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ABSTRACT
With increasing awareness of energy conservation and environmen-

tal protection, optimizing indoor air quality and energy consumption
through rational control of window opening behavior (WOB) has
become a crucial issue in building design and environmental manage-
ment. However, existing research primarily focuses on buildings for
adults, with relatively few studies on buildings for children, particu-
larly those used by children aged 3–6. Moreover, previous studies often
overlook the impact of functional differences between buildings on
occupant behavior patterns. This study focuses on a kindergarten and
proposes an event-based method for analyzing and modeling WOB.
The results show that events such as arrival, class, and departure
are associated with higher frequencies of window opening (exceeding
50%), whereas events such as dietary activity, indoor/outdoor activity,
sleep, and tidying exhibit lower probabilities. WOB is more sensitive
to indoor air quality during events with higher student activity (e.g.,
class, dietary activity, and indoor activity), resulting in more frequent
ventilation. In terms of modeling, the Random Forest (RF) algorithm
achieved higher prediction accuracy than Logistic Regression (LR)
and Support Vector Machine (SVM). To reduce the complexity asso-
ciated with multi-model integration, a stacking model was introduced,
further enhancing predictive performance. Finally, the generalizability
of the proposed method was validated using office building data from
the ASHRAE occupant behavior database, achieving a maximum
accuracy improvement of 3.87%. This study presents a novel approach
for modeling WOB in functional buildings such as kindergartens and
provides theoretical support for energy efficiency optimization and
indoor air quality management.
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Abbreviations

WOB Window Opening Behavior
AQI Air Quality Index
IAQ Indoor Air Quality
TVOC Total Volatile Organic Compounds
RF Random Forest
LR Logistic Regression
SVM Support Vector Machine

1 Introduction

Buildings have become a core focus in addressing the global challenge of reducing greenhouse
gas emissions [1]. Research on building energy conservation typically emphasizes the design, layout,
and material selection of the building envelope [2,3], while often neglecting the impact of human
behavior on energy consumption during building operation. This results in energy-saving measures
failing to achieve the desired outcomes. In recent years, China has actively advanced its dual-carbon
goals [4], placing particular emphasis on energy conservation and environmental protection within
the building sector. Energy consumption during a building’s use phase accounts for a significant
proportion of its full life-cycle carbon emissions. The energy consumed during operation is closely
related to user behavior [5]. Therefore, optimizing user behavior is one of the most important
ways to improve building energy efficiency and reduce carbon emissions [6]. Clevenger et al. [7]
demonstrated that occupant behavior can significantly influence building performance, with potential
impacts on annual energy consumption reaching approximately 75% in residential buildings and up
to 150% in commercial buildings. Using real data from office buildings, Amasyali and El-Gohary
[8] showed that optimizing occupant-behavior could reduce energy consumption by 11% to 22%
while simultaneously improving occupant comfort. These findings indicate that accurately modeling
occupant behavior is not only essential for improving the accuracy of energy consumption predictions
but also a necessary approach for achieving energy savings. Among these behaviors, WOB is the most
common and frequent type of occupant-building interaction, due to its significant impact on indoor
air quality (IAQ) and thermal comfort [9]. Accurately understanding and modeling users’ window-
opening behavior (WOB), particularly its characteristics of uncertainty and randomness, is of great
significance for achieving more refined building energy simulation and control strategies [10]. It will
also play an active role in reducing carbon emission during the operation phase of a building and in
implementing the goals of the “dual-carbon” policy. Pandey and Dong [11] reported that in university
dormitories, window-opening behavior during the heating season could result in energy consumption
as high as 16,349.98 kWh, which would be entirely overlooked if not accounted for in modeling.
Similarly, Peng et al. [12] found that in primary school classrooms, window-opening behavior during
winter could cause an additional daily energy consumption of 12.83 kWh. These findings highlight
that understanding window-opening behavior patterns and developing accurate prediction models
are critically important for achieving building energy savings. Scholars worldwide are conducting
in-depth investigations into WOB from multiple perspectives, contributing to improvements in build-
ing performance [13,14], reductions in energy consumption [11,15], and enhancements in occupant
comfort [16,17]. In the 20th century, scholars began studying WOB in office buildings [18], and
the research was gradually extended to residential buildings [19–22]. Due to individual differences
in thermal comfort [23], personal habits [24], and psychological conditions [25], occupants’ WOB
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exhibits significant randomness. Accurately describing the characteristics of WOB requires accounting
for multiple factors, including building type, environmental conditions, room function, and seasonal
variations. However, because buildings with predominantly adult occupants make up the majority
of the total, most existing research has focused on these buildings. In contrast, few studies have
examined buildings used by minors. Nonetheless, there remains room for further optimization of
existing studies on adults. This is illustrated in the following section through an analysis of buildings
primarily occupied by adults and minors.

1.1 Adult-Occupied Buildings
Characteristics: Indoor and outdoor temperature and humidity are the environmental factors

that have the greatest impact on window opening behavior [26,27]. However, Sansaniwal et al. [28]
concluded that CO2 concentration in office buildings is the primary driver, followed by indoor and
outdoor temperatures. Notably, commuting time also had a significant effect on window opening.
Additionally, commuting times to and from work have a strong impact on window opening. For
residential buildings, indoor and outdoor temperatures, as well as humidity, remain the dominant
drivers [21]. Moreover, indoor CO2 concentration, indoor PM2.5 concentration, and outdoor PM10 and
PM2.5 concentrations, which affect indoor air quality, also have a significant impact on WOB [29,30].
Interestingly, everyday practices, such as morning routines and daily activities, also affect WOB. The
characteristics of WOB in the kitchen [29], bedroom [27], and living room [15] within the same type
of residential building also differed. As this line of research became more comprehensive, scholarly
attention gradually shifted toward analyzing WOB in various other building types, including general
hospitals [24], and maternity and child hospitals [31]. The results showed that outdoor temperature,
relative humidity, and PM2.5 concentration were significantly correlated with WOB in general hospitals.
Moreover, PM2.5 concentration exhibited a strong correlation with environmental factors in both wards
and doctors’ offices in maternity and child hospitals.

It follows that indicators relevant to thermal comfort and air quality are essential considerations
when studying window-opening behavior. Notably, as shown above, various factors also have a
significant impact on window-opening behavior over time [32–34]. Due to differences in function and
intended use, various types of buildings experience distinctly fixed events during specific periods (e.g.,
office buildings: meetings, business negotiations, working hours; academic buildings: classes, exams,
lectures). These differences also fundamentally influence window-opening behavior patterns. How-
ever, most current approaches to incorporating time factors are similar to those used for environmental
factors, focusing on analyzing the correlation between time and WOB, or the relationship between
different times of day and WOB [19,22,31,35]. As shown in Table 1, existing studies generally quantify
time as a continuous or graded variable and infer the events that may underlie window opening based
on temporal trends. However, time is essentially a marker for the occurrence of events rather than a
fundamental driver of behavior. Accurately modeling the driving mechanisms of WOB is challenging
if the event attributes underlying time are overlooked. Therefore, factors corresponding to time should
be extracted and categorized based on objective events, and an event-based analysis framework should
be developed to provide a more accurate description of WOB. However, related research has not yet
been conducted in this direction.

