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Abstract. An a-posteriori error estimate with application to inviscid compressible flow 

problems is presented. The estimate is a surrogate measure of the discretization error, 

obtained from an approximation to the truncation terms of the governing equations. This 

approximation is calculated from the discrete nodal differential residuals using a 

reconstructed solution field on a modified stencil of points. Both the error estimation 

methodology and the flow solution scheme are implemented using the Finite Point Method, a 

meshless technique enabling higher-order approximations and reconstruction procedures on 

general unstructured discretizations. The performance of the proposed error indicator is 

studied and applications to adaptive grid refinement are presented.   

1 INTRODUCTION 

Numerical simulation plays an increasingly important role in most fields of science and 

engineering. Thus arises the need for better identification and quantification of numerical 

errors, not only as a means to improve the numerical solutions (e.g. through grid adaptation) 

but also to determine the accuracy and reliability of the computational code and the results. 

Error analyses developed in the framework of verification and validation (V&V) are 

becoming standard practices in numerical simulation, see [1-4] for an overview. 

Among the different errors affecting numerical accuracy, the most relevant are discretization, 

iterative convergence and round-off errors. While iterative convergence and round-off errors 

can be estimated and controlled to a good extent, the discretization error, which tends to 

dominate, is more difficult to evaluate. Therefore, determining the accuracy of a numerical 

simulation relies mainly on the identification and quantification of discretization errors. 

Numerous techniques, mostly based on a-posteriori estimators, have been developed with this 

aim. The most typical approaches are briefly reviewed below to establish the theoretical 

framework of the problem. 



  2/26 

One of the first effective techniques for error estimation in a single grid was proposed by 

Zienkiewicz and Zhu (ZZ) in the context of the Finite Element Method (FEM) [5]. In this 

approach a higher accuracy estimate of the solution gradients is reconstructed from the super-

convergent points of the discretization (valid for smooth solution fields, with some exceptions 

depending on mesh topology). This high-order estimate is compared against the “ordinary” 

approximate gradients computed directly from the nodal values. The difference between the 

two gradient fields is used as error estimator, converging to the true error as the grid is refined 

[6]. The main advantage of the ZZ estimator is that it provides reasonable measures of local 

and global errors at a low computational cost. In solid mechanics and heat transfer, this 

estimator can give true stress and heat-flux errors, respectively, allowing goal-oriented error 

estimation. However, a direct relation with variables or functionals of interests (e.g. lift or 

drag) has not been found in flow problems. Thus, applications of the ZZ estimator in fluid 

mechanics have been mostly restricted to grid adaptation. 

Other popular a-posteriori error estimators, also conceived within the FEM framework, are 

based on differential residuals of the discrete solution [7, 8]. Though typically these residuals 

are obtained by inserting an approximate solution into a modified form of the governing 

equations, tey can be also computed by using an enhanced solution field with the same set of 

discrete equations. Non-zero local (and global) residual values can be related to an imbalance 

in the governing equations and this, in turn, to errors in the conserved quantities affecting the 

problem solution and derived output functionals (although the relationships are not 

straightforward). In this sense, some applications using residual imbalances (e.g. in kinetic 

energy, momentum, etc.) have proven useful in guiding automatic grid adaptation and also as 

surrogate indicators for errors in derived output quantities; see for instance [9, 10] and more 

recently [11], where power forms of mass and momentum residuals are used to guide mesh 

adaptivity in incompressible flow problems. 

An extension of residual methods which provides goal-oriented error estimates is based on the 

solution of adjoint-problems [12]. Although these methods have a higher complexity and 

require the solution of a dual problem, promising applications can be found in the literature, 

see for example [13] and [14]. The latter work evaluates the influence of artificial dissipation 

on the discretization error and the computed aerodynamic forces.  

Another class of error estimation methods directly models (and solves) the generation and 

transport of error by means of the so-called Discrete Error Transport equations (DET) [15-

17]. These are generally obtained from the truncation terms of the governing equation, i.e. the 
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difference between the original equation and its discrete counterpart. Since explicit forms of 

the truncation terms are difficult to obtain in general problems, approximate expressions have 

to be derived; these usually have a close connection with differential residuals [18]. The key 

role played by truncation terms in DET equations makes them suitable candidates to measure 

discretization errors. An application in which a normalized form of the truncation error is 

adopted as an approximate solution of DET equations is given in [19]. Moreover, the 

proportionality between the local truncation terms and the discretization error is demonstrated 

in [20] over a considerable range of problems and simple discretization schemes. This kind of 

estimators is also efficient driving mesh adaptation because the truncation terms account for 

mesh quality and flow features contributions to the discretization error; see applications in 

[18, 21-23]. Other methods closely related to truncation error and differential residuals are 

those based on multi-grid operators [24, 25].  

