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Abstract. In this study, we performed the density-based topology optimization in static problem 
using our modified optimality criteria method. In topology optimization based on the 
homogenization or density methods, the optimality criteria (OC) method is often employed as 
update equation for design variables. But the OC method needs to set the weighting factor and 
move limit. In the modified OC method, they are not necessary. However, in the international 
paper we have already reported, the performance function did not always go down in 3-
dimensional static problems, thus we discuss the updating process in detail in this study. As a 
result, we confirmed that even the OC method was employed, the performance function increased 
significantly during the update process. The increase in the performance function when using the 
modified OC method is more supressed than when using the OC method. 
 
1. Introduction 
In recent years, the structual optimization theory has been used to improve the performance of 
various products with the improvement of computatioanl performance and manufacturing 
technology[1]. The structural optimization theory is categorized into size optimization, shape 
optimization, topology optimization. Topology optimization is the best method in the structural 
optimization for weighting reduction and conseptual design[2]. However, the numerical analysis, 
including topology optimization, has a lot of difficulties. For example, difficulty level of theory, 
parameters for numerical analysis, robustness, and so on. We foucued on the number of 
parameters that the analyst and engineer have to set. Note that the parameters discussed here are 
required for numerical analysis. And not physical properties such as Young’s modulus. The OC 
method[3], which is often used in topology optimization based on the homogenization or density 
method, requires the setting of weighting factor and move limit. We have developed a modified 
OC method that does not require them. However, the performance function when using the 
modified OC method, which is the proposed method, increased during the update process, as 
shown in Fig. 1. Based on the above points, the purpose of this study is to investigate the updating 
process in detail. 
 

 
Fig. 1 History of normalized performance function in 3-dimensional static problem[4]. 
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2. Formulation for density-based topology optimization 
This section discusses about formulation for density-based topology optimization. Optimization 
problem, including the topology optimization, needs to set the goal. In this study, the goal is to 
minimize the strain energy that satisfies the target volume in design domain Ω . This is a 
fundamental problem in topology optimization and has been reported in many topology 
optimization studies [5]. The optimization problem is written as 

min
𝑒𝑒∈Ω

𝐽𝐽 = �𝐽𝐽𝑒𝑒
𝑒𝑒∈Ω

=
1
2

{𝐹𝐹}𝑇𝑇{𝑈𝑈(𝜌𝜌𝑒𝑒)} (1) 

subject to [𝐾𝐾(𝜌𝜌𝑒𝑒)]{𝑈𝑈(𝜌𝜌𝑒𝑒)} = {𝐹𝐹} (2) 
                                   𝑉𝑉 = �

𝑣𝑣𝑒𝑒𝜌𝜌𝑒𝑒
𝑉𝑉total

− 𝜌𝜌𝑒𝑒���
𝑒𝑒∈Ω

≤ 0 (3) 

                 0 ≤ 𝜌𝜌𝑒𝑒 ≤ 1 (4) 
where [𝐾𝐾], {𝑈𝑈}, and {𝐹𝐹} are, respectively, the stiffness matrix, displacement vector at all nodes, 
and load vector at all nodes. Moreover, 𝐽𝐽𝑒𝑒, 𝜌𝜌𝑒𝑒, 𝑣𝑣𝑒𝑒, 𝑉𝑉total, and 𝜌𝜌𝑒𝑒��� are, respectively, the performance 
function in element 𝑒𝑒, density in element 𝑒𝑒, an element volume, total volume in design domain Ω, 
average of initial density. The superscript 𝑇𝑇  indicates transposition. Density-based topology 
optimization uses density as design variable and express the material distribution by representing 
the density value from 0 to 1, as shown in Eq. (4).  Thus, the presence or absence of material is 
represented by the stiffness matrix [𝐾𝐾], as shown in 

[𝐾𝐾] = 𝜌𝜌𝑠𝑠[𝐾𝐾0] (5) 
In this study, the solid isotropic material with penalization (SIMP) method[6], which is one of the 
density method[7], is employed. In the SIMP method, the function 𝜌𝜌𝑠𝑠 is written as 