Model: Accurately establishing a model for WOB is essential for improving the precision of
building energy consumption predictions. However, the high degree of randomness increases the
complexity of predicting WOB. Currently, efforts to improve the predictive performance of WOB
models focus primarily on three aspects. First, the selection of input parameters; environmental
and non-environmental driving factors are typically considered essential inputs for the model. For
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the time factor in non-environmental variables, time is currently quantified as a categorical or
continuous variable [19,36], and either directly incorporated into modeling or divided into different
periods according to the daily time sequence, as shown in Table 1. However, once time is quantified,
its interaction with WOB states and environmental factor values is often overlooked, leading to
deviations in predicting WOB. The influence of time on WOB essentially stems from the dynamic
changes associated with different events. Therefore, time-related information should be extracted
based on objective events, and a WOB model should be constructed using events as the basic unit
to improve modeling accuracy. However, no existing studies have yet explored this approach. Second,
the performance of the algorithm: Logistic regression (LR) is the most frequently used algorithm
for modeling WOB [37–40], and it is often used as a benchmark for comparsion with advanced
algorithms due to its general applicability [39,41–43]. With the increasing need to predict WOB,
algorithms such as neural networks and machine learning methods are being gradually employed
[44–46]. The results indicate that different algorithms exhibit varying applicability to different sample
data, highlighting the need to develop WOB models tailored to buildings of various types and climate
zones. Third, refinement of the sample dataset, which leads to an increase in the number of models:
To improve model performance, separate models are established for multiple types of rooms, seasons,
scenarios, and numbers of windows within the same building [11,29,47,48]. However, this approach is
cumbersome for subsequent application in actual building simulations, and the problem has not yet
been resolved. Ensemble algorithms not only integrate multiple models but also enhance predictive
performance. The stacking model, as one method of integrated modeling, has been investigated as a
new approach to improve model performance in predicting precipitation, air quality index (AQI), and
inverse heat transfer problems. The results show that the stacking model typically performs as well
as, or better than any individual model and is an effective means of enhancing the generalizability of
models [49,50]. However, the applicability of this method to the field of WOB has yet to be validated.

Table 1: Review of time factors in WOB analysis and modeling

Reference Building
type

Analyzing the time factor
approach

Time factor modeling approach

[51] Office Quantify time into
categorical variables

Time is divided into six sequential
periods: (Early Morning, Morning,
Noon, Afternoon, Evening, and
Night) and is used in conjunction
with environmental factors as input
parameters.

[38] Dormitory Quantified into numerical
values without specifying
whether they are categorical
or continuous variables.

Time is divided into four sequential
periods: (Morning, Afternoon,
Evening, and Night) and is used
together with environmental factors
as input parameters.

[52] Residential Quantify time into
categorical variables

Time is divided into four sequential
periods: (Morning, Afternoon,
Evening, and Night) and is used
together with environmental factors
as input parameters.

(Continued)
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Table 1 (continued)

Reference Building
type

Analyzing the time factor
approach

Time factor modeling approach

[22] Residential Quantify time into
continuous variables

/

[53] Residential Quantify time into
categorical variables

/

[35] Residential Quantify time into
categorical variables

Time is divided into four sequential
periods: (Day and Night) and is used
together with environmental factors
as input parameters.

[54] Residential Quantify time into
categorical variables

The bedroom is divided sequentially
into five periods: morning, daytime,
afternoon, night, early morning,
while the living room is divided into
four periods: morning, afternoon,
night, early morning.

[55] Residential Quantify time into
categorical variables

Time is not divided into periods but
is used directly as an input parameter.

[56] Office Quantify time into
categorical variables

Time is used directly as an input
parameter without being divided into
periods.

[57] Office Quantify time into
categorical variables

/

1.2 Minor-Occupied Buildings
Research indicates that indoor air pollution has a notable impact on factors such as hypertension,

systolic blood pressure, lung function, and academic performance in students under the age of 18
[58,59]. Estimates suggest that 52% of school-age children in developed countries are exposed to PM2.5

levels exceeding the WHO’s recommended limits [60]. Young children’s respiratory systems are more
vulnerable to the impacts of environmental pollution compared to those of older children and adults
[61]. In children aged 4–6 years, excessive indoor air pollutants are strongly correlated with cough,
runny nose, and nasal congestion [62,63]. Kindergarten children are the youngest and most sensitive
of all school-age children, spending almost a third of their day in kindergarten.

Almost a third of the day is spent in kindergarten. However, in recent years, policies promoting
energy conservation have been implemented, and emission-reduction measures have increased the
air tightness of modern buildings. The widespread use of various decorative materials has raised
the concentration of indoor pollutants, such as formaldehyde, benzene, and toluene, which degrade
indoor air quality and pose specific health risks to children [64]. Therefore, research on WOB in
spaces primarily occupied by minors is highly valuable. Unlike adults, minors have relatively uniform
lifestyles, with schools serving as their primary environments. As shown in Fig. 1, existing studies on
WOB for minors have primarily focused on two types of buildings: classrooms and dormitories.
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 and living room windows 
were opened briefly. 
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No analysis
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Deep Neural Network
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No model

No time factor

The time factor is not combined
 with the environmental factor

Building typesLocation Grade
Main influencing factors 
and characteristics

Algorithm How to use time factor

Figure 1: WOB in minors: influencing factors and methods across ages and building types

Characteristics: A literature search in the Web of Science (WOS) database using the query window
opening behavi∗ (All Fields) and nursery (All Fields) or kindergarten (All Fields) yielded only one
relevant study—Zhang et al. (2023). This study evaluated the impact of air purifiers and window
operation on indoor air quality in multiple nurseries across the UK. The results indicated that during
the non-heating season, at least one window was kept open for 77%–92% of the occupied time (average
85%), whereas this proportion dropped to 20%–90% (average 58%) during the heating season. Some
classrooms exhibited distinct behavioral differences between the two seasons, which may be related to
changes in COVID-19 control policies or individual teachers’ preferences. Notably, when air purifiers
were used to reduce indoor PM2.5 concentrations, windows remained closed in 63% of cases and open
in 46%, suggesting that mechanical ventilation devices cannot fully replace the ventilation and comfort
benefits provided by window operation. This finding not only underscores the necessity of sustained
WOB research in early childhood education buildings but also highlights the scarcity of work in this
field, thereby reinforcing the practical significance and innovation potential of the present study [65].
In addition, previous studies have shown that the primary influencing WOB in university and high
school classrooms is the combination of indoor and outdoor temperatures. Moreover, daily routines
in high school classrooms significantly impact students’ behavior, with windows typically opened
during breaks, particularly in the morning [65]. Mohd Faheem et al. [38] found that season, time
of day, weekday, floor, building orientation, user type, and gender of the occupants affected WOB
in a university dormitory study in India. In addition, insect and animal threats (snakes, squirrels,
lizards, mosquitoes) hindered WOB. The study focused on occupants in elementary school classrooms,
specifically students aged 9–12 years, as they are considered to have a better perception of and ability
to provide feedback on their surroundings compared to younger students.
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Additionally, older children are taller, which allows them to operate indoor equipment more
autonomously [66,67]. A study of WOB in elementary school classrooms revealed that indoor and
outdoor temperature, as well as CO2 concentration, were the primary influences during the heating
season, whereas indoor and outdoor relative humidity were the main influences during the non-heating
season. Furthermore, CO2 was found to be negatively correlated with WOB [68]. In addition, the
questionnaire revealed that opening windows due to “too hot” conditions was the most common
complaint, while opening windows due to “dullness” was also frequently cited. More than 90% of
teachers opened the windows at least once a day [69]. Shuo Zhang et al. [70] used a questionnaire
to analyze the drivers of window openings in a UK kindergarten building during the outbreak. The
findings indicated that WOB occurred more frequently during the outbreak period, with ventilation
being the primary reason for window use. The main motivations for operating windows and external
doors were obtaining fresh air (32%), concerns related to COVID-19 (28%), cooling the indoor space
(24%), and providing children with outdoor access (16%). However, the study was somewhat biased
toward identifying the habit of opening windows during the COVID-19 period, as suggested by the
sample data.

Model: Due to limited attention on WOB in buildings occupied by minors, existing modeling
studies in this area are scarce. Most linear regression methods used to describe the relationship with
WOB report a model fit of R2 = 0.551. for university dormitory buildings when indoor environmental
factors are included. Bing Dong et al. [13] developed a deep neural network model for a university
dormitory building in New York, achieving an accuracy of 96.71%.