An important family of methods, commonly adopted in V&V due to their reliability, uses 

extrapolation to estimate solution errors. The most popular technique is based on Richardson 

extrapolation [26, 27] and requires two grids (or three if the order of accuracy of the scheme 

is not known) to compute a higher-order estimate of the numerical solution which is used to 

evaluate the error. This methodology, also known as h-extrapolation, has proved a reliable 

error estimator for any quantity of interest (pointwise values as well as solution functionals, 

see [28, 29]), and is independent of the underlying problem discretization. However, h-

extrapolation has the disadvantage of requiring solutions on different grids subject to certain 

conditions which are sometimes difficult to achieve (e.g. integer refinement ratios and 

solutions in the asymptotic range of convergence [3, 30, 31]). Among the estimators based on 

Richardson’s extrapolation it is worth mentioning Roache’s Grid Convergence Index (GCI) 

[32], which provides conservative confidence intervals (uncertainty) for the extrapolated error 

estimates. In addition, non-integer refinement ratios can be employed with the GCI, 

simplifying the generation of the computational models.  

Also based on extrapolation, there are single-grid techniques where the higher-order solution 

estimates are obtained by increasing the order of accuracy of the underlying numerical 

scheme (p-extrapolation). While these techniques can be implemented in a relatively simple 

manner in structured grids, they cannot be easily extended to unstructured grids and general 

discretization methods. Applications of p-extrapolation can be found in [33-35]. 

In the context of meshless methods, the error estimation methodologies follow the general 

lines mentioned above, but aim at exploiting the advantages of these methods regarding 
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topological requirements and data structures. For example, meshless approaches have a 

considerable potential to deal with general unstructured discretizations and high-order 

approximations, simplifying the implementation of error estimation procedures. Among the 

first meshless applications, error estimates based on residuals [36] and wavelets [37] can be 

found. More recently, enhanced, recovered, or higher-order solution fields have been 

employed to obtain error estimates and indicators [38-42]. Error functionals derived from the 

construction of the approximation have also been proposed, see for instance [43-45] and [46], 

where the error estimate is used as an a-priori indicator to optimize the approximation 

subdomains. The applications of these methods have mostly focused on local improvement of 

the solution (reducing discretization errors) through p or h-adaptation. A recent application to 

goal-oriented error estimation can be found in [47]. 

In this work an a-posteriori meshless estimate of the discretization error is proposed. The 

estimate is based on an approximate form of the truncation terms of the governing equations 

which is obtained through nodal discrete differential residuals. Following typical approaches 

in residual-based error estimation, the residuals are evaluated using a reconstructed solution 

field on a modified stencil of points. The proposed methodology is developed in the context 

of the Finite Point Method (FPM) [48-50], but it could be also extended to conventional 

mesh-based discretization techniques with minor modifications.  

This article is organized as follows. The FPM discretization technique and the flow solver 

used are described in Sections 2 and 3, respectively. The proposed error estimate is presented 

in Section 4, together with tests showing the reliability of the procedure. Applications of the 

technique to adaptive flow problems are provided in Section 5. Finally, the most relevant 

conclusions of this work and future lines of research are outlined in Section 6. 

2 THE FPM APPROXIMATION  

This section describes the main aspects of the FPM approximation. Assume that (x) is an 

unknown function defined in a domain  which is discretized by a set of n points xi. Let  be 

covered by subsets of np points i (clouds of points) consisting of a point xi called star point 

and a collection of surrounding points xj as shown in Figure 1. Then, an approximation of 

(x) in i can be obtained by 

 Tˆ( ) ( ) ( )    px x x   (1) 
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where p is a vector of size m containing monomial basis functions and  is a vector of 

unknown coefficients. In this work complete quadratic polynomial bases are employed (e.g. 

pT(x) = [1,x,y,z,xy,xz,yz,x2,y2,z2] in 3D), where the points’ coordinates are relative to the star 

point position and normalized with the cloud radius. Assuming np > m in i, the vector  is 

determined by minimizing the following Weighted Least-Squares (WLSQ) functional 

 
2 2T

1 1

ˆ( ) ( ) ( )
np np

i i j j j i j j j
j j

J w w
 

             px x x   (2) 

in which wi(xj) = w(||xj-xi||) is a compact support weighting function centered on the star point 

of the cloud (Fixed Least-Squares (FLS)), see [51]. The minimization of Eq. (2) with respect 

to  leads to the following system of equations  

 A B   (3) 

where A=PTW(x)P, B=PTW(x), W(x)=diag(wi(xj)) and P=[p(x1), p(x2),... p(xnp)]T. The vector 

of unknown coefficients can be obtained from Eq. (3) by inverting matrix A. Hence, the 

approximate value of (x) at the star point of the cloud (Eq.(1)) is 

 T -1ˆ ( ) ( )i i ij ja   p A Bx x   (4) 

where summation over repeated indices is assumed. Since in the FLS matrices A and B are 

constant over i, the first-order derivatives of (x) at xi are given by  

 1
ˆ ( ) ( )T

ki i
ij j

k k

b
x x

 
  

 
p

A B
x x

  (5) 

and higher-order derivatives can be obtained by successive differentiation of the p vector (up 

to the degree of the basis in use). 

