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Abstract

This paper presents a numerical strategy for the aerodynamic analysis of large build-

ings, with an application to the simulation of the air 
ow within in a telescope building.

The �nite element formulation is presented �rst, and then the methodology followed to

obtain signi�cant data from the calculations is described. The quality of the ventila-

tion of the building is de�ned by the average residence times, and the feasibility of this

ventilation by the actions created on the instruments and the general 
ow pattern.

1



Contents

1 Introduction 3

2 Numerical model 4

2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Finite element approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Linearized equations and iterative coupling . . . . . . . . . . . . . . . . . . . 8

3 Numerical aerodynamic analysis of large buildings 9

3.1 External aerodynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Air regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Thermal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Loads on the instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Conclusions 13

2



1 Introduction

This paper describes a �nite element methodology to analyze the air 
ow through large build-

ings, with an application to the prediction of the external and internal aerodynamic behavior

of a large telescope facility to be built in La Palma island (Canary Islands, Spain). From the

point of view of the design of the telescope, the main objectives are to obtain a qualitative

assessment about the air 
ow within the building, which could give an idea of the quality of

the ventilation, and to obtain the actions exerted by the wind on the instruments within the

telescope, since it is of fundamental importance to control their vibrations to ensure the qual-

ity of the astronomical observations. Of relatively lower importance is the thermal analysis,

which can predict temperature 
uctuations near the observation instruments responsible for

a deterioration of the quality of the visibility.

We describe in this article a strategy to measure the quality of the ventilation through the

de�nition of the average renovation times. The actions exerted by the wind on the instruments

are simply given by the evolution in time of the force and the torque on them. The �nal

outcome of the numerical analysis is the temperature distribution within the building.

Referring to the mathematical and numerical models employed, the 
ow is modeled by the

incompressible Navier-Stokes equations using Smagorinsky's turbulence model, and assuming

a Boussinesq coupling between the momentum and the heat equations. These equations are

discretized in time using the standard trapezoidal rule and in space using a stabilized �nite

element formulation, which allows in particular to interpolate all the unknowns using linear

tetrahedral elements. This stabilized formulation is based on the algebraic version of subgrid

scale concept introduced in [1] and is developed in [2, 3]. Similar formulations applied to large

scale problems can be found for example in [4, 5]. Finally, the treatment of the turbulence

and the thermal coupling is also discussed.

The aerodynamic analysis of the large telescope building is then detailed. The external


ow study is discussed �rst and the di�erent wind analyses to de�ne the precise location

taking into account a large amount of land around the telescope building are also described.

The �nal part of the paper presents the ventilation study performed. Here, the study of the air


ow through 164 windows and within the telescope building, incorporating all the telescope

equipment, is described. The evolution of forces on the main structures are computed in

order to know the action of the wind on them. The tracking of the air particles within the

building is used to determine average renovation times.

The results presented here are part of a work done in the context of a contract between the

International Center for Numerical Methods in Engineering (CIMNE) and GRANTECAN,

the Spanish public company in charge of the studies prior to the construction of the telescope.
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2 Numerical model

2.1 Problem statement

In this section we shall consider the 
ow problem for an incompressible 
uid taking into

account the coupling of the Navier-Stokes equations with the heat transport equation through

Boussinesq's assumption, as well as a nonlinear viscosity dependence on the velocity gradient

invariants through Smagorinsky's turbulence model.

The equations describing the problem are

@tu+ (u � r)u� 2r � [�"(u)] +rp+ �g# = f ; (1)

r � u = 0; (2)

@t#+ (u � r)#�r � (�r#) = 0; (3)

to be solved in 
�(0; t�n), where 
 � R
3 is the computational domain and [0; t�n] is the time

interval to be considered. In (1)-(3), u denotes the velocity �eld, p is the kinematic pressure

(i.e., the pressure divided by the density), # is the temperature, � is the total kinematic

viscosity (physical plus turbulent), "(u) is the symmetrical part of the velocity gradient, �

is the thermal expansion coeÆcient, g is the gravity acceleration vector, f is the vector of

body forces, and � is the thermal di�usivity (that is, the thermal conductivity divided by

the heat capacity). The density �0 is assumed constant to obtain equations (1)-(3). In the

numerical examples, all these properties have been taken as those corresponding to air in

normal conditions.