The following gaps can be drawn from the above analysis:

1. Current research on WOB primarily focuses on environmental and non-environmental factors,
but has not fully considered the unique effects of objective events associated with different
building types.

2. Research on buildings primarily occupied by minors is limited, particularly in kindergartens,
where children aged 3–6 spend extended periods, and for which no relevant studies are currently
available.

3. The challenge of model overabundance, arising from efforts to enhance predictive accuracy,
remains unresolved.

To address this issue, this study focuses on a kindergarten building in Beijing, where real-time
monitoring of indoor environmental parameters and window status was conducted. Firstly, based
on the daily schedule of the kindergarten building, the objective events are defined, and the WOB
characteristics are described, taking into account the specificity of these events and the randomness of
environmental factors. Secondly, three machine learning algorithms—RF, SVM, and the traditional
LR—were used to establish prediction sub-models for different events, and the stacking model was
employed for the first time to integrate multiple sub-models. Finally, the event-based segmentation
method proposed in this study is validated and discussed using public data from the ASHRAE
Occupant Behavior Database.

2 Methods
2.1 Research Route

This study is divided into three main parts. First, unlike traditional research on WOB, the data are
categorized into eight event-based datasets according to objective events. Second, the characterization
of WOB and the analysis of environmental factors are conducted from an event perspective. Finally,
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the event sub-model is developed using the algorithm most suitable for WOB data from kindergarten
buildings and integrated through the stacking model, as shown in Fig. 2.

Figure 2: Research framework

2.2 Description of the Built Environment
2.2.1 Building Overview

In this study, six classrooms in a kindergarten in Beijing were selected for field tests. The building
structure consists primarily of reinforced concrete with thermal insulation materials. The surrounding
outdoor environment is relatively quiet, which mitigates the potential impact of external noise on
window-opening operations. The external view of the building is shown in Fig. 3a. The classroom
doors open onto corridors, with three classrooms equipped with sliding windows and three with
casement windows, all connected to the outdoor environment. Spring in Beijing is a typical transitional
season, characterized by moderate outdoor temperatures and relatively low demand for mechanical
cooling or heating. Under these conditions, natural ventilation is the primary means of regulating
the indoor thermal environment, enabling a more accurate observation of occupants’ autonomous
window-opening behavior. Moreover, the mild spring climate minimizes external interference from
extreme weather conditions, such as high summer temperatures or severe winter cold, in window-
opening decisions. In addition, spring coincides with the regular school term in kindergartens, avoiding
the vacancy caused by student absence during summer or winter breaks and facilitating long-term
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on-site monitoring without disrupting normal teaching activities. During the monitoring period,
classroom occupancy was assessed through field observations and consultations with kindergarten
teachers. The classroom windows are controlled by the teacher, who adjusts ventilation based on
personal judgment and the students’ needs. The internal layout of the classroom is shown in Fig. 3b.

(a) (b)

(c) (d)

Figure 3: Details of the case study building: (a) the surrounding environment, (b) main entrance and
corridor area, (c) interior furnishings and classroom seating layout, (d) sleeping area and cabinets

2.2.2 Measured Situation

Field measurements were conducted during the spring season, from 7 March 2021, to 29 April
2021. During this period, neither heating nor air conditioning was used, and occupants frequently
relied on natural ventilation. The real-time monitoring of physical environmental parameters included
indoor ecological indicators (temperature, relative humidity, CO2 concentration, PM2.5 concentration,
and TVOC) and outdoor indicators (temperature, relative humidity, PM2.5 concentration, wind speed,
and AQI). In addition, window status was monitored using a magnetic switch recorder. To ensure
the accuracy of the test data, all instruments were calibrated before each test. Indoor environmental
parameters were measured using self-recording devices for temperature, relative humidity, and carbon
dioxide. Outdoor environmental parameters were obtained from a widely used meteorological website
(https://www.aqistudy.cn), which is commonly referenced by researchers [54,71,72]. Window-opening
and closing states were tracked using a magnetic switch recorder, with a window considered open if the
opening exceeded 2 cm. A classroom was classified as having open windows if at least one window was
open. Environmental parameters were measured at 15 min intervals, while window status was recorded
every 5 min. To unify the data, linear interpolation was applied to adjust the environmental parameters
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to 5-min intervals. Fig. 4 illustrates the on-site installation of the instruments, and the details of data
recording are provided in Table 2.

(a) (b)

(c) (d)

Figure 4: On-site installation condition, (a) layout of the monitored rooms, (b) window sensor,
(c) indoor environmental sensor, (d) multifunctional wireless gateway

Table 2: Monitor data parameters

Monitoring
instruments

Environmental parameters Range Error Recording
interval

Indoor environmental
sensor

Temperature
Relative humidity
Carbon dioxide
concentration
PM2.5 concentration
Total Volatile Organic
Compounds (TVOC)

10°C∼50°C
0%–100% RH
400–9999 ppm
0–999 μg/m3

0.005–9.999 mg/m3

±0.5°C
±5%
±15%
±10%
±15%

5 min

Meteorological
station

PM2.5 concentration
Temperature
Relative humidity
Air Quality Index (AQI)

/ / 1 h

Magnetic field
strength sensor

Window status / / 5 min
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2.3 Event Division
The structured scheduling of daily routines is a key organizational feature in kindergartens and

reflects the historical evolution of societal, educational, and parental expectations for children’s
upbringing [73,74]. The current daily schedule includes eating, indoor and outdoor activities, teaching,
naps, and other events, all carried out in accordance with the kindergarten’s designated timetable. Early
childhood is a critical period for establishing positive routines and habits. A structured daily schedule
enhances children’s sense of security, trust, and independence, while also supporting their socio-
emotional and cognitive development [75]. In designing daily routines, kindergartens typically arrange
core events to align with the regular rhythms of family life and to meet the structured requirements
of educational activities. Evidence suggests that consistent and predictable family routines—such as
waking up, mealtimes, and bedtime—promote children’s emotional stability and healthy development,
and help ease adaptation stress during the transition to preschool [76]. Accordingly, kindergartens
often integrate regular elements of home life (e.g., arrival, meals, nap time, departure) with key phases
of the educational process (e.g., indoor and outdoor activities, group lessons, teacher preparation,
cleanup) to form a relatively stable “routine event” framework. Such arrangements not only facilitate
teachers’ organization of instruction and caregiving at fixed times but also help children establish
consistent rhythms between home and school, thereby reducing the disruptive impact of abrupt
changes in daily life. This study incorporates both family routines and school teaching activities
in 20 specific activities that constitute the kindergarten daily schedule. However, the 20 items are
not entirely distinct, as some overlap remains. For example, the ‘dietary activity’ category includes
breakfast, snacks, lunch, afternoon snacks, and dinner, all of which focus on nutritional intake
and meal management, sharing common objectives and rhythmic characteristics. Similarly, although
drinking water and pre-meal preparation are separated from main meals in timing, they serve the same
functional purpose of supporting nutritional intake and the development of healthy habits. These are
important components for developing healthy eating habits and raising dietary awareness in children
[77]. Therefore, integrating these items into a unified dietary activity category is justified. Similarly, in
consolidating indoor activities, inherent teaching and physical activities are combined with toilet use
and handwashing, which are also categorized under indoor activity. This classification is based on their
fixed spatial locations (within classrooms or restrooms), short time allocations, reliance on teacher
guidance, and limited independent analytical value in relation to research objectives such as physical
activity or social interaction. This integration approach is also reflected in research on daily structures
in kindergartens. For example, comparative studies of daily activities in Slovenian and Belgian
kindergartens show that activities such as personal hygiene and brief transitions are often incorporated
into broader event categories [78]. Therefore, following this logic, the study categorizes and integrates
recurring activities in the schedule into eight core event categories. We acknowledge certain limitations
of this classification, for instance, it may not capture qualitative differences in content or children’s
engagement within the same category—such as indoor activities encompassing both free play and
teacher-led academic tasks. Variations in the duration and frequency of these events may also influence
children’s physical activity levels and learning experiences [79]. Furthermore, cultural and policy
contexts can shape the objectives and implementation of specific activities differently across regions.
Therefore, this study divides the data into eight datasets corresponding to the eight event categories for
analysis. Thus, the daily activities of the kindergartens examined in this study do not differ from those
of regular kindergartens. As shown in Fig. 5, the kindergarten operates from 7:00 am. to 7:00 pm., with
20 events scheduled over 12 h, many of which are repetitions or similar activities. After classifying
events with similar themes and content, the independent events identified in this kindergarten
are as follows: arrival (7:30–8:00), dietary activity (8:00–8:20, 9:00–9:20, 10:20–10:30, 11:00–11:45,
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14:00–14:30, 14:50–15:00, 16:00–16:45), indoor activity (8:20–8:50, 8:50–9:00, 14:30–14:50), outdoor
activity (9:20–10:20, 11:45–12:00, 15:00–16:00), class (10:30–11:00), sleep (12:00–14:00), departure
(16:45–17:30), and teacher’s tidying (7:00–7:30, 17:30–19:00). In total, eight independent event cat-
egories are defined.