𝜌𝜌𝑠𝑠 = (1 − 𝜌𝜌min)𝜌𝜌𝑒𝑒𝑝𝑝 + 𝜌𝜌min (6) 
where 𝑝𝑝  and 𝜌𝜌min  are the penalization parameter for the SIMP method and parameter for 
numerical stability. The equation shown here is synonymous with the equation for the SIMP 
method described in other papers. The appropriate value of penalization parameter 𝑝𝑝  is 
determined by Hashin-Shtrikman bounds[8] in 3-dimension, as shown in 

𝑝𝑝 ≥ max �15
1 − 𝜈𝜈

7 − 5𝜈𝜈
,

3
2

1 − 𝜈𝜈
1 − 2𝜈𝜈

� (7) 

where 𝜈𝜈 denotes the Poisson’s ratio. Next, the sensitivity is explained. The Lagrange function 𝐽𝐽∗ 
is defined to solve this optimization problem, using the performance function shown in Eq. (1) 
and discretized governing equation shown in Eq. (2). By the gradient of the Lagrange function 𝐽𝐽∗ 
with respect to the displacement 𝑢𝑢, the Lagrange multiplier vector {−𝜆𝜆} is equal to {𝑢𝑢}, which is 
the displacement vector at each node of element 𝑒𝑒. This relationship is called the self-adjoint. By 
substituting the self-adjoint, the gradient of the Lagrange function 𝐽𝐽∗ with respect to the density 
𝜌𝜌𝑒𝑒 is rewritten as 

𝜕𝜕𝐽𝐽∗

𝜕𝜕𝜌𝜌𝑒𝑒
=

1
2

{𝜆𝜆}𝑇𝑇
𝜕𝜕[𝐾𝐾]
𝜕𝜕𝜌𝜌𝑒𝑒

{𝑢𝑢} 

        = −
1
2

{𝑢𝑢}𝑇𝑇
𝜕𝜕[𝐾𝐾]
𝜕𝜕𝜌𝜌𝑒𝑒

{𝑢𝑢} 
(8) 

Equation (8) is the sensitivity when design variables are given to elements. When the element has 
the density 𝜌𝜌𝑒𝑒  that is the design variable, there is a checkerboard pattern in the density 
distribution. Various filter techniques have been developed as countermeasures[9]. In this study, 
the sensitivity filtering proposed by Borrvall[10] is employed. The OC method is used in the 
update equation, and the density is updated as shown in 

𝜌𝜌𝑒𝑒
(𝑘𝑘+1) = 𝜌𝜌𝑒𝑒

(𝑘𝑘)

⎝

⎜
⎛

𝜕𝜕𝐽𝐽∗�
𝜕𝜕𝜌𝜌𝑒𝑒

(𝑘𝑘)

−Λ(𝑘𝑘) 𝜕𝜕𝑉𝑉
𝜕𝜕𝜌𝜌𝑒𝑒

(𝑘𝑘)

⎠

⎟
⎞

𝜂𝜂

= 𝜌𝜌𝑒𝑒
(𝑘𝑘) �𝐴𝐴𝑒𝑒

(𝑘𝑘)�
𝜂𝜂
 (9) 

where the numerator in Eq. (9) is the filtered sensitivity, Λ is the extended Lagrange multiplier, 
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and 𝜂𝜂  is the weighting factor for update, respectively. The OC method is characteried by its 
ability to update the design variables more quickly than the steepest descent method. Although it 
is not used in this problem, the move limit, which is a method to suppress updates and stabilize 
them, is often employed when using the OC method. The move limit is written as 

𝜌𝜌𝑒𝑒
(𝑘𝑘+1) =

⎩
⎪
⎨

⎪
⎧ 𝜌𝜌𝑒𝑒𝐿𝐿 �𝜌𝜌𝑒𝑒

(𝑘𝑘) �𝐴𝐴𝑒𝑒
(𝑘𝑘)�

𝜂𝜂
≤ 𝜌𝜌𝑒𝑒𝐿𝐿�

𝜌𝜌𝑒𝑒𝑈𝑈 �𝜌𝜌𝑒𝑒
(𝑘𝑘) �𝐴𝐴𝑒𝑒

(𝑘𝑘)�
𝜂𝜂
≥ 𝜌𝜌𝑒𝑒𝑈𝑈�

𝜌𝜌𝑒𝑒
(𝑘𝑘) �𝐴𝐴𝑒𝑒

(𝑘𝑘)�
𝜂𝜂

(otherwise)