The force vector f in (1) contains the reference buoyancy forces from Boussinesq's as-

sumption, that is

f = g(1 + �#0):

In this equation, #0 is the reference temperature from which buoyancy forces are computed.

Smagorinsky's turbulence model has been employed in the numerical simulations. This

model is tight to the numerical discretization in space of the 
ow equations, which in our case

is performed using the �nite element method. The turbulent kinematic viscosity associated

to this model is

�t = ��10 ch2 ["(u) : "(u)]1=2 ;

where c is a constant, usually taken as c = 0:01, the colon stands for the double contraction

of second order tensors and h is the length of the element where the turbulent kinematic

viscosity is to be computed.

In order to write the boundary conditions for equations (1)-(3), consider the boundary � =

@
 split into sets of disjoint components as � = �dv [ �nv [ �mv and also as � = �dt [ �nt,

where �dv and �dt are the parts of the boundary with Dirichlet type boundary conditions for
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the velocity and the temperature, respectively, and �nv and �nt are those where Neumann

type conditions are prescribed. Mixed boundary conditions for the velocity are �xed on �mv.

If the Cauchy stress tensor (divided by the density) is written as � = �pI + 2�"(u), the

exterior normal to @
 is n, and prescribed values are represented by an overbar, the boundary

conditions to be considered are

u(x; t) = �u(x; t) on �dv; (4)

n � �(x; t) = 0 on �nv; (5)

n � u(x; t) = 0 and n � �(x; t)jtang = �t on �mv; (6)

#(x; t) = �#(x; t) on �dt; (7)

�n � r#(x; t) = 0 on �nt; (8)

for t 2 (0; t�n). In (6), n � �(x; t)jtang denotes the component of the stress vector n � �(x; t)

tangent to @
 and �t is the stress resulting from the standard wall law

�t = ��0
U2
�

juj
u;

where U
�
is the solution of the nonlinear equation

juj

U
�

=
1

�
log

�
U
�
�

�

�
+ C;

with � = 0:41 (von K�arm�an constant), C = 5:5 and where � is the distance from the wall at

which the velocity is evaluated.

To close the problem, initial conditions have to be appended to equations (1)-(3) and

the boundary conditions (4)-(8). They are of the form u(x; 0) = u
0(x), #(x; 0) = #0(x) for

x 2 
, where u0(x) is a given initial velocity and #0(x) a given initial temperature.

In the numerical simulations of the telescope building, �dv corresponds to the in
ow part

of the boundary of the computational domain, where the wind velocity is prescribed to a

certain value of interest and with a given direction, whereas �nv is the out
ow boundary.

The surface �mv corresponds to both the ground surface and the building surface.

2.2 Time discretization

Let us consider now the temporal discretization of equations (1)-(3), for which we use the

generalized trapezoidal rule. Let 0 = t0 < t1 < ::: < tN = t�n be a partition of the time

interval and � 2 [0; 1]. To simplify the notation, we shall take the time step size Æt := tn+1�tn

constant for all n. Let us also introduce the notation

Æfn := fn+1 � fn;

fn+� := �fn+1 + (1� �)fn;

Ætf
n :=

Æfn

Æt
;
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where f is a generic function of time and fn denotes the value of f at time tn or an approx-

imation to it.