Figure 5: Daily schedule of kindergarten

2.4 Model Algorithms
Building on validations by scholars from various countries, numerous algorithms have been

demonstrated as feasible in WOB research. Through in-depth analysis and comparison of the review
papers in [80,81], this study selects three commonly used algorithms—LR, SVM, and RF—as the basis
for establishing the WOB model of kindergarten buildings.

2.4.1 Logistic Regression

The binary logistic regression (LR) algorithm is a classification method used to predict binary
or multiple outcomes based on a set of explanatory variables, it estimates the probability of a given
outcome and determines whether the corresponding event is likely to occur. At present, owing to
its relative simplicity, the LR algorithm offers fast computation and easily interpretable results.
Consequently, it is one of the most frequently window-opening behavior. The regularization parameter
(C) in the LR represents the penalty coefficient controlling error tolerance, with typical values ranging
from 0.0001 and 10,000. A higher C value reduces the model’s tolerance for error, allowing it to classify
the data more accurately; however, excessively large values may lead to over-fitting. Conversely, very
small C values may impose overly strong regularization, resulting in underfitting.
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2.4.2 Support Vector Machine

Among machine learning classifiers, SVM is distinguished by its robustness, efficiency, and strong
generalization ability. Comparable to multilayer perceptron and radial basis function networks, it
can be applied to both pattern classification and nonlinear regression, with particular suitability for
binary classification problems. SVM models can be optimized through parameter tuning to achieve
an optimal structure. A kernel function is often employed to obtain the optimal solution efficiently,
thereby avoiding unnecessarily computational complexity. Among the parameters, the choice of kernel
function is the most critical: an inappropriate kernel may map the samples into an unsuitable feature
space, resulting in poor model performance.

In addition to kernel selection, other key hyperparameters substantially influence the effectiveness
of the algorithm. Commonly used kernel functions include the linear, polynomial, sigmoid, and radial
basis function (RBF) kernels.

Key hyperparameters:

1. C (penalty parameter): A larger C increases model complexity and can improve prediction
accuracy, but excessively high values may lead to overfitting.

2. Gamma (γ): A larger gamma assigns greater weight to nearby data points, making the model
more sensitive to individual samples; however, if gamma value is too small, the model may
underfit.

2.4.3 Random Forest

The Random Forest (RF) ensemble learning algorithm uses decision trees as base learners,
improving both the accuracy and stability of the model by aggregating predictions from multiple
decision trees [82]. Initially, k samples were randomly drawn from the original dataset using bootstrap
sampling, with each sample containing n data points selected at random from the training set. Next,
k decision tree models were constructed, each corresponding to one of the k samples, generating
k distinct classification outcomes. Finally, the prediction receiving the highest number of votes was
chosen as the final result [83].

The following hyperparameters have a significant influence on the fit of the RF model:

1. n estimators: Increasing the number of trees reduces the risk of overfitting. As the number of
trees increases, the predictions of the RF model become more stable, since averaging across
multiple trees helps to reduce random error.

2. max depth: Increasing the maximum depth of a tree may lead to overfitting. Deeper trees can fit
the training data more closely but are also more prone to overfitting. By limiting the maximum
depth, the complexity of the model can be controlled, thereby reducing the risk of overfitting.

3. max features: In RF models, only a subset of features is considered at each node. Increasing
the value of the maximum features increases the randomness of each tree, thereby reducing the
risk of over-fitting.

4. min_samples_split: Refers to the minimum number of samples required for a node to split,
thereby controlling the growth of the tree. Smaller values can lead to overfitting, as nodes
attempt to split based on very small subsets of the data. Larger values help prevent overfitting
and make the decision tree more generalized.

5. min_samples_leaf: Refers to the minimum number of samples required to form a leaf node.
Similar to min samples split, this parameter regulates the minimum sample size at the leaf
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node level. It prevents the decision tree from being overly subdivided with very few samples
per leaf node, helping to generate a simpler model with better generalization capabilities.

2.4.4 Stacking Model

This study first evaluated three commonly used algorithms—Logistic Regression (LR), Support
Vector Machine (SVM), and Random Forest (RF)—as candidate models. Each algorithm was applied
for modelling and prediction, and the best-performing model was identified based on prediction
accuracy and goodness of fit. On this basis, event-specific sub-models were further developed for eight
routine events (arrival, dietary activity, indoor activity, outdoor activity, class, sleep, departure, and
tidying). To simplify the application process while ensuring predictive accuracy, the study adopted
an ensemble learning approach. There are three general approaches to ensemble learning. The first
is the Boosting architecture [84], which uses a serial approach between base learners to construct
models with strong fusion. The second is the Bagging architecture [85], which builds strong learners
by creating multiple independent models, and then combining them through voting or weighting. The
third method is Stacking, which combines the two ensemble techniques. Stacking typically consists of
two layers. The first layer comprises base models that demonstrate outstanding performance. Level 1:
Basic models for excellent performance. The second layer, also known as the “meta-model”, takes the
outputs of the first layer models as a training set, builds the model, and produces the final predictions.
Thus, if a first-level learner makes an error in a specific region of the feature space, the second-level
learner can effectively correct it by integrating the learning behaviors of other first-level learners. For
a single model, fitting complex data is challenging, and the model is less resilient to interference.
Therefore, integrating multiple models can leverage the strengths of different models to enhance the
model’s generalization ability [86,87]. As illustrated in Fig. 6, the stacking framework adopted in
this study consists of two layers. In the first layer, eight event-specific sub-models are constructed,
each corresponding to a routine event (arrival, dietary activity, indoor activity, outdoor activity, class,
sleep, departure, and tidying). These sub-models are trained using 5-fold cross-validation to generate
out-of-fold (OOF) predictions—each model is trained on 80% of the data and predicts the remaining
20%, ensuring that every sample is predicted by a model that has not seen it during training. The
resulting OOF predictions are concatenated in their original order to form a new feature matrix, which
serves as the input for the second-layer meta-model.