 (10) 

𝜌𝜌𝑒𝑒𝐿𝐿 = max �𝜌𝜌𝑒𝑒
(𝑘𝑘) − 𝜌𝜌move, 0� (11) 

𝜌𝜌𝑒𝑒𝑈𝑈 = min �𝜌𝜌𝑒𝑒
(𝑘𝑘) + 𝜌𝜌move, 1� (12) 

Next, the modified OC method is explained. The modified OC method is derived by the concept 
of Newton’s method. In the beginning, the OC method shown in Eq. (9) is expressed in natural 
logarithmic form to change to an additive formulation, as 

ln𝜌𝜌𝑒𝑒
(𝑘𝑘+1) = ln𝜌𝜌𝑒𝑒

(𝑘𝑘) + 𝜂𝜂 ln𝐴𝐴𝑒𝑒
(𝑘𝑘) (13) 

From  Eq. (13), ln𝜌𝜌𝑒𝑒
(𝑘𝑘+1) is equal to ln𝜌𝜌𝑒𝑒

(𝑘𝑘) if the number of updates increases. In other words, 
the second term on the right side in Eq. (13) should be zero. Thus, ln𝐴𝐴𝑒𝑒

(𝑘𝑘) is zero because 𝜂𝜂 is not 
always zero. The Taylor expansion of ln𝐴𝐴𝑒𝑒

(𝑘𝑘+1) becomes as 

ln𝐴𝐴𝑒𝑒
(𝑘𝑘+1) = ln𝐴𝐴𝑒𝑒

(𝑘𝑘) + Δ𝜌𝜌𝑒𝑒
𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

�ln𝐴𝐴𝑒𝑒
(𝑘𝑘)�+ 𝜊𝜊(Δ𝜌𝜌𝑒𝑒2) (14) 

Note that the function 𝐴𝐴𝑒𝑒 is assumed to be univariate. Assuming that the third term on the right 
side in Eq. (14) is extremely small, Δ𝜌𝜌 can be expressed as 

Δ𝜌𝜌𝑒𝑒 = �−
𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

�ln𝐴𝐴𝑒𝑒
(𝑘𝑘)��

−1

ln𝐴𝐴𝑒𝑒
(𝑘𝑘) (15) 

Substituting Eq. (15), the update equation can be rewritten as 
ln𝜌𝜌𝑒𝑒

(𝑘𝑘+1) = ln𝜌𝜌𝑒𝑒
(𝑘𝑘) + Δ𝜌𝜌𝑒𝑒 

                  = ln𝜌𝜌𝑒𝑒
(𝑘𝑘) + �−

𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

�ln𝐴𝐴𝑒𝑒
(𝑘𝑘)��

−1

ln𝐴𝐴𝑒𝑒
(𝑘𝑘) 

(16) 

Returning Eq. (16) to the true number, the modified OC methdo can be obtained as 

𝜌𝜌𝑒𝑒
(𝑘𝑘+1) = 𝜌𝜌𝑒𝑒

(𝑘𝑘) �𝐴𝐴𝑒𝑒
(𝑘𝑘)�

�− 𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

�ln𝐴𝐴𝑒𝑒
(𝑘𝑘)��

−1

 (17) 

There are two points to be noted in using the modified OC method. First point is that the function 
𝐴𝐴𝑒𝑒  must be a positive value. This is also true for the OC mehtod, where the density 𝜌𝜌𝑒𝑒  is 
imaginary if the function 𝐴𝐴𝑒𝑒 is negative value. Second point is that the exponent in Eq. (17) is 
positive value. This is to find for the correct solution, just like Newton’s method. The exponent 
depends on the optimization problem. In this study, the optimization problems is to minimize the 
strain energy in static problems and to satisfy a constant total volume at each iteration. Thus, the 
exponent is written as 