Assuming all the functions involved continuous in time, the trapezoidal rule applied to

equations (1)-(3) leads to the following time discrete problem: from known u
n and #n, �nd

u
n+1, pn+1 and #n+1 such that

Ætu
n + (un+�

� r)un+�
� 2r � [�n+�"(un+�)] +rpn+1 + g�#n+� = f

n+�; (9)

r � u
n+1 = 0; (10)

Æt#
n + (un+�

� r)#n+� �r �

�
�r#n+�

�
= 0; (11)

and satisfying the boundary conditions described before. Observe that the problem can

be posed in terms of un+� and #n+� rather than u
n+1 and #n+1 by using the fact that

Æfn = (fn+� � fn) =�, for any function f .

The values of interest of the parameter � are � = 1=2 and � = 1, corresponding to the

Crank-Nicholson and the backward Euler schemes, respectively. Both are unconditionally

stable, although the former is expected to be second order accurate whereas only a �rst order

approximation can be expected for the latter.

2.3 Finite element approximation

Once the time discretization has been carried out, we are left with the boundary value

problem de�ned by the di�erential equations (9)-(11). In order to discretize it in space, let

f
e
g be a �nite element partition of the domain 
, with index e ranging from 1 to the

number of elements nel. We denote with a subscript h the �nite element approximation to

the unknown functions, and by vh, qh and  h the velocity, pressure and temperature test

functions associated to f
e
g, respectively.

A very important point is that we are interested in using equal interpolation for all the

unknowns (velocity, pressure and temperature). Therefore, all the �nite element spaces are

assumed to be built up using the standard continuous interpolation functions. In particular,

all the numerical simulations have been carried out using meshes of linear tetrahedra.

In order to overcome the numerical problems of the standard Galerkin method, a stabilized

�nite element formulation is applied. This formulation is presented in [2] for the general

case of systems of convection-di�usion-reaction equations, and applied to the Navier-Stokes

equations in [3], where its convergence properties for the linearized problem are analyzed. It is

based on the subgrid scale concept introduced in [1], although when linear elements are used

it reduces to the Galerkin/least-squares method described for example in [6, 7, 4]. As in [6],

we apply this stabilized formulation together with the �nite di�erence approximation in time

described above. The bottom line of the method is to test the continuous equations by the

standard Galerkin test functions plus perturbations that depend on the operator representing

the di�erential equation being solved. In our case, this operator corresponds to the linearized
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form of the time-discrete Navier-Stokes equations (9)-(10) and the heat equation (11). In

this case, the method consists of �nding un+�
h , pn+1h and #n+�h such that

Z


vh � r

n+�
u1 d
 +

Z


2"(vh) : �

n+�
"(un+�

h ) d
�

Z


pn+1h r � vh d


+

nelX
e=1

Z

e

�
n+�
u1 �

�
r
n+�
u1 + r

n+�
u2

�
d
 +

nelX
e=1

Z

e

�n+�u2 rn+�p d


=

nelX
e=1

Z

e

�
vh + �

n+�
u1

�
� f

n+� d
 +

Z
�mv

vh �
�t
n+�

d�;

Z


qhr

n+�
p d
 +

nelX
e=1

Z

e

�
n+�
p �

�
r
n+�
u1 + r

n+�
u2

�
d
 =

nelX
e=1

Z

e

�
n+�
p � f

n+� d
;

Z


 h � r

n+�
#1 d
 +

Z


�r h � r#

n+�
h d
 +

nelX
e=1

Z

e

�n+�#

�
rn+�#1 + rn+�#2

�
d
 = 0;

for all test functions vh, qh and  h, where

r
n+�
u1 := Ætu

n
h + g�#n+�h + (un+�

h � r)un+�
h ; (12)

r
n+�
u2 := �2r � [�n+�"(un+�

h )] +rpn+1h ; (13)

rn+�p := r � u
n+�
h ; (14)

rn+�#1 := Æt#
n
h + (un+�

h � r)#n+�h ; (15)

rn+�#2 := �r �

�
� � r#n+�h

�
; (16)

the functions �u1, �u2 and �p are computed within each element as

�u1 = �u f(uh � r)vh + 2r � [�"(vh)]g ; (17)

�u2 = �pr � vh; (18)

�p = �urqh; (19)

�# = �# [(uh � r) h +r � (�r h)] ; (20)

and the parameters �u, �p and �# are also computed element-wise as (see [8, 3])

�u =

�
4�

h2
+
2juhj

h

�
�1

;

�p = 4� + 2juhjh;

�# =

�
4�

h2
+
2juhj

h

�
�1

;

where h is the element size for linear elements and half of it for quadratics.

