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Abstract. Masonry domes are shell-like structures with a no-tension type material behavior 

[1]. The dome geometry, material behavior and the type of the loading define how the dome 

balances the load. It is known and proved that the dome could balance the load only by forces, 

without bending moment but cracks may appear since the material does not resist tension. The 

surface where the balancing forces are acting is called the thrust surface. The paper introduces 

the idea of the general thrust surface. It is such a balancing surface where the forces are not 

acting in the tangent plane of the thrust surface and otherwise it is moment free. A method is 

shown how to find the general thrust surface for a cracked spherical masonry dome. Numerical 

example illustrates the usefulness and effectiveness of the proposed method to determine the 

general thrust surface of a spherical dome when radial stereotomy is considered. By the help 

of the proposed model the safety of the more than 350 years old, cracked dome of Gol Gumbaz, 

India can be proofed. 
 

 
1 INTRODUCTION 

Masonry domes are shell-like structures with a no-tension type material behaviour [1]. The 
dome geometry, material behaviour and the type of the loading define how the dome balances 
the load. It is known and proved that the masonry dome could balance the load only by forces, 
without bending moment but cracks may/will appear since the material does not resist tension. 
The surface where the balancing forces are acting is called the thrust surface. Generally, this is 
not coincided by the mid-surface of the dome. 

If the balancing forces are acting in the tangent plane of the thrust surface than the thrust 
surface is called catenary-type membrane/thrust surface. It is analogous to the envelope of 
resultant forces in case of masonry arches. If the membrane/thrust surface coincides with the 
mid-surface of the dome, then the dome is a funicular-type shell, i.e. a membrane shell. 
Otherwise, the masonry dome is safe if the thrust surface is located within the thickness of the 
dome, nevertheless cracks might form. 

The thrust surfaces, mentioned above, can be examined and determined by e.g. thrust 
network analysis (TNA) [2, 11, 12] or by solving Pucher’s equation for membrane shells, that 
provides the corresponding stress function [3, 4]. If the dome cracks, then the thrust surface 
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may still be approximated by the series of thrust lines that correspond to the modified model of 
the cracked dome, i.e. a series of orange-slice arches [1]. 

It is possible to find a moment-free surface (i.e. thrust surface) to arbitrary dome geometry 
and loads. However, depending on the stereotomy of the dome, it is not necessarily a membrane 
surface. This situation is analogous to the general relation between the resultant force vector 
and the thrust line in the masonry arch [5]. The term general thrust surface is introduced to 
label such a moment-free surface. 

The present paper introduces a method to determine the general thrust surface for a spherical 
dome geometry for radial stereotomy. The load is defined relative to the mid surface of the 
dome. 

Despite the rich literature investigating the phenomena’s 2D equivalent (i.e. effect of 
stereotomy on the thrust line of masonry arches), to the authors knowledge the presented 
method is a novel approach in the analysis of domes. It may be shown, that both the catenary-

type and the funicular-type membrane/thrust surfaces are special cases of the general thrust 
surface. 

No-tension material behavior and cracks in particular could lead to a general thrust surface. 
Numerical example illustrates the usefulness and effectiveness of the proposed method to 
determine the general thrust surface of a spherical dome. 

2 GENERAL DESCRIPTION OF THE PROBLEM 

Spherical masonry domes are frequently built in the past and so they are considerable part 
of the architectural heritage. While the sphere, as a form, is architecturally pleasing, then from 
structural point of view it is not perfect, for the bottom part of it may be cracked in meridional 
direction for gravity loads. These crack can be avoided if the sphere has special thickness 
variation. However, this special thickness variation is unrealistic in the vicinity of the bottom 
of the dome [6]. 

In case of real domes, it is a general experience that the dome is cracked in meridional 
direction like in case of the Pantheon [7] or dome of Gol Gumbaz in India [13]. These cracks 
may be caused by the self-weight or other effects like temperature changing. Independently of 
the real cause the main question is if the dome is safe in cracked state or not. Obviously the 
other important question could be how the cracks are developed due to certain loading 
considering the real, discrete nature of the cracks. 

Now our purpose is to examine if a meridional cracked dome could be in equilibrium for its 
self-weight. We are looking for a thrust surface which provide the possibility to check the safety 
of the cracked dome. If the thrust surface is enclosed by the thickness of the dome than the 
equilibrium is possible. 

The model considers the real state of dome such that the top cap part is not cracked, only the 
bottom one, Fig. 1a. 

Assumptions: 
- The dome has hemispherical mid-surface and it is loaded by its self-weight. 
- It is a masonry dome, made of no-tension material i.e. cracks for tension, 
- The top, cap part of the dome is not cracked. Its behavior may be described by the 

membrane state of a spherical shell. 
- The bottom part is cracked in meridional direction. The cracks are through cracks 
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and it is assumed that they are so dense that no any internal force can develop in the 
circumferential direction Fig. 1b. Its behavior may be described by the bending 
theory of shells. 

