of the wal : : o
was ?:hosen%/The tramsom stern flow model presented was usg&alyss of complex ship geometries indicate that the proposed

Figures 4 and 5 show the wave profile on the hull and in a ) merical method can be used with confidence for practical hy-

aty/L=0.082, respectively. Numerical results obtained are co fodynamic design purposes in naval architecture.
pared with the experimental data.
Figure 6 shows the comparison of the wave map obtained wiffcknowledgments
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