There are several remarks to be made to the previous equations:

REMARK 1. It is observed that (13) and (16) (the terms of the original di�erential equa-

tions integrated by parts in the weak form of the problem) involve second derivatives of the
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unknowns. This is why the integrals involving these terms have to be evaluated element by

element.

REMARK 2. From (17)-(20) it is observed that these terms are precisely the adjoints of the

(linearized) operators of the di�erential equations to be solved applied to the test functions

(observe the signs of the viscous term in (17) and of the di�usive term in (20)). This method

corresponds to the algebraic version of the subgrid scale approach ([1, 2]) and circumvents

all the stability problems of the Galerkin method. In particular, in this case it is possible to

use equal velocity pressure interpolations, that is, we are not tight to the satisfaction of the

inf-sup stability condition.

2.4 Linearized equations and iterative coupling

The �nal step is to linearize the previous �nite element problem. In our case, there are

two sources of nonlinearity, namely, the convective term of the Navier-Stokes and the heat

equations and the fact that the viscosity depends in a nonlinear way on the viscosity through

the turbulence model. We have used the simplest �xed point scheme to linearize these

nonlinearities.

The convective term in the heat equation is another nonlinearity of the problem. However,

instead of linearizing this term and dealing with the fully coupled problem, with velocity,

pressure and temperature as unknowns, we use an iterative coupling, as described for example

in [9]. The idea is to use the temperature known from the previous iteration in the momentum

equation, and then use this equation and the continuity equation to compute the velocity

and the pressure. With the velocity computed, we can proceed to solve the heat transport

equation. Using this strategy, the fully discrete and linearized system of equations to be

solved isZ


vh � r

n+�;i+1
u1 d
 +

Z


2"(vh) : �

n+�;i
"(u

n+�;i+1
h ) d
�

Z


pn+1;i+1h r � vh d


+

nelX
e=1

Z

e

�
n+�;i
u1 �

�
r
n+�;i+1
u1 + r

n+�;i+1
u2

�
d
 +

nelX
e=1

Z

e

�n+�;iu2 rn+�;i+1p d


=

nelX
e=1

Z

e

�
vh + �

n+�;i
u1

�
� f

n+� d
 +

Z
�mv

vh �
�t
n+�

d�;

Z


qhr

n+�;i+1
p d
 +

nelX
e=1

Z

e

�
n+�;i
p �

�
r
n+�;i+1
u1 + r

n+�;i+1
u2

�
d


=

nelX
e=1

Z

e

�
n+�;i
p � f

n+� d
;

Z


 h � r

n+�;i+1
#1 d
 +

Z


�r h � r#

n+�;i+1
h d


+

nelX
e=1

Z

e

�n+�;i#

�
rn+�;i+1#1 + rn+�;i+1#2

�
d
 = 0;
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where the second superscript denotes the iteration counter and

r
n+�;i+1
u1 := Ætu

n;i+1
h + g�#

n+�;i
h + (u

n+�;i
h � r)u

n+�;i+1
h ;

r
n+�;i+1
u2 := �2r � [�n+�;i"(u

n+�;i+1
h )] +rp

n+1;i+1
h ;

rn+�;i+1p := �p
n+1;i+1
h � ��p

n+1;i
h +r � u

n+�;i+1
h ; (21)

r
n+�;i+1
#1 := Æt#

n;i+1
h + (u

n+�;i+1
h � r)#

n+�;i+1
h ;

r
n+�;i+1
#2 := �r �

�
� � r#

n+�;i+1
h

�
;