- The top and bottom parts are jointed along a circumferential circle at the top end of 
the cracks. The crack free cap defines the jointing conditions. 

- The bottom edge support can resist both vertical and horizontal forces even when 
they are eccentric i.e. when bending moment is also acting there. 

  

a) b) 
Figure 1: a) Masonry dome with real crack distribution, b) Masonry dome model with dense crack distribution. 

3 MASONRY DOME WITH CRACKS 

The two parts of the masonry dome, the cap and the cracked bottom part has different model 
corresponding to the different states. The cap is assumed to behave as a membrane shell which 
is under compression in both, meridional and circumferential, direction too, i.e. it is crack free. 
The model of the bottom, cracked part is bending shell model, but the meridional cracks cancel 
the internal forces in the circumferential direction. 

The solutions for the two parts are jointed at the top end of the crack. The crack length is not 
known in advance so it is a free parameter of the problem. Its effect will be discussed in the 
chapter 3.4. 

 

Figure 2: Membrane stet of the cap of the dome 

3.1 Solution for the cap of the dome 

The cap of the dome is in membrane stress state. The problem is rotationally symmetric as 
the self-weight as a load is also that kind. There are only two membrane normal forces to 
balance the load in each, meridional and circumferential, direction, Fig. 2. The equilibrium 
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equations and its solutions for self-weight is well known in the literature, [8, 9, 10]. 
It is characteristics for the solution that there is circumferential tension below the so called 

neutral angle (�� � 51,82°), while the cap part is under compression in both direction, Fig. 3. 
So there is a possibility to develop a through, meridional cracks due to circumferential 

tension even for self-weight. Corresponding to the no-tension material assumption the cracks 
run up to the neutral angle. Obviously for a real masonry dome material the crack should stop 
below the neutral angle depending on the tensile strength of the dome material. Otherwise these 
self-weight caused cracks may propagate further due to other effects like for example 
temperature changing and traffic caused vibration. Consequently, the cracks may end below or 
above of the neutral level independently if the self-weight alone could cause it. 

That is why it is important to examine and discuss if the cracked dome is in equilibrium in 
cracked state for any length of the crack. 

 

Figure 3: Membrane forces of the dome. a = 5 m, w = 6,25 kN/m2, t = 38 cm. 

3.2 Solution for the bottom, cracked part of the dome 

The bottom, cracked part is considered as a bending shell but the meridional, through cracks 
are so dense that no circumferential internal forces are developed, i.e. there is no resistance into 
circumferential direction, Fig. 1 and 4. (This is a kind of approximate, “smeared crack” model, 
although typically there are only 8 -16 discrete cracks in real domes.) However, the bending is 
effective in the meridional direction and the rotational symmetry of the problem is not altered. 

The equilibrium equations of the cracked dome according to the rotationally symmetric 
bending shell theory are, [8, 10]: 




� � sin � ��� �  sin ��� � ��� sin � � 0, (1) 

 sin � �� � 


� � sin � ��� � ��� sin � � 0, (2) 




� � sin � ��� � � sin � �� � 0. (3) 

The equilibrium equation system can be solved without any need of geometrical and 
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constitutive equation, i.e. the cracked dome part as a bending shell is statically determinate. 
A closed form solution can be given analytically for self-weight (�, kN/m2) which is 

determined by the thickness variation (����, cm) and the density of the material of the dome. 
For uniform thickness (�) and so for constant self-weight (�), which is the worst case in that 

sense that the thickness variation is advantageous, the solution is: 

 sin � �� � �� sin � � �� cos � �  
� �� sin 2�, (4) 

 sin � �� � �� sin � � �� cos � � �� cos� �, (5) 

 sin � �� � ��  sin � � �� cos � � �# $�
� �  

% sin 2�& � �#. (6) 

The �'-s are integration constants and can be found from the static or natural boundary 
conditions provided by the cap part of the dome at the top end of the meridional cracks. 

For other thickness variations the solutions from (1-3) equations can be found in a similar 
way. 

 

Figure 4: Bending state of the cracked bottom part of the dome 

3.3 Jointing the solutions, the effect of crack length on the internal forces 

The solution for the cap at the end of the crack gives the boundary conditions for the cracked 
part. For a chosen crack length (� � ��) the internal forces are determined by the membrane 
solution. Namely the internal forces of the cracked part at the end of the crack, where � � �� 
are: ����(� � ���, ����(� � 0, and ����(� � 0, where ��� is the membrane meridional force 
at � � ��. 