−
𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

�ln𝐴𝐴𝑒𝑒
(𝑘𝑘)� = −

𝜕𝜕2𝐽𝐽𝑒𝑒∗�
(𝑘𝑘)

𝜕𝜕𝜌𝜌𝑒𝑒2
�
𝜕𝜕𝐽𝐽𝑒𝑒∗�

(𝑘𝑘)

𝜕𝜕𝜌𝜌𝑒𝑒
�

−1

 

                              ≈ −
𝜕𝜕2𝐽𝐽𝑒𝑒∗

(𝑘𝑘)

𝜕𝜕𝜌𝜌𝑒𝑒2
�
𝜕𝜕𝐽𝐽𝑒𝑒∗

(𝑘𝑘)

𝜕𝜕𝜌𝜌𝑒𝑒
�
−1

 

(18) 

Since the sensitivity filter is employed to avoid checkerboard pattern, unfiltered and filtered 
sensitivities are considered to be approximately equal.  In this optimization problem, the exponent 
is rewritten as 
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�−
𝜕𝜕
𝜕𝜕𝜌𝜌𝑒𝑒

�ln𝐴𝐴𝑒𝑒
(𝑘𝑘)��

−1

≈ −
−𝑝𝑝 �𝜌𝜌𝑒𝑒

(𝑘𝑘)�
−1
𝐽𝐽𝑒𝑒

(𝑘𝑘)

𝑝𝑝(𝑝𝑝 + 1) �𝜌𝜌𝑒𝑒
(𝑘𝑘)�

−2
𝐽𝐽𝑒𝑒

(𝑘𝑘)
 

     =
𝜌𝜌𝑒𝑒

(𝑘𝑘)

𝑝𝑝 + 1
 

(19) 

Substituting Eq. (19) into Eq. (17), the modified OC method is expressed as 

𝜌𝜌𝑒𝑒
(𝑘𝑘+1) = 𝜌𝜌𝑒𝑒

(𝑘𝑘) �𝐴𝐴𝑒𝑒
(𝑘𝑘)�

𝜌𝜌𝑒𝑒
(𝑘𝑘)

𝑝𝑝+1 (20) 

 
3. Computational flow 
This section describes the computational flow for the density-based topology optimization. The 
flow is as follows. 
Step 1: Input of computaitonal condition and setting a model. 
Step 2: 3-dimensional linear elastic analysis based on the finite element method is performed to 

obtain the displacement 𝑈𝑈 (See Eq. (2)). 
Step 3: The performance function is calculated with the obtained displacement (See Eq. (1)). 
Step 4: If 𝑘𝑘 ≥ 𝑘𝑘max is satisfied, the computational is finalized. Oterwise, go to the next step. 
Step 5: Sensitivity analysis is performed using the gradient of Lgarange function 𝐽𝐽 with respect to 

density 𝜌𝜌𝑒𝑒 (See Eq. (8)). 
Step 6: Sensitivity filter is applying for reducing checkerboard pattern in density distribution. 
Step 7: The density is updated by the OC method or modified OC method (See Eq. (9) or Eq. 

(20)), and 𝑘𝑘 = 𝑘𝑘 + 1. Then return to Step 2. 
 
4. Computational conditions 
This section discusses about computational conditions for topology optimization. In this study, 
the cantilever beam model shown in Fig. 2 is used as the calculation model in order to discuss the 
differences in updating between methods. The size of cantilever beam is 60[mm] × 10[mm] ×
40[mm] , and one element is a hexahedron with a side of 1 [mm]. Table 1 shows the 
computational conditions for the topology optimization. Note that when the value of the move 
limit 𝜌𝜌move is greater than or equal to 1.00, it is equivalent to not using the move limit 𝜌𝜌move 
shown in Eqs. (10) to (12).  In Cases 1 and 2 shown in Table 2, the initial density average is set to 
0.5. Moreover, in cases 3 and 4, the initial density average is set to 0.3. Using the Cases 1 to 4, 
the results on updating for each method are discussed in the next section. 
 