In traditional stacking methods, each base learner is typically trained on the same dataset and
generates predictions for all samples. These predictions are then concatenated into a multi-dimensional
input matrix to train the second-layer meta-model. By contrast, this study introduces an event-driven
framework. The eight event-specific sub-models are trained on their respective data subsets, and their
out-of-fold (OOF) prediction results are aggregated to form a prediction vector consisting of eight
elements. This vector serves as the input to the meta-model, which further calibrates and integrates
the outputs of the sub-models. Although this structure does not fully conform to the strictest definition
of stacking, its advantage lies in significantly simplifying the deployment process by avoiding the need
for frequent model switching within building energy simulation platforms. At the application stage,
simulation tools such as Energy Plus only need to invoke this integrated model to generate predictions
across multiple event types, thereby improving the practical value of the model.
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Figure 6: Stacking model flow

2.5 Evaluation Indicators
In framing window-switching as a binary classification task, instances can be assigned to either a

positive or a negative class. This results in four possible outcomes in the classification process: (1) an
instance belongs to the positive class and is correctly identified as positive, termed True Positive (TP);
(2) an instance belongs to the positive class but is mistakenly classified as negative, known as a False
Negative (FN); (3) an instance belongs to the negative class but is incorrectly classified as positive,
called a False Positive (FP); and (4) an instance belongs to the negative class and is correctly classified
as negative, referred to as a True Negative (TN).

Accuracy = TP + TN
TP + TN + FP + FN

(1)

F1score = 2TP
2TP + FP + FN

(2)

For unbalanced data, the AUC index offers greater advantages and can better reflect the model’s
performance [88]. Therefore, in this paper, AUC, F1 score, and accuracy are used to evaluate the
optimal model.

3 Results
3.1 Analysis of the Impact of Events on WOB

By analyzing the measured data from 7 March 2021, to 29 April 2021, it can be observed that
the period from 6:00 to 7:00 is characterized by a high volume of people entering, and the power
is turned on irregularly, resulting in fewer total operating hours. The remaining periods have more
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consistently recorded hours. As shown in Fig. 7a, in the traditional method of analyzing window-
opening behavior based on time, the time divisions are not flexible, resulting in two issues. The first is
the mixing of multiple activities within the same period. For example, between 8:00 and 9:00, activities
such as breakfast, indoor activity, toilet use, and washing or gargling occur, and none of these events
alone characterizes window-opening behavior (WOB). The second issue arises when different periods
involve the same event but display similar window-opening characteristics, resulting in repeated
representation. For instance, the two time slots, 12:00–13:00 and 13:00–14:00, correspond to nap
time, with window-opening probabilities of 44% and 45.8%, respectively, which can be combined and
analyzed.

(a) (b)

Figure 7: WOB duration and proportion with and without event-based division: (a) window-opening
probability at different times of day, (b) window opening probability for different events

From a relative perspective, the method of dividing events is more reasonable. As shown in
Fig. 7b, the eight events have different window-opening durations, allowing for a comprehensive
analysis of the variability in WOB characteristics due to the diversity of events. In kindergarten
buildings during the spring season, arrival, class, and departure events exhibit relatively proactive
WOB, with window-opening probabilities exceeding 50% for all three events. Notably, the arrival
event has the shortest duration and cumulative window-opening duration, yet it exhibits the highest
window-opening probability. The corresponding probability for the departure event is also high at
50.9%, indicating a preference for opening windows upon leaving the premises to improve indoor air
quality for the following day.

Furthermore, WOBs during dietary activity, indoor activity, outdoor activity, and sleep events
are relatively passive. In particular, during sleep, with a total duration of 336 h, the window-opening
probability is the lowest at only 44.8%, suggesting that teachers consider the sensitivity of children’s
bodies and reduce WOB during sleep.
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3.2 Analysis of Influencing Factors
3.2.1 Outdoor Environment

The WOB of the eight events varied according to the characteristics of each outdoor environ-
mental factor. As shown in Fig. 8a, the probability of WOB for the arrival event increased gradually
with rising outdoor temperature, indicating that in spring, teachers tend to actively open windows
as students arrive in response to the warming conditions. In contrast, the WOB during the tidying
and departure events appears to be more random under the influence of outdoor temperature. The
other six events exhibited similar changes in WOB, all occurring at an outdoor temperature of 9°C.
When the outdoor temperature was below 9°C, the WOB was not significantly affected by the low
temperature, and the probability of window opening was around 70% for most events, even when
the outdoor temperature was below zero, indicating that WOB at temperatures below 9°C was more
random. When the outdoor temperature exceeded 9°C, the WOB exhibited a gradual increasing trend
with rising temperature, indicating that higher outdoor temperatures have a facilitating effect on WOB.

As shown in Fig. 8b, the WOB of the eight events fluctuated between 40% and 60% with
changes in outdoor relative humidity in most cases. This suggests that there is no strong correlation
between outdoor relative humidity and the WOB of different events in the data. Regarding the
grading of AQI indicators, each country has different classification standards. The China GB 3095-
2012 Ambient Air Quality Standard specifies the following: 0–50 indicates non-pollution; 51–100
indicates an environment in which a minimal number of abnormally sensitive people should reduce
outdoor activities; 101–150 indicates mild pollution; 151–200 indicates heavy pollution, for which it is
recommended that children reduce long-term, high-intensity outdoor exercise.

As shown in Fig. 8c, the critical AQI value at which indoor occupants in kindergarten buildings
become more sensitive to outdoor air quality is approximately 165. At AQI levels below 165, WOB is
more random and unaffected by changes in AQI. When AQI is ≥165, the probability of WOB decreases
rapidly for all five events except for arrival, tidying, and departure events. GB 3095-2012 specifies that
PM2.5 levels exceeding 50 μg/m3 constitute an unhealthy environment.

The probability of WOB events changes when the outdoor PM2.5 concentration reaches 90 μg/m3,
as shown in Fig. 8d. When the concentration exceeds 90 μg/m3, the WOB probability for the three
events—arrival, departure, and tidying—still shows an increasing trend, whereas the other five events
exhibit a gradual decline. This suggests that while low outdoor PM2.5 concentrations have no obvious
driving effect, excessively high concentrations exert an inhibitory effect on occupants’ WOB.

When the wind speed exceeds 6 m/s, the WOB of indoor events—including sleep, class, dietary
activity, and indoor activity—decreases, especially during sleep, which is the most sensitive to wind
speed among these four events, as shown in Fig. 8e. However, for the events of arrival, departure,
tidying and outdoor activity, there are fewer children indoors. Therefore, even if the wind speed exceeds
8 m/s, WOB for these events still exhibits an upward trend.

It is worth noting that outdoor environmental factors are more reflected in the WOB of the three
events—arrival, departure, and tidying—which almost differ from the trend observed in the other
five events, corresponding to situations where student attendance is incomplete. It is evident that for
events with fewer students present, WOB exhibits lower dependency on the outdoor environment and
is relatively more random compared to other events.
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Figure 8: Relationship between outdoor environmental factors and WOB: (a) outdoor temperature
(°C), (b) outdoor relative humidity (%), (c) outdoor AQI, (d) Outdoor PM2.5 (μg/m3), (e) outdoor wind
speed (m/s)
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Furthermore, it is evident that by differentiating events, the trends in the curves more accurately
reflect the dynamic impact of each event on WOB at different stages. In contrast, when events are
not differentiated, the overall curve presents only a singular trend, lacking the necessary detail and
precision.

3.2.2 Indoor Environmental

Indoor environmental factors are categorized into two main groups: those affecting indoor
air quality (indoor TVOC, indoor PM2.5 concentration, and indoor CO2 concentration), and those
impacting thermal comfort (indoor temperature and relative humidity). The Indoor Air Quality
Standard requires an indoor TVOC limit of 0.6 mg/m3, as shown in Fig. 9a. When this limit exceeds
0.6 mg/m3, occupants do not immediately open windows to improve the environment; notable changes
in WOB begin at 2–2.5 mg/m3. Specifically, class, indoor activity, and dietary activity are three events
where the indoor TVOC concentration exceeds 2.5 mg/m3, resulting in a significant increase in WOB
probability. Indoor CO2 is currently a focal point in the study of drivers of WOB. Most studies have
shown that WOB exhibits a negative correlation with increasing indoor CO2 concentration, especially
in residential buildings, where high concentrations exceeding 1000 ppm generally occur during night
time sleep and are therefore not considered a driver [67].