 
Figure 1. Local approximation domain in the FPM. 
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It is important to note that the FPM approximation does not interpolate the nodal parameters 

j. These are simply internal values used to construct ϕ 𝒙 , the true approximation for which 

the governing equations and boundary conditions are enforced. In addition, since the FLS 

procedure is discontinuous, the metric coefficients in the FPM lack symmetry properties, i.e 

𝑏 𝑏 . As a result, collocation techniques become a natural choice to discretize the 

problem equations. Further details about the FPM approximation and the global and local 

domain discretization techniques employed are given in [51, 52]. 

2.1 Accuracy of the FPM approximation  

The characteristics of the FPM approximation depend to a large extent on the number and 

distribution of points in the local clouds, the weighting function and the approximation bases 

chosen; this makes it difficult to obtain theoretical accuracy estimates for general application 

cases. Nevertheless, studies on simplified models help characterize the behavior of FPM 

approximations. Using regular 1D point distribution and symmetric clouds without weighting, 

[53] shows that quadratic approximations (as used in this work) lead to discrete derivatives 

similar to those obtained with central differences, i.e. second-order space accurate. However, 

in asymmetric clouds (or irregular point distributions) the accuracy tends to first-order and the 

effective value attained depends considerably on the weighting function employed. If the 

locality of the weighting function is increased, the approximation tends to second-order 

accuracy. Comparable results are shown in [54], where theoretical estimates are obtained 

using a MLS technique in multidimensional FPM approximations, and [55], which focuses on 

the effects of the distribution of points. According to these results, second-order accuracy can 

be considered an upper bound in quadratic FPM approximations, with the attainable value 

depending on the characteristics of the specific problem being solved. Numerical 

investigations confirm these results in practical application cases; see grid convergence 

analyses in [56] and the examples in Section 5. 

3 THE FLOW SOLVER 

Problems governed by the compressible Euler equations are considered in this work. In 

conservative differential form these equations can be written as 

 
k

kt x

 
 

 
U F

0  (6) 
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where U = [,ui,et]T is the conservative variables vector and Fk = [uk,uiuk+ikp,et+ukp]T 

is the advective flux vector in the kth coordinate direction. The variables ui, , p and et denote 

the fluid velocity components, density, pressure and total energy, respectively; ik is the 

Kronecker delta and the subscripts i,k  range from 1  to 3. The equation of state for a perfect 

gas completes the system (6).  

The semi-discrete equations are obtained by replacing the continuous spatial variables with 

their discrete approximations (Eqs. (4) and (5)). Following [50] the equations (6) are rewritten 

as 

 
ˆd

2
dt

k k ki
ij ij i i

j i

b j


      U
F F   (7) 

where 𝐔 𝑎 𝐔  is a discrete approximation of the conservative variables at the star point xi, 

𝐅 𝐅 𝐔  is the kth component of the convective flux vector and 𝐅  are numerical fluxes at 

the midpoint of the edge connecting xi to another point xj in i. This form enables easy 

introduction of convective stabilization into the numerical scheme. The approximate Riemann 

solver of Roe [57] is employed in this work. This leads to 

    ˆ
1 1 ˆ( , )2 2

k k k k
ij j i n i j j i ijn  F = F F A U U U U    (8) 

where 𝒏  is a unit vector in the direction of the edge 𝒍 𝒙 𝒙  and 𝐀𝒏 𝐔  , 𝐔   is the 

positive Roe matrix in the same direction [58]. To increase the spatial accuracy of the scheme, 

the variables Ui and Uj in Eq. (8) are replaced with higher-order reconstructions obtained by 

slope-limited MUSCL extrapolation [49] with Van Albada limiter [59]. 

A multi-stage time marching discretization scheme is used for Eq. (7). The problem solution 

is advanced from a time level tn to a level tn+1 by 

  ( ) ( 1) ( 1)ˆ ˆ t 1,m m m
i i m i i j m s    U U RHS U  (9) 

where 𝐔 𝐔 , 𝐔 𝐔 , m are suitable integration coefficients [60] and 𝐑𝐇𝐒  is 

the right-hand side of Eq. (7) with the fluxes evaluated at stage 𝑚 1 . Local time stepping 

and implicit residual averaging [61] are used to accelerate the convergence to the steady state. 