 
Fig. 2 Calculation model. 
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Table 1 Computational conditions. 
Number of elements 24000 

Number of nodes 27511 
Weighting factor, 𝜂𝜂 0.75 

Penalization parameter, 𝑝𝑝 6.0 
Move limit, 𝜌𝜌move 1.00 

Filter radius 1.5 
Maximum number of iteration, 𝑘𝑘max 150 

Young’s modulus [MPa] 1.0 
Poisson’s ratio, 𝜈𝜈 0.3 

 
Table 2 Conditions for numerical experiments. 

 Case 1 Case 2 Case 3 Case 4 
Initial density average, 𝜌𝜌0��� 0.5 0.5 0.3 0.3 

Update method OC Modified OC OC Modified OC 
 
5. Results of numerical analysis 
This section discusses about results of topology optimization. First, the results for Cases 1 and 2, 
where the initial density average 𝜌𝜌0��� is set to 0.5, is discussed. Figure 3(a) shows the density 
distributions at final iteration in Cases 1 and 2, and Fig. 3(b) shows the history of performance 
function in Cases 1 and 2. It can be seen that the density distributions shown in Figs. 3(a) and 3(b) 
are similar results.  From the history of performance function in Case 1 shown in Fig. 4, when the 
OC method is employed, the performance function increases significantly in the beginning 
iteration and then converges. On the other hand, when the modified OC method is employed, the 
increasing trend of the performance function is smaller than when using the OC method. Table 3 
shows the maximum and minimum normalized performance functions in Cases1 to 4. From the 
results of Cases1 and 2 in Table 3, the maximum and minimum normalized performance 
functions are also similar value. Thus, the update method is different, but it can be shown that 
they can find the structure the minimum strain energy.  
Next, we discuss about the results in Cases 3 and 4, where the initial density average 𝜌𝜌0��� is set 0.3. 
As well as Cases 1 and 2, Fig. 5 shows the density distribution at final iteration, and Fig. 6 shows 
the history of normalized performance function. From the density distributions shown in Fig. 5, 
their density distributions are not similar. And, from the results of Cases 3 and 4 in Table 3, the 
maximum and minimum normalized performance functions in Case 3 are larger than in Case 4. In 
other words, an appropriate structure is obtained at the final iteration when the modified OC 
mehtod is employed. The reason for this result is that the settings of weighting factor 𝜂𝜂 and move 
limit 𝜌𝜌0��� are important for the updating process, when using the OC method. On the other hand, it 
can be seen that appropriate updates are made for each element when the modified OC mehtod is 
used. The smaller the total volume, the greater the degree of freedom in design, thus increasing 
the need for the move limit in the OC method. However, the cantilever beam model is responsible 
for increase in the performance function during the update. 
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(a) Case 1 (b) Case 2 

Fig. 3 Density distributions at final iteration in Cases 1 and 2. 
 

 
Fig. 4 History of performance function in Cases 1 and 2. 

 
 

  
(a) Case 3 (b) Case 4 

Fig. 3 Density distributions at final iteration in Cases 3 and 4. 
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Fig. 4 History of performance function in Cases 3 and 4. 

 
Table 3 Maximum/minimum normalized performance function in Cases 1 to 4. 

 Maximum normalized  
performance function 

Minimum normalized  
performance function 

Case 1 26121.89 6.51 × 10−3 
Case 2 1.00 6.57 × 10−3 
Case 3 47051.59 49.73 × 10−5 
Case 4 1.00 5.51 × 10−5 

 
6. Conclution 
In this study, density-based topology optimization analysis was performed for the 
cantilever beam model. As the optimization problem, the performance function is to 
minimize strain energy under a volume constraint. The updating process of the OC 
method and the modified OC method were compared. The conclutions in this study are as 
follows. 

・ The modified OC method is not needed to set the weighting factor because the 
method is derived by the concept of Newton’s method. 
・ When the OC method is employed (Cases 1 and 3), the performance function 
increases significantly in the updating process. 
・ When the modified OC method is employed (Cases 2 and 4), there is a slight 
increase in the performance function during the updating process. 
・ When the total volume is small (Cases 3 and 4), the move limit is important in the 
OC method. However, it is not so necessary in the modified OC method. 

In future work, we would like to examine different performance function such as 
minimization of stress. 
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