In (21) we have introduced a parameter � that corresponds to a penalty parameter for the

incompressibility constraint. Likewise, we have introduced the parameter �, whose values

of interest are � = 0 and � = 1. When � = 0 the penalty strategy can be considered

the `classical' one. On the other hand, when � = 1 it is seen from (21) that the e�ect of

the penalization disappears when convergence is achieved. This iterative penalty method

is discussed and analyzed in [10]. The bene�t of taking � = 1 is that larger values of �

may be used with a good approximation of the incompressibility constraint. The use of

penalty methods when continuous pressures are used, as in our case, may help to improve

the convergence of the iterative methods if they are used to solve the algebraic system of

equations, which in the aerodynamic analyses to be described in the following section is the

GMRES algorithm with a simple diagonal scaling.

In all the numerical simulations described in the following, convergence within each time

step has been speci�ed to 0:1% in the relative mean square norm of the velocities. Although

case dependent, around three iterations per time step are required to converge when the 
ow

is fully developed.

3 Numerical aerodynamic analysis of large buildings

3.1 External aerodynamic analysis

The �rst step in the design of a large building is to de�ne its location. The decision regarding

this point may be taken with the help of the numerical aerodynamic analysis of the wind in

the region of interest, which may give a qualitative 
ow pattern relevant at the moment of

deciding the building location. Likewise, this preliminary analysis can be used to determine

the boundary conditions for a more accurate calculation of the air 
ow surrounding the

building. These boundary conditions can be obtained assuming that the 
ow far from the

building is una�ected by it.

In the following we describe the methodology that we have followed in the aerodynamic

analysis of the telescope building to be constructed in the Canary Islands. This methodology

consists of the following three steps:
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1. Analysis of a large region of land where the building can be placed. The boundary

conditions for this analysis are rough wind data (in our case, only the wind direction

and its magnitude was considered).

2. Analysis of the region surrounding the building location. Boundary conditions are

obtained from the previous step. The e�ect of the building on the 
ow is still assumed

to be negligible.

3. Analysis of the interior of the building and a (relatively small) exterior region surround-

ing it. Once again, boundary conditions are obtained from the results of the previous

step.

Steps 1 and 2 correspond to the external aerodynamic analysis. In our case, their objective

was to analyze the e�ect of the orography on the air circulation in the telescope location,

assuming that the perturbation induced by the building on the 
ow pattern is negligible.

Two computational domains were considered. The �rst consists of a square of 6 � 6 km

surrounding the location selected for the telescope with an average height of 1600 m. On the

in
ow sides of this domain, a wind velocity was prescribed with orientations North-East (NE)

and North-West (NW). Experimental data revealed that characteristic velocity values in this

area are 2, 4, 6 and 10 m/s. In all the analyses it was necessary to consider low velocities as

well as high ones, since the former may lead to poor ventilation of the telescope building and

the latter to excessive actions (forces and torques) on the instruments.

For this domain, a mesh of 74 999 elements was used for the spatial discretization. This

mesh is too coarse to capture all the details of the 
ow, and in particular a stationary solution

was found. Even though localized 
ow oscillations were not captured, the velocity �eld

obtained was used (after appropriate interpolation) as boundary condition for the analysis

on a �ner mesh of 91 604 elements in a smaller domain of 1:5� 1:5 km and average height of

450 m. This domain is shown in Figure 1.

The 
ow pattern computed in this domain is not stationary any more. Multiple vortex

shedding and 
ow separation occur, leading to a complex time behavior. Calculations were

performed for a time period of 200 s, with a time step size of 4 s. A sample of the results

obtained is shown in Figure 2, where the pressure contours at di�erent sections for a NW

wind of 10 m/s are shown.

From the design point of view, these calculations serve to decide whether the telescope

location is adequate or not. The main result is the qualitative 
ow pattern, which shows if

local wind accelerations or vortexes occur in the telescope location.

