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Abstract. Finite deformation plasticity often involves the multiplicative split of the deformation gradient
into an elastic and plastic part. Motivated by observations in physics, the plastic part is assumed to
be volume preserving, i.e., the plastic part of the deformation gradient is unimodular. In order to not
accumulate errors, in the best case, one fulfills this constraint exactly to obtain accurate results (see,
e.g., [3]). While other approaches where pursued as well, many authors therefore adopted the use of the
exponential map, which is a geometric integrator preserving the plastic incompressibility. However, it’s
computation is not straightforward and performing the eigenvalue decomposition and it’s linearization
for the exponential function is numerically elaborate. Therefore, in this work, a new approach which
also exactly preserves the incompressibility constraint is developed. It makes use of a projection of all
symmetric tensors onto the manifold of unimodular tensors. The proposed method is compared to models
utilizing the exponential map in numerical experiments.

1 INTRODUCTION

Nowadays in finite plasticity modeling, many models make use of the multiplicative split of the defor-
mation gradient into an elastic and plastic part, which was introduced by [1, 2]. This split is depicted in
Figure 1, where the initial configuration is deformed by the plastic deformation gradient Fp, yielding the
intermediate configuration. Next, the intermediate configuration is deformed by the elastic deformation
gradient Fe, yielding the current configuration. To incorporate kinematic hardening into the model, we
employ a further split of Fp, which was pursued by [4] (see also [5]). Due to observations from physics,
one assumes Fp to be unimodular, i.e., det(Fp) = 1. In many works, this is dealt with by using the
exponential map as a geometric integrator, which exactly preserves the incompressibility of the plastic
deformations (see, e.g., [6, 7, 5] among many others). In this work however, we employ a projection
method which also intrinsically ensures the plastic incompressibility.
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Figure 1: Multiplicative split of the deformation gradient. Reference configuration on the left, interme-
diate configuration at the bottom center and the current configuration on the right.

2 Theory of the model

2.1 Kinematics

As specified in the introduction, this model pursues the multiplicative split of the deformation gradient,
i.e.,

F = FeFp. (1)

This allows to introduce the left elastic and right inelastic Cauchy-Green tensors

be = FeFeT, Cp = FpTFp. (2)

Further, in analogy to [4], we split the plastic deformation gradient as follows

Fp = FpeFpd. (3)

Here, Fpe is the energetic part and Fpd is the dissipative part of Fp. This definition allows to define a
dissipative stretch Cpd as

Cpd = FpdTFpd. (4)

Additionally, the Kirchhoff stress tensor

τ = Jσ = FeSeFeT (5)

can be given in terms of the Cauchy stress σ and the Jacobi determinant J or the second Piola-Kirchoff
stress tensor Se. Finally, we can define bpe as the plastic energetic left Cauchy-Green tensor defined via

bpe = FpeFpeT. (6)

2.2 Contributions to the Helmholtz free energy

For the elastic contribution, a Neo-Hookean elastic energy is assumed in the form of

ψe(be) =
λ

4

(
Je2−1−2ln(Je)

)
+

µ
2
(Ibe−3−2ln(Je)) (7)
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where Ibe denotes the first invariant of be, J = det(F) and λ and µ are Lamé parameters. Further, for the
isotropic hardening, we assume a Voce-type hardening in the form of

ψh = H
(

α+
exp(−βα)

β

)
, (8)

where H and β are material parameters and α is the equivalent plastic strain. The kinematic hardening
energy ψk is taken to be

ψk = µpCp : Cpd−1, (9)

where µp is is a material constant. The dissipation potential is taken to be

φ =

{√
2
3 σy0‖Dp‖; if tr(Dp) = 0

∞ ; else,
(10)

where Dp is the symmetric part of the plastic velocity gradient and σy0 is the initial yield stress. Next,
the flow rule and yield criterion read

Dp = γ
∂ f
∂Σ

e , (11)

and

f = ‖(Σe−Σ
b)
′‖−

√
2
3
(σy0 +q)≤ 0. (12)

Here, Σe is the Mandel stress w.r.t. the intermediate configuration and Σb is the Mandel back stress
defined via

Σ
e =CeSe, Σ

b = 2FpeT ∂ψk

∂bpe Fpe. (13)

With all the energetic contributions defined, the full rate potential reads

π = ψ̇e(be)+ ψ̇h(α)+φ+µpCpd−1 : Ċp
. (14)

2.3 Treatment of the incompressibility constraint

In finite strain plasticity, it is important to fulfill the plastic incompressibility with high accuracy to not
accumulate errors (see, e.g., [3]). Therefore, we introduce an unconstrained counterpart Ĉp to Cp such
that

Cp =
(
det(Ĉp)

)− 1
3 Ĉp. (15)

Here, Ĉp is a positive definite symmetric but otherwise arbitrary tensor. This intrinsically ensures the
unimodularity of Cp by only taking the unimodular part of Ĉp, which is depicted in Fig.2. In analogy, a
reparametrization for Cpd is introduced as

Cpd =
(
det(Ĉpd)

)− 1
3 Ĉpd. (16)

Further, a Frederick-Armstron type hardening law is assumed. Therefore, Cpd is dependent on the plastic
multiplier γ via

Ĉpd =Cpd
n +2∆γ

b
c

Σ
b
n
′
. (17)
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Figure 2: Reference volume on the left gets stretched by Ĉp. Thereafter, it is volumetrically stretched
back to its original volume by det(Ĉp)−

1
3 I, rendering Cp unimodular.