Since 𝐑𝐇𝐒  in Eq. (9) depends on the internal nodal values Uj, a non-symmetric linear 

system has to be solved at the end of each time integration stage to recover Uj from the 

updated approximate solution 𝐔. From Eq. (4), this system is 
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 ˆ 1,
i

ij j ij
a i n

 
  U U  (10) 

and can be solved inexpensively with a small number of Gauss-Seidel iterations. 

4 THE MESHLESS ERROR ESTIMATE 

Among the sources of error affecting the accuracy of a numerical solution, the discretization 

error plays a major role. This error, which depends on the underlying discretization and the 

characteristics of the numerical scheme, is typically defined as  

 eh h     (11) 

where  denotes the exact solution of the continuous problem L()=0, and h the exact 

solution of its discrete counterpart, Lh(h)=0, computed on a grid with characteristic size h 

(iterative and round-off errors are considered to be zero). Assuming that the discrete problem 

operator Lh is linear (or has a linearized form) and applying it to Eq. (11), the following 

equation for the discretization error is obtained 

 L (e ) L ( ) L ( ) L ( ) 0 L ( )h h h h h h h          (12) 

Eq. (12) can be solved with the same approximate method used to obtain the discrete solution, 

but with an extra source term responsible for the local generation and destruction of error in 

the domain. The equivalence between Lh(ꞏ) (discrete differential residual) and the truncation 

error (h) can be obtained from the following relation between the differential operators [18] 

 L( ) L ( ) ( )h h       (13) 

where (ꞏ) denotes an arbitrary problem solution. Introducing  in Eq. (13) the term L() 

vanishes, and substituting the result into Eq. (12) yields 

 L (e ) ( )h h h     (14) 

which is the basis of methods using DET equations. As neither the truncation error nor the 

exact solution are known in practice, approximations are typically used to solve Eq. (14). 

With the objective to identify local discretization errors with minimum computational 

overhead, a surrogate measure of eh is proposed following the results in [20]. There, using 

central differences in a 1D steady diffusion problem, the authors show that eh in Eq. (14) is 

proportional to the local truncation error. Hence, by equivalence between central differences 
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and FPM discretizations on regular 1D clouds (see Section 2.1 and the proof in [53]), we 

assume that locally eh h   and the latter is obtained by inserting  into Eq. (13). This gives 

 e ( ) L ( ) R ( )h h h h          (15) 

where Rh(ꞏ) is the discrete differential residual of the problem.  

In the context of the compressible Euler equations, Rh(ꞏ) in Eq. (15) can be obtained from a 

discrete (simplified) form of Eq. (7), with the exact solution  replaced by an accurate 

estimate U*. In this way, the local surrogate error proposed is 

    * *

t
i k ki
h ij j i

j
i

b j


    
 

*U
e R U F U  (16) 

where Fk is the k-component of the convective flux vector and bij are the metric 

approximation coefficients of the cloud i. A global measure of the numerical error over the 

whole domain is obtained from the local error vector (16) using the following L2-norm 

  
1/2

21
i

in 
   
 
e e  (17) 

with n denoting the total number of points in the computational domain. 

Note that the discrete residual Rh used to calculate the surrogate error (Eq. (16)) does not 

include the dissipative term arising from the upwind flux discretization in Eq. (7). Numerical 

tests have shown that this simplification, which reduces computational cost, has no negative 

effects on the performance of the surrogate error. If the flow is smooth, the dissipation term 

has no appreciable effects on the solution or indicator; in contrast, near flow discontinuities, 

dropping the artificial diffusion reduces the smoothing of the solution, sometimes increasing 

the sensitivity of the indicator to small flow features. In general, tests show that the 

dissipation terms can safely be omitted in Eq. (16), achieving a considerable reduction in 

computational cost.     

4.1 Computing accurate solution estimates  

The solution estimates required in Eq. (16) are calculated through a modified form of the local 

FPM approximation (Eq. (4)), by using the partition of unity property and scaling by a half 

the stencil of points surrounding xi (see [50]). This results in 

  ˆ ˆ2i i i ij ij i
i j

a



         (18) 