3.2 Air regeneration

After having carried out steps 1 and 2 described in the previous subsection, the internal

aerodynamic analysis can be performed. This can give di�erent types of relevant information.
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As before, we describe here how to obtain some results that can be of interest in the context

of the analysis of the telescope building.

Once the exact location was decided, partly based on the external aerodynamic analysis,

the next step was to investigate the possibility of using natural ventilation, which was the

original motivation to undertake this study. The target was to obtain 16 air renovations per

hour. First of all, the concept of renovation has to be precisely de�ned. Since some of the

air particles may remain within the building for ever due to the existence of recirculation

regions, it does not make sense to de�ne renovation a�ecting all the air particles. Therefore,

this concept must be related to a certain percentage of these particles. We say that this

percentage has n renovations per hour if all of them stay within the building less than 3600=n

seconds. In particular, the target of 16 air renovations per hour can be expressed by requiring

that most of the air particles (the 95%, say) stay within the telescope building less that 225

seconds. The methodology that we have employed to obtain an estimate for these quantities

is described below.

To perform the internal aerodynamic analysis, the domain of analysis chosen is a square

of 300 m side surrounding the building and including it. This building has 164 windows that

originally were assumed to be completely open. A general view of the computational domain

and the telescope is shown in Figures 3, 4, where the sections used to represent numerical

results are also indicated.

The �nite element mesh employed in the numerical simulations consists of 460 000 tetra-

hedra (see Figure 5). The time step size chosen was 2 s, which was found to be small enough

to capture the main 
ow oscillations.

A number of di�erent 
ow situations was considered, obtained by varying the veloc-

ity magnitude, changing the orientation of the building dome, considering di�erent window

openings, etc. As mentioned in the description of the general strategy, the velocity boundary

conditions were taken from the interpolation of the results obtained in the external aerody-

namic analysis.

The �rst series of analysis corresponded to a wind velocity of 4 m/s (in the outer region)

with a NE orientation. In this case, the local average velocities turned out to be of 5.2 m/s.

The dome orientations analyzed were 0Æ, 45Æ, 90Æ and 180Æ with respect to the wind direction.

As for the wind magnitude, the better the situation for the air regeneration, the higher the

actions on the instruments. The dome has an opening for the telescope device that allows

di�erent opening angles with respect to the horizontal line. Most calculations were done

assuming an opening of 60Æ.

Figures 6, 7 show an example of 
ow pattern inside the telescope building (it corresponds

to a NE wind of 4 m/s with the dome rotated 45Æ west-wards).

In all the cases analyzed, the most important result was the average residence time,

which was used as indicative of the quality of the ventilation. This was computed as the
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time needed for the particles to abandon the telescope building. We took 830 particles,

uniformly distributed within the telescope, and computed the time they spent within the

building assuming the 
ow to be stationary, which is a \conservative" assumption since time


uctuations prevent from stationary vortexes that remain in the building for ever. This was

done for several time steps in which the 
ow was completely developed, showing only small

di�erences in the results. An example of the results obtained is shown in Figure 8, where

the percentage of particles in a given time interval to leave the building is given (this �gure

corresponds to the same case as Figures 6, 7).

The worst situation among those analyzed was that corresponding to a NE velocity of 2

m/s, with the dome orientation at 90Æ and the windows partially closed. However, even in

this case the target of 16 air renovations per hour was accomplished, since in all the cases

less than 5 % of the air particles stayed within the building more than 180 seconds.

3.3 Thermal analysis

In the particular case of the telescope building that we are considering, one of the factors that

may in
uence the visibility of the telescope is the temperature distribution. This is why a

coupled thermal analysis was performed in some of the cases of air regeneration. The physical

model used was based on the Boussinesq assumption, so that the equations describing the

problem are those of Section 2, approximated using the numerical strategy described there.