2.4 Algorithmic counterpart to φ

To minimize the potential from Eq. 14, we need to find an algorithmic counterpart φ∆, which is time-
discrete and φ∆/∆t converges towards φ with ∆t→ 0. A possible choice is

φ∆ =

{
1
2

√
2
3 σy0‖cp− I‖ ; if det(cp) = 1

∞ ; else
. (18)

Here, cp can be interpreted as the plastic push-forward of Cp and is defined as

cp = Fp
n
−TCpFp

n
−1. (19)

2.5 Differentiability at ∆Cp = 0

When trying to minimize the potential using a Newton scheme, one needs to differentiate it with re-
spect to the internal variables. However, in it’s current form, it is not differentiable at ∆Cp = 0, which
complicates the numeric solution. Therefore, a further reparametrization is introduced as

Ĉp = I +2∆γNp. (20)

Here, Np is a symmetric tensor with the constraints ‖Np‖= 1 and ∆γ≥ 0. Now, it can be easily verified
that the potential is differentiable at ∆Cp = 0.

2.5.1 Removing the constraint ‖Np‖= 1

The goal when introducing the projection was to drop the incompressibility constraint. However, through
removing it, we added the further constraint ‖Np‖ = 1. To finally remove all constraint from the mini-
mization problem, we introduce one last reparametrization

Np =
Ñp

‖Ñp‖
. (21)

Here, Ñp is a symmetric, but otherwise arbitrary tensor. Obviously, the constraint is now gone.
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2.5.2 Preventing singularities

As the observant reader might have already noticed, through reparametrizing the potential became in-
variant w.r.t. change in det(Ĉp) and ‖Ñp‖. For det(Ĉp), this is depicted in Figure 3. Here, it is clear

Ĉp

det(Ĉp)−
1
3 I

Cp = det(Ĉp)−
1
3 Ĉp

Figure 3: Changing the volumetric part of Ĉp does not change the resulting Cp.

that changing the volumetric part of Ĉp does not induce any changes in the resulting Cp. Likewise, this
is the case for ‖Np‖, which renders the system matrix ∂2π/∂z2 singular. Here, z is the vector of internal
variables. To overcome this singularity, an artificial regularization energy πR is introduced as

πR =
1
2

A
(
( ÎII

p−1)2 +(‖Ñp‖−1)2). (22)

This term may be interpreted as a spring with spring constant A pulling IIIp and ‖Ñp‖ towards 1. Here,
it has to be noted that choosing A is arbitrary, since it won’t have an influence on the final solution.
This is due to the fact, that since the potential is, apart from the regularization energy, free of IIIp and
‖Ñp‖. Therefore, the regularization energy is always 0 at the minimum. Further, this means that while
πR allows us to find the solution by removing the singularity, it has no influence on the final solution.
Now, in the results section, we minimize the potential

Π =
∫
B

(
ψe +ψh + ψ̃k +φ∆ +πR

)
dV. (23)

3 Results

To verify the results of the presented algorithm, they are compared to a necking of a circular bar example
from [6]. The distribution of the equivalent plastic strains for the deformed bar are shown in Fig. 4.
Additionally, the material parameters used in the finite element model are given in Tab. 1. Further, the
convergence of the proposed method was analyzed with respect to the amount of time steps. Therefore,
the necking displacement is plotted against the elongation in Fig. 5. Here, one can see the solution is
converging against roughly 3.75mm. For already 30 time steps, it is fairly close to the converged solution.
Additionally, the resulting necking displacements are very close to the ones from [6].
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Figure 4: Distribution of the equivalent plastic
strain α over the deformed bar after loading.
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Figure 5: Convergence of the necking displacement
vs. Elongation for varying amount of time steps.

κ [MPa] µ [MPa] σy0 [MPa] σy∞ [MPa] β H [MPa]
164210 80193.8 450 715 16.93 129.24

Table 1: Material constants for necking of a circular bar.

4 Summary and Outlook

In this paper, a new model to overcome incompressibility constraints in finite deformation mechanics
was proposed. The model uses a projection which projects an unconstrained counterpart to Cp onto
the manifold of unimodular tensors to exactly satisfy the constraint. Finally, the model was verified
using an example from the literature. Here, the results showed to be very promising. Therefore, in the
future, further materials with incompressibility constrained, e.g., shape memory alloys or rubbers, may
be modeled using this projection method.
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