  10/26 

where ϕ are the values of the original solution at the cloud points and ϕ  are samples of the 

solution at the midpoint of the rays connecting xi with its neighbors. Note that Eq. (18) 

reduces by a half the local grid size; thus the accuracy of the approximation can be improved 

as long as the reconstructed solution is accurate enough (convergence rate is the same). These 

values will be obtained by higher-order reconstruction of the original solution around xi. The 

stencil of points used is larger than in the original solution. Due to the reconstruction 

procedure used to derive the improved values (see section 4.1.1), the support of the enhanced 

solution typically includes three layers of neighbors around point xi vs. only two for the 

original solution. Therefore, more accurate solution samples are expected from the increased 

support. The improvement in accuracy achieved in practice will be numerically investigated 

in Section 4.2 

The approach adopted to calculate the samples 𝜙  is inspired on slope-limited geometric 

methods [62]. These techniques reconstruct the solution between two points xi and xj by 

fitting higher-order interpolators on an enlarged spatial support, and require the use of non-

linear limiters to avoid spurious oscillations across discontinuities. Since this step can 

contaminate the recovered solution field and generate dependence on the limiter function 

chosen (see [63]), a more robust approach is proposed in the next section. 

Note that ϕ∗ could also be obtained by using higher-order schemes [33-35]. Since this 

approach is attractive in a meshless context, a preliminary investigation was conducted. The 

results were satisfactory, but the implementation was not deemed cost-effective, and some 

lack of robustness was also observed (especially in 3D problems). Nevertheless, further 

investigation is required on this issue. 

4.1.1 ENO piecewise polynomial reconstruction 

Essential non-oscillatory schemes (ENO) [64] are a family of reconstruction methods in 

which the solution interpolant is chosen between the smoothest of piecewise polynomials 

computed for the same sampling location on different local supports (stencils). As the 

selection procedure adopted prevents interpolation across discontinuities, limiting is no longer 

necessary. ENO schemes have also interesting properties, such as conservation of the mean, 

and guarantee total variations bounded by the truncation error of the reconstruction. 

Improvements to the basic ENO technique have been also proposed to solve certain 

deficiencies concerning the need of large stencils (difficult to obtain in unstructured 
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discretizations) and the lack of accuracy in smooth data reconstruction problems; see for 

instance Weighted-ENO (WENO) [65] and Hermite-WENO (HWENO) [66] methods. 

In this work a standard ENO technique is employed to compute the ϕ  samples required in 

Eq. (18). Thus, the enhanced solution field is reconstructed in the interval Ii = [xi-1/2,xi+1/2] (in 

the direction of the edge 𝒍 𝒙 𝒙 ) by one of the following central, left or right-biased 

quadratic interpolation polynomials [67] 
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where ϕ  is the original discrete solution at xi, 1/2 1
ˆ ˆ

i i id     and 1/ 2 1/ 2i i iD d d    are the 

first and second differences respectively; 1/ 2 1/ 2( ) / 2i i id d d    and 0 ' 1x   is a non-

dimensional length parameter along lij. In order to evaluate first and second differences, the 

discrete solution at fictitious sampling points xj+1, xi-1 and xi-2 in the direction of the edge is 

required (see Figure 2). These values are obtained by means of the following central and 2nd-

order backward finite difference approximations 
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where the solution gradients are computed from the original FPM solution using Eq. (5). 

 

Figure 2. Stencil of points employed for cubic ENO reconstruction around xi in the direction of lij. 

The interpolation polynomial reconstructing the enhanced solution field between xi-1/2 and 

xi+1/2 is chosen following standard ENO practice 
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and the midpoint samples required in Eq. (18) are obtained from  

  1 2ij kp x    (22) 

where k can take the values 𝑖 1, 𝑖 or 𝑖 1 depending on the polynomial chosen in (21). 

Note that Eqs. (19) allow a continuous reconstruction of the unknown function in the interval 

[xi-1/2,xi+1/2] and this fact enables the use of a different cloud scaling in Eq. (18). The 

numerical tests performed showed little influence on the accuracy of ϕ∗ (esta no entiendo qué 

significa). 

4.2 Numerical tests 

The accuracy and convergence of the improved solution estimate (Eq. (18)) is investigated by 

evaluating the effectivity index in several test cases. This parameter is defined as [68] 

 e
e   (23) 

where �̅� ϕ∗ ϕ  is the error norm of the original FPM approximation (Eq. (4)) referenced 

to the improved estimate and 𝑒 ϕ ϕ  is the exact error norm. As mentioned in Section 

2.1, the convergence characteristics of the FPM can depend (particularly in 3D problems) on 

the geometry of the clouds and the weighting functions employed. Hence, in the examples 

presented these effects are minimized using similar settings of the FPM approximation, 

regular point discretizations and a uniform scaling between the models. 