However, this study is divided by events. It is considered that the influence of indoor CO2 on
WOB differs across events as shown in Fig. 9b. When CO2 is below 1200 ppm, indoor air quality is
less affected by CO2 concentration, so occupants do not open windows in response to CO2. Within
this range, all event window-opening behaviors were negatively correlated with CO2. This suggests
that indoor CO2 concentration is at a healthy level when the probability of window opening is high,
despite other factors. When the CO2 concentration reached 1200 ppm or higher, the window-opening
behavior during class, indoor activities, and meals exhibited a significant upward trend. Additionally,
after the concentration exceeded 1500 ppm, the departure event also became more proactive in opening
windows. This suggests that high CO2 concentrations have a driving effect on these four events.
The overall indoor CO2 concentration during the arrival event did not exceed 1300 ppm, so there
was essentially no driving condition for window opening. The window opening probabilities of the
remaining three events all showed a decreasing trend with increasing CO2 concentration, indicating
that, on the one hand, occupants do not ventilate before leaving due to high CO2 levels, and on the
other hand, the sleeping event remains unaffected as a driver of WOB.

As shown in Fig. 9c, there is little difference between the trends of divided and non-divided events
for <50 μg/m3, and for ≥50 μg/m3, the trends of events vary, but in general, WOB is positively correlated
with indoor PM2.5.

For the factors affecting human thermal comfort, the pattern of WOB for each event is more
obvious, as shown in Fig. 9d. Except for the sharp drop of class in the range of 25°C–26°C, the WOB
of other events increases with rising indoor temperature, indicating that the temperature rise has a
strong driving effect on window-opening. On the contrary, after the indoor relative humidity reaches
the range of 25%–30%, the WOB of all events is negatively correlated with indoor relative humidity,
as shown in Fig. 9e. This indicates that in kindergarten buildings, where teachers serve as the primary
regulators of the indoor environment, they pay close attention to children’s thermal comfort and tend
to actively adjust it by opening windows during the spring season.
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Figure 9: Relationship between indoor environmental factors and WOB: (a) indoor TVOC (mg/m3),
(b) indoor CO2 (ppm), (c) indoor PM2.5 (μg/m3), (d) indoor temperature (°C), (e) indoor relative
humidity (%)
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It is worth noting that the events class, indoor activity, and dietary activity are more sensitive to
indoor air quality factors. The probability of window opening for these events increases as indoor
TVOC and CO2 concentrations rise. These events typically occur during times when students and
teachers are cognitively active, suggesting that during mentally engaging indoor activities, both
children and teachers are more inclined to open windows to improve indoor air quality.

3.3 Modeling and Prediction
Firstly, this section models and predicts WOB using four algorithms on data without event

differentiation, selecting the algorithm that most accurately describes WOB in kindergarten buildings
and identifying the optimal hyperparameter combination. In the event-free model, the time factor is
quantified both as a continuous variable and a categorical variable and is used as one of the input
parameters. Secondly, the optimal algorithm is applied to establish eight event-specific sub-models,
and their performance is compared with that of the undifferentiated model (to highlight the impact of
event differentiation, the algorithm parameters remain unchanged). Finally, a stacking model is used
to integrate the event sub-models.

3.3.1 Logistic Regression

The variation of the C value from 0.1 to 1000 can essentially explain the performance of the
logistic regression model. Traditional modeling methods without event division typically quantify time
factors as either continuous or categorical variables. As shown in Table 3, the prediction accuracy
corresponding to C values from small to large demonstrates that, regardless of whether time factors
are quantified as continuous or categorical variables, the prediction accuracy of the logistic regression
algorithm for WOB data in kindergarten buildings remains below 80%.

Table 3: LR model results

C Non-division (Time:
Continuous variable)

Non-division (Time:
Hierarchical variable)

Train Test Train Test

0.1 73.39 73.52 73.37 73.48
1 73.41 73.61 73.39 73.46
10 73.36 73.6 73.39 73.46
100 73.42 73.59 73.37 73.49
1000 73.4 73.61 73.39 73.42

As shown in Fig. 10a, the AUC value under the ROC curve remains consistently at 0.814,
indicating that the logistic regression model has moderate discriminative capacity but falls far short
of high accuracy requirements. Meanwhile, the curves across different C values almost entirely
overlap, and the prediction accuracy consistently hovers around 0.735–0.736, further underscoring
the performance bottleneck of the model. The learning curves in Fig. 10b show that for all C values,
the log loss of both the training and validation sets decreases rapidly within the first 2–3 iterations
and stabilizes around the third iteration, reflecting the model’s fast convergence and good stability.
Overall, although the logistic regression model exhibits good convergence, its predictive power remains
insufficient and cannot meet the requirements for high-precision modelling of WOB.
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(a) (b)

Figure 10: Performance of the logistic regression model, (a) ROC curve, (b) learning curve

3.3.2 Support Vector Machine

For the SVM algorithm, the use of different kernel functions can lead to significant differences in
the model’s effectiveness. To explore a more applicable model for kindergarten buildings, this paper
uses four kernel functions for SVM, which are modeled and predicted for all the spring data from the
kindergarten buildings. As shown in Fig. 11a, the linear kernel function has an accuracy of less than
73.5% when the C value is <0.01. The accuracy ranges between 73.5% and 74% when the C value
is between 0.01 and 10. When the C value exceeds 10, the process takes longer than 24 h. Therefore,
the C value is measured up to 10, considering the algorithm’s implementability. In Fig. 11b, for the
polynomial kernel, C was set to 0.01, 0.1, 1, and 10, and γ to 0.01, 0.1, 1, and 10. Across these
combinations, the graded variables produced by the two models do not differ significantly, and the
maximum accuracy is approximately 88%.

For the RBF kernel function, C was set to 0.01, 0.1, 1, and 10, and γ to 0.01, 0.1, 1, 10, and
100. Across these combinations, as shown in Fig. 11c, when C < 1, both training and test accuracy
stay around 51%, indicating persistent under-fitting. When C > 1, training accuracy approaches
100% while test accuracy is more than 10% lower, evidencing over-fitting. Thus, tuning C—whether
small, moderate, or large—does not yield a configuration that meets the study’s performance criteria;
generalization remains unsatisfactory.

As shown in Fig. 11d, the change in the C value for the Sigmoid kernel function has a significant
impact on whether the time factor is treated as a continuous or graded variable. When the C value
exceeds 0.1, the accuracy of the model in which time is a graded variable is higher than that of the
model in which it is continuous by 20%. However, regardless of the C value, the maximum accuracy
does not exceed 60%.
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Figure 11: Performance of SVM with different kernel functions: (a) Linear, (b) Poly, (c) RBF,
(d) Sigmoid

As shown in Fig. 12a, the performance of SVM varied significantly across different kernel
functions. The RBF kernel performed best (AUC = 0.951, Acc = 0.885), effectively capturing the
nonlinear features of WOB data, followed by the poly kernel (AUC = 0.906, Acc = 0.824). The linear
kernel showed only moderate performance (AUC = 0.815, Acc = 0.736). In contrast, the sigmoid
kernel performed considerably worse (AUC = 0.633, Acc = 0.610), approaching random classification,
indicating its predictive capability is limited in this context. As illustrated in Fig. 12b, when SVM is
applied with the RBF kernel, the validation hinge loss converges rapidly after around 200 iterations. It
stabilizes at approximately 2000 iterations, while further increases in the number of iterations provide
only limited improvement and even introduce fluctuations. Meanwhile, the validation accuracy and
AUC gradually increased with the number of iterations, with the AUC rising from about 0.6 to nearly
0.9, indicating a substantial enhancement in the model’s discriminative capability. Overall, the RBF
kernel effectively captures the nonlinear characteristics of WOB data, achieving optimal predictive
performance and convergence within the range of 2000–4000 iterations.
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(a) (b)

Figure 12: Performance of the SVM model, (a) ROC curve, (b) learning curve

3.3.3 Random Forest

As with the modeling approach described above, the RF model hyperparameters were tuned using
undivided event data. The results of the hyperparameters tuning are as follows:

As shown in Table 4, in range (1), models generated from the hyperparameters displayed training
set accuracy consistently higher than that of the test set. Additionally, instances occurred where the
training set accuracy reached 100% for every value within the range of max depth. Moreover, as
the maximum depth increased, the accuracy of the test set also rose. Hence, it can be inferred that
the models generated from the hyperparameters within range (1) were over-fitting, with max depth
being the most influential hyperparameter affecting model prediction accuracy.