As data for the numerical simulation the wind temperature in the far �eld was assumed

to be of 10Æ C. Likewise, the ground temperature and the temperatures on the instruments

were assumed to be known. The values adopted were chosen according to the indications

provided by GRANTECAN. The highest temperature prescribed was 15Æ C.

Figure 9 shows the temperature distribution obtained at a time step in which the 
ow

was completely developed.

The main conclusion drawn from the thermal analysis was that for the type of ventilation

considered convection is dominant in the heat transport process. Heat emanating from the

instruments is rapidly transported out of the telescope building, whose mean temperature is

close to that of the far �eld wind.

3.4 Loads on the instruments

Another objective of the aerodynamic analysis of the interior of a building can be to obtain

the forces and torques that the wind exerts on its components. These can be computed by

integrating the stress vector

t = �0 [�pn+ 2�n � "(u)]

and its moment r � t (r being the position vector) over the surface of the body where the

force and torque is needed. If the 
ow is time dependent, so will be these actions. Therefore,
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it can be also interesting to obtain their spectrum, which will provide information about the

dominating frequencies in the 
ow.

In the particular case we are analyzing, high ventilation in the telescope building has the

potential danger of causing excessive actions on the instruments inside it. If wind velocities are

too high, the forces and torques created on the optical instruments may cause unacceptable

vibrations, thus deteriorating the quality of the visibility.

Wind loads on several devices within the telescope building were computed. In order to

simplify the mesh generation, these instruments were idealized as shown in Figure 10. There,

the primary and secondary lenses are represented, as well as the ring structure supporting

them and the devices to activate them. The bar frame connecting the lenses is not taken into

account in our analysis.

The forces computed were highly oscillatory in time. An example of the results obtained

is presented in Figure 11, where the evolution of the total force on the lower mirror is plotted

for a certain position of the telescope opening and orientation of the telescope itself.

Due to the high temporal variation of the wind loads, which is a consequence of the

multiple frequencies existing in the 
ow, it was considered convenient to give as result of

the calculation the maximum and minimum loads in time. Also, the Fourier transform of

the temporal evolution of the loads in time was computed. Even though some dominant

frequencies were observed in some cases, that was not the general rule, which again was an

indication of the high number of interacting 
uctuations in the 
ow.

4 Conclusions

In this paper we have presented a numerical model to analyze incompressible 
ow problems,

as well as a strategy to apply it to the aerodynamic analysis of large buildings. In particular,

the description of this strategy has been supported by an application to a telescope building

where the main goal was to study the possibility of using natural ventilation. The basic tool

for the numerical simulations is a �nite element method which has proved to be very robust

and accurate.

The �rst step of the study was the external aerodynamic analysis in a large domain to

obtain appropriate boundary conditions for the analysis in a smaller region, the results of

which were in turn used as boundary conditions for the simulation of the air 
ow around the

building and in its interior.

Three di�erent types of results were obtained from the series of simulations performed.

The �rst is the 
ow pattern, which may give an indication of possible visibility problems (due

for example to the dust that the air can carry). The second is the average residence time, as

de�ned in this paper, which can be used to quantify the quality of the ventilation. Finally,

the forces and torques on the instruments in the interior of the building need to be known to

13



prevent possible vibration problems that could also a�ect the quality of the visibility.
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Figure 1: Domain and surface mesh surrounding the telescope location

Figure 2: Pressure contours for a NW wind of 10 m/s
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Figure 3: General view of the computational domain surrounding the telescope

Figure 4: Sections on the telescope building
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Figure 5: Surface mesh on the telescope building and some air particle paths

Figure 6: Example of velocity �eld on the horizontal mid section
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Figure 7: Example of velocity �eld on the vertical mid section

Figure 8: Example of distribution of average residence times
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Figure 9: Example of temperature distribution on the horizontal mid section

Figure 10: Instruments within the telescope on which forces have been computed
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Figure 11: Total force (N) on the lower mirror computed for 10 m/s NW wind, over 400 s
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