The first example involves the approximation of a smooth Gaussian function defined in a one-

dimensional domain [0,1]  

 
2 2( ) 2( ) x b cf x ae   (24) 

where a=4/ , b=0.5, c2=2 and =0.005. To study the convergence of the effectivity index, 

the coarser grid used has uniform point distribution with spacing h=0.125, and finer 

discretizations are generated by halving h. The errors in Eq. (23) are computed in L2-norm 

and a complete quadratic polynomial basis is used in clouds with np=5. Both the standard 

FPM approximation and the higher-accuracy approximation are displayed in Figure 3, along 
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with the evolution of the effectivity index. The plots show that a noticeably improved 

approximation is obtained with Eq. (18). Convergence to the exact solution is also 

demonstrated by the evolution of the effectivity index. 

 
Figure 3. Approximation of a smooth Gaussian function in a one-dimensional domain. 

A similar setup is employed in the second example, but this time a sign discontinuity is 

introduced in the Gaussian test function. The results show improved approximation for the 

higher-accuracy estimate (Figure 4), but no asymptotic convergence of the effectivity index. 

This happens because the approximation near the discontinuity reverts to O(h), thus 

hampering the convergence of the global error estimate. 

The next two examples investigate the performance of the estimate (18) in 3D problems. The 

following test function is adopted in a cubic analysis domain [0,1]3  

      ( , , ) 64 1 1 1f x y z x x y y z z     (25) 

The initial discretization consists of an unstructured distribution of 1527 points (h0.1) and 

successive refined discretizations are obtained by halving the point spacing. Complete 

quadratic polynomial bases in clouds with np=30 are employed. As observed in Figure 5, 

convergence of the improved estimate is also achieved in this example.  
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Figure 4. Approximation of a one-dimensional Gaussian function with a sign discontinuity. 

 

Figure 5. Behavior of the approximation error for a smooth three-dimensional function. 

Finally, mirroring the 1D examples, a sign discontinuity at x=0.5 is introduced in the test 

function. The results in Figure 6 show a satisfactory accuracy of the solution estimate but, like 

the one-dimensional case (Figure 4), the discontinuity affects both the global approximation 

error and its convergence rate. Overall, the behavior observed in the tests indicates the ability 

of the proposed methodology to obtain an improved estimate of the exact solution, as required 

to compute the surrogate local error (16). 
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Figure 6. Behavior of the approximation error for a three-dimensional function with a sign discontinuity. 

5 APPLICATIONS TO ADAPTIVE COMPRESSIBLE FLOW PROBLEMS 

The proposed error estimate is now applied to compressible inviscid flow problems. Its 

performance and suitability to guide grid adaptation procedures is investigated in comparison 

with reference error estimates and typical feature-based flow sensors.  

5.1 NACA 0012 airfoil 

This example involves the 2D flow around a NACA 0012 airfoil. Four discretizations with 

characteristic point spacings h1<h2<h3<h4 are generated from a coarse model (h4) by scaling 

the grid sizes uniformly. This way, discretizations ranging from 2487 to 5836 nodes are 

obtained with an average refinement ratio r = hk+1/hk  (nk+1/nk)-1/2 = 1.15. The simulation 

conditions involve different freestream Mach numbers and angles of attack, namely: M=0.3 at 

=1.25º and 4º and M=0.8 at =0º, 1.25º and 4º. The boundary conditions applied are 

freestream Riemann conditions on the outer domain boundary and slip conditions on the 

airfoil surface. The numerical solutions use third-order MUSCL extrapolation with Van 

Albada limiter and a 4-stage time marching scheme. The FPM discretization uses a complete 

quadratic approximation basis in clouds with 15-21 points.   

For each test case, the observed order of accuracy of the scheme is computed by Richardson’s 

extrapolation using the three finest discretizations. The values obtained range between 1.54 

and 1.87, with mean p=1.74. This averaged convergence rate is assumed to be representative 

of the true discretization error of the problem. As shown in Figure 7, the convergence rates of 

the density (e1), momentum (e2,3) and energy (e4) components of the surrogate error 

estimate (16) are close to the prediction of Richardson’s method. This shows a satisfactory 

relationship between the proposed indicator and the problem discretization error.   
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Figure 7. Convergence of the components of the global truncation error-based estimate (density (e1), momentum 
(e2,3) and energy (e4)) computed for the NACA 0012 airfoil problem.  

Regarding the iterative convergence of Eq. (17), the test cases analyzed showed that the 

truncation error-based global estimate converges after a short initial transitory, and faster than 

the flow field (results are not reported here). This fact, suggesting that the contribution of the 

underlying discretization (resolution and quality) to the truncation error prevails over the 

contribution of the flow solution itself, could be advantageous. This happens because 

surrogate error measures based on the approximate solution can be obtained early in the 

iterative process, even before full solution convergence is achieved. However, a reduced 

sensitivity of the estimate to the solution features may cause a lack of correlation with errors 

in variables of practical interest. Pros and cons should be carefully analyzed. 