Table 4: RF Modeling Results

Hyperparameters n_estimators max_features max_depth min_samples_leaf min_samples_split

Range (1) 50, 100, 200, 300 sqrt, log2 10, 20, 30, 40, 50 1, 2, 4, 8 2, 5, 10, 20
Range (2) 50, 100, 200, 300 sqrt, log2 1∼10 1, 2, 4, 8 2, 5, 10, 20
optimum 300 log2 10 1 2

In range (2), with all other parameters held constant, max_depth was set between 1 and 10,
resulting in 1280 hyperparameter combinations. As depicted in the graph, as max_depth increased,
both training and testing set accuracy, as well as the difference (difference = training set − test set),
gradually increased. The difference did not exceed 5%, and the accuracy reached 90%. Furthermore,
there were no instances in which the training set accuracy reached 100%. Therefore, it can be consid-
ered that RF is the most accurate model for classifying the WOB state among the three models. The
combination of max_depth = 10, max_features = sqrt, min_samples_leaf = 1, min_samples_split = 2,
and n_estimators = 300 represents the optimal case.

As shown in Fig. 13a, the accuracy of the random forest model on both the training and testing
sets increases with the maximum depth of the decision trees. Shallow models exhibit clear underfitting,
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whereas when the depth reaches 7–9, the testing accuracy stabilizes at around 85%–90%, with the
difference between training and testing accuracy remaining below 2%, indicating strong generalization
ability. At a max_depth of 10, the training accuracy approaches 100% and the testing accuracy reaches
about 95%, although the slightly larger gap suggests a potential risk of overfitting. Random forests
are not trained via gradient descent and thus do not generate a global loss curve that decreases
monotonically with iterations. Instead, each tree is independently constructed based on bootstrap
sampling and split-purity criteria, and the convergence of the ensemble is evaluated through the
stability of performance metrics such as validation AUC, validation accuracy, or out-of-bag (OOB)
error as the number of trees increases. As shown in Fig. 13b, the validation AUC rises sharply and
peaks at approximately 0.97 around 60 trees, after which it remains essentially stable; the validation
accuracy fluctuates slightly between 0.90 and 0.91. Meanwhile, the OOB error drops rapidly at first
and levels off near 0.10 after about 100 trees, suggesting that further increases in the number of trees
yield diminishing returns. In practice, selecting around 120–200 trees provides an appropriate balance
between computational cost and performance.

(a) (b)

Figure 13: The performance of the random forest model: (a) relationship between RF max depth
hyperparameter value and prediction accuracy, (b) learning curve

In summary, considering the influence of hyperparameters and the algorithm’s implementability,
the accuracy rate of the LR algorithm is approximately 73%. The poly kernel function is the most
effective in SVM, achieving an accuracy of roughly 88%. RF reaches approximately 93%, making it
the most suitable algorithm for predicting WOB in kindergarten buildings among the three.

3.3.4 Event Sub-Model and Stacking Model

As shown in Fig. 14, the non-division models achieved the lowest predictive accuracy, at 93.55%
when time was treated as a continuous variable and 93.57% when treated as a hierarchical variable. In
contrast, the event-specific models consistently outperformed the traditional non-division approach,
with accuracy ranging from 92.48% to 98.26%. Notably, the Sleep event achieved the highest predictive
accuracy (98.26%), approximately 4.4% higher than the non-division model, followed closely by
Tidying (97.98% for direct prediction and 97.49% for OOF prediction) and Class (96.84% and 94.35%).
These results demonstrate that modeling based on distinct events provides a clear advantage in
accurately predicting WOB. Moreover, the differences between OOF predictions generated by 5-fold
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cross-validation and direct predictions were consistently within 1%, indicating strong stability of the
event-based framework. Considering that managing multiple event-specific models may increase the
workload in practical applications, a stacking model was used to integrate the eight event sub-models.
The stacking model achieved an overall accuracy of 96.68%, comparable to the best-performing
single-event models, while requiring computational resources similar to those of a single sub-model.
These findings highlight the advantages of event-based modeling in enhancing predictive performance
and further demonstrate that stacking learning can streamline the workflow without compromising
accuracy.

Figure 14: Comparison of results for the division sub-model, stacking model, and non-division model

4 Discussion
4.1 Analysis of Window Opening Behavior Differences across Seasons and Building Types

The impact of seasonal changes on window opening behavior across different building types
cannot be overlooked, and is particularly significant in regions with distinct climatic variations. Even
within the same spring season, different building types exhibit notable differences in window operation.
In residential buildings, springtime window opening during the day is primarily driven by “thermal
comfort needs” and “fresh air needs,” with behavior concentrated in daytime hours, especially in the
morning. This is likely related to residents’ habits of airing their homes after waking up or before
leaving for work. In summer, however, high daytime temperatures suppress the willingness to open
windows, and nighttime (21:00–04:00) becomes the main period for window operation [22,53]. In office
buildings, multiple studies have shown that changes in window states often occur when occupants
arrive or leave the office. After employees begin work, windows are frequently opened to alleviate
stuffiness and reduce poor air quality, while behavior associated with “lunch break” and “work
sessions” also occurs [26]. In maternal and child hospitals, where the main occupants are postpartum
women, ward behavior shows certain similarities to residential buildings. The probability of window
opening increases by 5%–10% in the morning but gradually decreases after 21:00, consistent with
the “morning opening, bedtime closing” pattern observed in residences [89]. However, “consideration
for maternal comfort” (67.35%) was identified as the main reason for window closing, while some
motivations for opening or closing windows were influenced by cultural traditions such as “avoiding
drafts,” suggesting that environmental comfort was not always the primary factor [90].
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These findings indicate that the temporal distribution of WOB is only a surface manifestation.
Even within the same season, different building types exhibit fundamentally different temporal
demands for window operation, which are essentially driven by events. Therefore, WOB should
be analyzed from an event-based perspective, tailored to building type. The kindergarten buildings
investigated in this study differ fundamentally from the types mentioned above. Their main occupants
are young children, whose daily schedules include not only life routines but also structured educational
activities. Consequently, aside from higher window-opening probabilities during arrival (52.5%) and
departure (50.9%), there is also a high probability observed during “class” events (51.2%).

Moreover, differences exist among classrooms across age groups. Existing research has focused
more on older students with better cognitive expression and self-regulation abilities. For example, in
high school classrooms during the heating season, window opening is more frequent in the first half
of the morning, particularly during breaks (10:50–11:10), upon arrival (08:00–08:10), and between
classes. During lessons, even when indoor conditions deteriorate, students rarely open windows
proactively, reflecting low sensitivity to the environment [65]. In primary school classrooms during
winter, window opening is more frequent at arrival times, while windows are more often closed at
departure, with little interaction at other times [91]. Some studies recommend that teachers guide
students to open windows during class breaks [92].

The focus of this study is kindergartens, primarily occupied by children aged 3–5, which differ from
the educational buildings mentioned above. Young children cannot operate windows independently;
teachers act as the actual operators, adjusting window behavior based on their understanding of
children’s needs, which introduces marked differences. Research has shown that in spring, during
events with active child participation (e.g., class, meals, and indoor activity), window operation is
more sensitive to indoor air quality, with teachers more likely to open windows to improve the
environment—a behavior that contrasts with that in high school classrooms. Therefore, even among
educational buildings, window-opening behavior requires age-specific and season-specific analysis.