As it was said earlier the length of the crack, characterized by ��, is a parameter of the 
problem. Keeping in mind that we assumed no tension material behavior the crack end is at the 
neutral angle. Considering real material behavior with finite tensile strength the crack ends 
below the neutral level. However due to other effects than self-weight the crack may propagate 
above the neutral level and the dome must be in equilibrium even in this case too. 

Some numerical results can be seen on Fig. 5 considering all these possibilities. Fig. 5c 
shows such a case when the crack is longer than what the no-tension case defines. Fig.5b is for 
the no-tension solution and the Fig. 5a shows the results for finite tensile strength material. 

It is a general characteristic of each that the meridional force is not changed considerably for 
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the cracked part. This is due to that the bending shear force is not too large and it is not really 
effective to balance the load. The meridional bending moment is not too large and it will 
determine the location of the thrust surface. The transition between the cap and cracked part is 
“smooth” considering the meridional-, shear force and bending moment. However, the 
circumferential force has jump at the jointing circle which is a crude estimation of the real 
behavior. 

The connection between the two dome parts in reality is not along a circumferential circle 
but it is rather a transition zone which is not considered here in the proposed model. 

 

a)  

b)  

c)  

Figure 5: Internal forces of the cracked dome for different crack lengths. a) Crack length is � � 70°, b) Crack 
length is at the neutral angle � � 51,82°, c) Crack length is � � 30°. a = 5 m, w = 6,25 kN/m2, t = 38 cm. 
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3.4 Thrust surface of the cracked dome 

The thrust line is a commonly used idea and object to examine the safety of masonry arches. 
The thrust surface is the 3D form of that, and can be understood as such a surface where the 
resultants of the balancing forces are acting i.e. it is a moment free surface, where only forces 
are acting. The masonry dome, with no-tension material, is in equilibrium if the thrust surface 
is inside the thickness of the dome. 

Three kind of thrust surface can be distinguished similarly to the thrust lines. If the forces 
are acting in the tangent plane of the thrust surface than it is called catenary-type 

membrane/thrust surface, Fig. 6a. It is analogous to the envelope of resultant forces in case of 
masonry arches. If the thrust surface is coincided by the mid surface of the dome and the forces 
are acting in the tangent plane of the mid surface, then the dome is a funicular-type shell, with 
funicular-type membrane/thrust surface, Fig. 6b, i.e. a membrane shell. If the thrust surface is 
not coincided by the mid surface of the dome and the forces are not acting in its tangent plane, 
Fig. 6c, then the thrust surface is called general thrust surface. 

The shape, location and the type of the thrust surface is influenced by the stereotomy of the 
dome, i.e. the bonding pattern of the dome masonry. Now we consider only one stereotomy, 
namely the radial one defined by the polar coordinate system used to give the equilibrium 
equations of different part of the dome. 

   

a) b) c) 
Figure 6: Types of thrust surfaces. a) catenary-type thrust surface, b) funicular-type thrust surface, 

c) general thrust surface, 

Since the cap of the dome is assumed to behave as a membrane shell its thrust surface is a 
catenary-type thrust surface. 

For the cracked part, the thrust surface can be constructed as an eccentricity surface defined 
by the meridional normal force and bending moment, considering radial cross-sections defined 
by the polar coordinate-system, Fig. 7. It is a general thrust surface because the resultant of the 
meridional shear- and normal force is not on the tangent plane of the thrust surface, although it 
is very close to that. 

The Fig. 7 and 8 show the meridional section of the thrust surface for different crack length. 
It can be seen that (for the assumed dome thickness) the worst crack length is when the crack 
goes up to the neutral angle. In both other cases when the crack is shorter, or enforced to be 
longer than the neutral angle is more advantageous in that sense that there is a possibility of the 
equilibrium for self-weight in cracked state. 

 



István Sajtos, Orsolya Gáspár and András Á. Sipos 

 8

 

Figure 7: Meridional section of the general thrust surface of the dome for different crack lengths, the thrust 

surface eccentricity. (+ � 5 -, � � 38 .-, � � 6,25 01
23) 

 

Figure 8: Meridional section of the general thrust surface of the dome for different crack lengths. 

(+ � 5 -, � � 38 .-, � � 6,25 01
23) 

Considering the particular numerical example (Fig. 7 and 8) it may be concluded that the 
dome is safer than the masonry arch with the same geometry since the development of a 
(rotational) collapse mechanism has less probability. This is based on that thought (maybe 
speculation) that if the dome material has tensile strength the crack length is under the neutral 
level resulting smaller eccentricity at the support. If the eccentricity reaches the extrados i.e. a 
“plastic” hinge develops at the support, then the crack must move toward the neutral angle. 
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However, this would increase the eccentricity at the support which is not possible. The only 
probable possibility that an unstable crack propagation occurs and the crack ends above the 
neutral angle. This could result an equilibrium state for the dome but there is a possibility to 
develop another circumferential plastic hinge on the intrados. Nevertheless, this is not probable 
since only very long cracks make this possibility. Shorter, but ended above neutral level cracks 
will even close the circumferential plastic hinge crack at the support. A third circumferential 
plastic hinge would be required to the collapse of the dome which cannot be developed in any 
case due to self-weight, according to this model. 