The suitability of the local error estimate (16) to drive grid adaptation is studied next by 

comparison with a typical feature-based sensor relying on the solution curvature 
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The target variable chosen is the fluid density and the adaptive strategy follows the guidelines 

of [69]. Hence, a nodal refinement indicator is first calculated at each point with 
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where np is the number of points in the cloud of xi and rj depends on the sensor chosen. It is 

calculated with Eq. (26) for feature-based detection, or it corresponds to the density 

component of vector (16) at xj when the surrogate error is used. Once the refinement indicator 
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is calculated, its mean m and standard deviation s are used to determine clouds which 

require refinement or coarsening. The star point xi is tagged for refinement when 

m N si ref      and, conversely, the point xi is marked for removal if m N si rem     . 

Thus, local spikes of the error are put back in line with the mean across the domain, which is 

dominated by smooth flow regions. The thresholds used here are Nref = 1 and Nrem = 0. These 

values have proved satisfactory for a wide range of inviscid compressible flow problems. 

The test case involves an inviscid flow with M=0.8 and =1.25º. The initial discretization 

consists of an unstructured distribution of 2674 points and four refinement levels are 

performed. The first one is triggered after achieving solution convergence on the initial coarse 

grid and additional refinement passes are performed subsequently, ensuring the convergence 

of the intermediate solutions. A close-up of the initial and final adapted discretizations is 

shown in Figure 8. The finest discretization for the truncation error-driven procedure has 6165 

points, versus 7105 for the feature-based indicator. The truncation error-based indicator not 

only concentrates new points around sharper solution features but also near the airfoil surface 

and the wake; two zones mostly ignored by the curvature-based detector. 

 
Figure 8. Initial coarse (left) and final adapted discretizations (right): curvature-based adaptivity (top) and 
truncation error-based adaptivity (bottom). NACA 0012 airfoil, M=0.8 and =1.25º. 

Figure 9 shows the convergence with grid refinement of the aerodynamic normal force error 

(CNh) and the global estimate (17). The force error is computed relative to a grid-converged 

result (CNf) obtained on a very fine uniform discretization (n=15021). The results show that a 

lower error in the aerodynamic force is obtained with the truncation error-based indicator 
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(Figure 9 left), although the convergence rates observed for both methods are quite similar. 

Regarding the global error estimate (Figure 9 right), its magnitude decreases with the grid size 

at a rate close to the order of accuracy of the scheme, but the convergence slows down 

slightly after the second refinement stage. This effect is more notorious when the curvature-

based indicator is used (probably due to a more localized refinement). 

 
Figure 9. Behavior of the normal force error (left) and the numerical error estimate (right) with the grid 
refinement (norm(||e||) is the norm of the global error vector (17)). NACA 0012 airfoil, M=0.8 and =1.25º. 

The pressure distributions calculated for the initial and final adapted discretizations are 

compared in Figure 10. The truncation error-driven adaptivity resolves the upper shock better 

than the feature-based procedure (possibly due to a higher and more uniform density of points 

added near the airfoil) but the shock on the lower side of the airfoil is not well resolved. As 

mentioned before, this could reflect a reduced sensitivity of the proposed indicator to the flow 

features (particularly weaker ones). At the leading and trailing edges both indicators achieve 

similar results, comparable to the reference solution (15021 points). 

 
Figure 10. Comparison of the pressure distributions obtained from the adapted flow solutions and the fine 
reference discretization. NACA 0012 airfoil, M=0.8 and =1.25º.(Las 2 líneas delgadas no se distinguen bien) 
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5.2 NACA wing-body configuration 

The proposed error estimate is applied below to the transonic flow over a NACA wing-body 

configuration [70] (Figure 11) and the results are compared with Richardson’s extrapolation. 

To this effect, four model discretizations with point spacings h1<h2<h3<h4 are generated from 

a coarse model (h4) by scaling the grid sizes in a uniform manner. The discretizations range 

from 427000 to 2860318 nodes with 83162 to 694482 boundary triangles respectively. The 

averaged refinement ratio is r = hk+1/hk = (Nk+1/Nk)-1/3 = 1.235. Figure 12 shows a close view 

of the surface discretization near the wing tip. 

 

Figure 11. Analysis test model NACA RM L51F07. 

The flight conditions chosen are M=0.9 with angles of attack =1 and 4º. The boundary 

conditions are flow symmetry on a plane along the fuselage centerline, freestream Riemann 

conditions on the outer boundary and slip conditions on the body surface. The solution 

scheme is similar to that used in the previous test cases. The FPM approximation uses a 

complete quadratic basis on clouds with 30-50 points. As mentioned, Richardson’s 

extrapolation is used to obtain the higher-order estimates of the aerodynamic forces used to 

calculate the solution error. The observed order of accuracy of the scheme is p=1.69 for =1º 

and p=1.41 for =4º.    