4.2 Characteristic Analysis
In current research, the time factor has been widely regarded as the main influence on WOB.

However, the effect of each time period on WOB varies. Office buildings show a higher proportion of
window openings during working hours [93], especially when occupancy is higher, as the probability of
window openings increases [94]. On weekdays, in ordinary homes, people frequently open windows in
the morning before going to work [53,55]. However, the baby house differs from typical adult homes,
showing a “twin peaks” pattern of window opening at 9:00–10:00 and 19:00–20:00. These correspond
to the times when parents care for infants in the morning and spend time with their children in the
bedroom after work [54]. It is evident that data quantified by the time factor does not fully capture
its effect on WOB. The passage of time brings about changes in events, which are the main factors
influencing people’s behavior.

To demonstrate that the event classification method is not only applicable to the sample data
from the kindergarten building in this study but also generalizable to other WOB studies, this paper
extracts WOB data from an open office building in Italy in the global ASHRAE Occupant Behavior
Database (https://ashraeobdatabase.com) as the validation sample data [95]. These office schedules
are divided into three categories: off-duty (7 p.m. to 9 a.m. the next day), lunch break (1 to 3 p.m.),
and on-duty (9 a.m. to 1 p.m. and 3 to 7 p.m.) [34]. Since the original data recorded window status
and indoor temperature every five minutes, each window-opening was recorded consecutively five
times. The outdoor environmental parameters (including temperature, humidity, wind speed, wind
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direction, and solar radiation) were recorded every ten minutes. The data were then processed, and
linear interpolation was used to calculate the values for these parameters. All data were subsequently
recorded at uniform five-minute intervals.

As shown in Fig. 15, there are two peaks in WOB across the 24 periods. From the perspective
of the traditional “daily time-period” analysis, significant differences exist between kindergarten and
office buildings in the distribution of window-opening peaks and troughs. In kindergartens, the peaks
occur mainly from 8:00 to 10:00 in the morning and 14:00 to 16:00, closely associated with ventilation
practices after children’s arrival and after nap time. The trough, in contrast, is concentrated between
12:00 and 14:00, when ventilation is reduced to avoid disturbing children during their midday rest. In
comparison, office buildings (based on ASHRAE data) exhibit peaks from 9:00–12:00 in the morning
and 13:00–18:00 in the afternoon, corresponding to regular working hours. The trough occurs between
12:00 and 15:00, during lunch breaks when occupant activity decreases, leading to lower window-
opening rates. These differences highlight the essential distinctions in occupant routines and event-
driven mechanisms between the two building types.

Figure 15: Correlation between the time of day and WOB in ASHRAE data samples

4.3 Modeling and Verification
The selection of input parameters plays a crucial role in model development, with the quan-

tification of temporal factors as input data having been extensively applied in related studies. The
first is a categorical variable. It has been demonstrated that month, day of the week, and hour of
the day, as hierarchical variables, are significant input parameters for the model [36,53]. The day
of the year (R2 = 0.967) is more suitable as a WOB model parameter than the minute of the day
(R2 = 0.438) [96]. However, based on the analysis presented in this paper, the sub-model that divides
events outperforms the traditional model, which uses time as the input parameter. As shown in
Fig. 16, the non-division models achieved the lowest predictive accuracy, with only about 84% when
time was quantified as either a continuous or hierarchical variable, indicating that solely relying
on time quantification provides limited improvement to model performance. In contrast, event-
based sub-models all achieved higher accuracy, with the Closing Time event performing best at
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approximately 89%, while Working Hours and Lunch Break also outperformed the traditional models.
This demonstrates that event division can more effectively capture variations in occupant behavior
patterns across different periods. Furthermore, by integrating multiple event-specific sub-models, the
stacking model achieved an overall accuracy of over 96%, significantly surpassing both individual
event models and non-division models, thereby confirming the advantages of event-based modeling
and ensemble learning in enhancing WOB prediction performance.

Figure 16: Verification result

The event-based research framework proposed in this study exhibits strong generalizability within
kindergarten buildings located in cold regions of China. It is not only applicable to the case building
analyzed but also holds promise for broader application across other kindergartens in regions with
similar climatic conditions.

For kindergarten buildings in other climatic regions that follow similarly structured daily rou-
tines—such as regular activities including teaching, napping, and meals—the framework can be mod-
erately adapted while maintaining its core modeling logic, and also offers methodological reference
and reproducibility.

However, when applying this framework to buildings with significantly different climatic charac-
teristics or functional types (e.g., office buildings or residential dwellings), it is necessary to carefully
adapt the event definitions, occupant behavior modeling strategies, and algorithmic configurations to
ensure the accuracy and applicability of window-opening behavior analysis and prediction.

5 Limitations

This study adopts an event-based approach to investigate window opening behavior, using field
data collected from kindergarten buildings in a severe cold region. However, the limited sample size
and focus on a single building type restrict the broader applicability of the findings. Although partial
validation was performed using office building data from the ASHRAE public database, the current
scope lacks sufficient diversity in building functions and climatic contexts. Given that behavioral
patterns and event characteristics can vary significantly across different building types and user groups,
the effectiveness of the proposed method in other contexts remains uncertain. Future studies should
expand the research scope to include a wider variety of buildings and climate zones, thereby further
testing the generalizability of the approach. Additionally, teachers are the primary decision-makers for
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window operations in kindergarten buildings. WOB is shaped not only by teachers’ interpretations of
students’ needs but also by their individual preferences. In future research, teacher interviews and
surveys should be conducted across different events to systematically collect information on their
personal perceptions, environmental demands, and judgments of students’ needs. These data should
then be quantified and incorporated into the modelling inputs to more comprehensively reveal the
decision-making mechanisms underlying window operations.

6 Conclusion

A direct relationship exists between the functional characteristics of buildings and the types of
events that occur within them. Due to the essential difference in daily activities, kindergarten buildings
exhibit unique window opening behave∗ (WOB) patterns compared with other building types. This
paper analyzes the behavioral characteristics and prediction model of kindergarten building window
opening from the perspective of event division.

(1) The events of arrival, class, and departure are associated with more frequent window opening,
with probabilities exceeding 50%. In contrast, events such as dietary activity, indoor activity, outdoor
activity, sleep, and tidying exhibit relatively lower probabilities of window opening. Notably, during
events with fewer students present (such as arrival, departure, and tidying), window opening shows
a reduced dependence on outdoor environmental factors and exhibits greater randomness. In con-
trast, events involving active student engagement (class, dietary activity, and indoor activity) show
heightened sensitivity to indoor air quality, with windows being opened more frequently to improve
air quality. Additionally, during the spring season, teachers generally pay closer attention to children’s
thermal comfort. As indoor temperature rises, window-opening behavior becomes more proactive,
aiming to enhance the thermal environment within the classroom.

(2) Compared with LR and SVM, RF is more suitable for predicting the WOB of kindergarten
buildings with extensive sample data, achieving an accuracy of about 93%. Additionally, there is almost
no difference in the influence of how the time factor is quantified on the model’s accuracy when it is
treated as either a continuous or hierarchical variable.

(3) The divided event sub-model is generally more accurate than the traditional undivided model,
with a maximum improvement of 4.4%. This is the first time the stacking model has been applied in
WOB research, simplifying the complexity of multiple models and increasing accuracy by 0.99%.

(4) This paper demonstrates that analyzing WOB from the perspective of event division is more
accurate, using the ASHRAE public database and Italian office building validation sample data.
Furthermore, the event sub-model consistently achieves higher predictive accuracy compared to
traditional models, with a maximum observed improvement of 3.63%.
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