 

Figure 9: The building and the dome of Gol Gumbaz, India, Bijapur [13] 

4 EXAMINATION OF THE DOME OF GOL GUMBAZ [13] 

The dome of Gol Gumbaz, Bijapur, India was built between 1626 and 1656 (Fig.9). The size 
of the dome is comparable to the size of the Pantheon. The mid surface radius is 22,1 m and it 
has a nearly constant thickness, � � 3,0 m. It is known that there are several meridional cracks 
on the dome. The cracks end at 4 – 10 m above the terrace level, which is around the springing 
of the dome. These crack lengths approximately correspond to � � 70° and � � 80° 
meridional angles, that means the cracks end below the neutral level of the dome according to 
the membrane theory. This indicates that the tensile strength of the dome material is effective. 

The dome was repaired in 1936, after 280 years of construction, certainly having been in 
cracked state. 

The self-weight of the dome is considered to be 60 01
23 [13]. The examination of the dome 

with the given data shows that the experienced cracks result safe equilibrium state for the dome. 
Fig. 10. shows the thrust surface eccentricity for the experienced crack lengths. Otherwise 

Fig. 11. shows the corresponding thrust surfaces. For the shorter cracks the eccentricity is small 
enough that the dome wall is not cracked in hoop direction. It is suspected that for the longer 
crack there might be some cracks in hoop direction on the intrados about the springing. 

The normal and shear stresses are acceptable and realistic for both crack lengths (see 
Table 1.) Although there is no information about the strength of the masonry material of the 
dome it is thought that the masonry made with lime mortar mixed with basalt gravels could 
easily have at least that strength which is in Table 1. 

The calculation clearly proofs the long term experience, that the dome of Gol Gumbaz is 
safely standing in equilibrium state with the existing meridional cracks. 
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Figure 10: Meridional section of the general thrust surface of the dome of Gol Gumbaz for different crack 

lengths, the thrust surface eccentricity. (+ � 22,1 -, � � 300 .-, � � 60 01
23) 

 

 

 

FiguTable re 11: Meridional section of the general thrust surface of the dome of Gol Gumbaz for different crack 

lengths, the thrust surface eccentricity. (+ � 22,1 -, � � 300 .-, � � 60 01
23) 
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Table 1: Calculated data of the dome of Gol Gumbaz, India for existing crack lengths 

Crack 

position 

ϕ, ° 

e, m 
Nϕ, 

kN/m 

Qϕ, 

kN/m 

Elastic stress state Plastic stress state 

σmax , 

kN/m2 

σmin , 

kN/m2 

Crack in 

hoop 

direction? 

fc,req , 

kN/m2 

fv,req , 

kN/m2 

70 0,783 1326 317,5 1233,2 0 yes 924,9 147,7 

80 0,264 1326 193,2 778,5 314,6 no 536,2 64,4 
 

 

5 CONCLUSIONS 

The paper examined the equilibrium of a masonry dome, loaded by its self-weight, in a 
natural, cracked state. The cracks are meridional through cracks. The cap of the dome was 
modelled as a membrane shell while the cracked bottom part was considered as a bending shell 
with a special internal force system related to the meridional cracks. Both parts are statically 
determinate in that sense that the equilibrium equations alone determine the internal force 
system. The two solutions were jointed at the end of the meridional cracks. 

The internal force system of the cracked dome defines the thrust surface which could be used 
to examine the safety of the cracked dome. 

Three kind of, stereotomy influenced, thrust surfaces may be distinguished: catenary-type, 
funicular-type and general thrust surface. The paper considers only radial type stereotomy. 

Based on the numerical example the following conclusion may be drawn: 
- Masonry dome has safe equilibrium state when it is cracked and it may be checked 

using the thrust surface of the dome, 
- The tensile strength of the masonry dome material and the crack length influences 

or determines the possible, safe equilibrium state, 
- It is suspected, based on the suggested model, that there is a possibility of unstable 

crack propagation in order to reach a safe equilibrium state, 
- It seems, that there is no possibility of collapse of the dome for self-weight if the 

possibility of crack propagation is considered. 
The examination of the long term cracked dome of Gol Gumbaz, Bijampur, India gave result 

corresponding to the more than 300 years of experience. This shows the effectiveness of the 
proposed simple model. 

Finally, the main conclusion could be that the crack propagation process must be considered 
in order to develop a more precise masonry dome model. 
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