 

Figure 12. View of the boundary discretization near the wing tip for grids 1-4. 

The convergence of the global error estimate (17) is examined in Figure 13 for the different 

components of the truncation error. The convergence rates obtained are close to that predicted 

by Richardson’s extrapolation. Similar to the 2D case, an early iterative convergence of the 

proposed error estimate was also observed in this case (results are not reported here). 
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The error estimate (16) is used next to drive h-adaptation and the results are compared with 

those from the conventional feature-based indicator (26). The freestream Mach number is 

M=0.9 and the body angle of attack is =4º. The initial domain discretization consists of an 

unstructured distribution of 606756 points and 174812 boundary triangles. Four refinement 

levels are performed during the adaptive simulation and the settings of the adaptive procedure 

are similar to those used in the previous example. 

 

Figure 13. Convergence of the truncation-error based estimate for the NACA wing-body test case (density (e1), 
momentum (e2,3,4) and energy (e5)). 

The level of refinement achieved with both error indicators is very similar. The truncation 

error-driven procedure attains 1001624 points and 198822 boundary triangles, while 1041624 

points and 205320 triangles are obtained with the curvature-based indicator. The evolution of 

normal force error (computed with respect to the extrapolated value CNe) and the global error 

estimate (17) during the adaptive computation is shown in Figure 14. Like the previous test 

case, the truncation error-based indicator leads to a lower error. The convergence rates and the 

reduction of the surrogate error estimate (17) achieved are quite similar for both indicators.  

Pressure distributions along two wing spanwise stations are shown in Figure 15 together with 

experimental and reference results from the finest grid model. Both error indicators lead to 

similar results around the main flow features. Figure 16 shows the adapted discretizations. As 

observed in the previous test case, feature-based adaptivity appears more effective around 

weaker flow discontinuities (e.g the shock on the fuselage) but truncation error adaptivity 

refines in areas where the flow field is smoother (trailing edge and wing tip), probably 

contributing to the more effective reduction of the force errors shown in Figure 14.  
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Figure 14. Behavior of the normal force error (left) and the numerical error estimate (right) with the grid 
refinement. (norm(||e||) denotes the norm of the global error vector (17)). NACA wing-body, M=0.9 and =4º. 

 
Figure 15. Comparison of pressure distributions obtained with the final adapted flow solutions and the finest 
reference discretization. NACA wing-body, M=0.9 and =4º. 

 
Figure 16. Final adapted boundary discretizations obtained with the truncation error-based indicator (left) and the 
curvature-based indicator (right). NACA wing-body, M=0.9 and =4º. 

6 CONCLUSIONS 

An a-posteriori error estimate based on an approximate form of the truncation error terms has 

been presented in this work. The methodology is implemented in the framework of the 
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meshless Finite Point Method, although the formulation could be easily extended to other 

conventional discretization techniques with minor modifications. The proposed error estimate 

is a surrogate measure of the discretization error obtained from an approximation to the 

truncation terms of the governing equations. This approximation is calculated from the 

discrete nodal differential residuals using a reconstructed solution field on a modified stencil 

of points. To this end, a standard ENO technique is used. It is important to note that the 

proposed error estimate is designed to be calculated with very low overheads using data 

structures and information generally available in CFD codes. 

The applications of the truncation error-based estimator in this work focus on identification of 

local and global errors in compressible flow problems. Regarding the global behavior of the 

indicator, its relation with the problem discretization error was first analyzed using reference 

values obtained by Richardson’s extrapolation. In all the test cases studied the proposed 

estimate correlates well with the discretization error, with convergence rates close to the 

observed order of accuracy of the scheme. The relatively fast convergence of the estimate is 

also worth mentioning, as it delivers fast surrogate error measures without complete flow field 

convergence. As far as the local behavior of the truncation error-based estimate is concerned, 

its suitability to guide adaptive procedures has also been examined. Compared with a typical 

curvature-based indicator, the results show that truncation error-driven adaptivity reduces the 

problem discretization error more effectively. This was reflected both in lower aerodynamic 

force error and the evolution of the surrogate numerical error estimate. Moreover, the adapted 

point distributions seem more uniform when using the truncation error-based indicator, 

although a small loss of sensitivity to weaker flow features can be observed. Overall, the 

performance of the proposed local error indicator was considered satisfactory.  

Future research is planned on the ability of truncation error-based estimates to provide error 

bounds for variables of engineering interest in practical applications. In this respect, methods 

based on numerical imbalance arguments suggest interesting alternatives, e.g. [9, 11]. 
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