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Abstract. Successfully synthesizing controllers for complex dynamical
systems and specifications often requires leveraging domain knowledge
as well as making difficult computational or mathematical tradeoffs.
This paper presents a flexible and extensible framework for construct-
ing robust control synthesis algorithms and applies this to the tradi-
tional abstraction-based control synthesis pipeline. It is grounded in the
theory of relational interfaces and provides a principled methodology to
seamlessly combine different techniques (such as dynamic precision grids,
refining abstractions while synthesizing, or decomposed control prede-
cessors) or create custom procedures to exploit an application’s intrinsic
structural properties. A Dubins vehicle is used as a motivating example
to showcase memory and runtime improvements.
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1 Introduction

A control synthesizer’s high level goal is to automatically construct control soft-
ware that enables a closed loop system to satisfy a desired specification. A vast
and rich literature contains results that mathematically characterize solutions
to different classes of problems and specifications, such as the Hamilton-Jacobi-
Isaacs PDE for differential games [3], Lyapunov theory for stabilization [8], and
fixed-points for temporal logic specifications [11,17]. While many control synthe-
sis problems have elegant mathematical solutions, there is often a gap between
a solution’s theoretical characterization and the algorithms used to compute it.
What data structures are used to represent the dynamics and constraints? What
operations should those data structures support? How should the control synthe-
sis algorithm be structured? Implementing solutions to the questions above can
require substantial time. This problem is especially critical for computationally
challenging problems, where it is often necessary to let the user rapidly identify
and exploit structure through analysis or experimentation.
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Fig. 1. By expressing many different techniques within a common framework, users
are able to rapidly develop methods to exploit system structure in controller synthesis.

1.1 Bottlenecks in Abstraction-Based Control Synthesis

This paper’s goal is to enable a framework to develop extensible tools for robust
controller synthesis. It was inspired in part by computational bottlenecks encoun-
tered in control synthesizers that construct finite abstractions of continuous sys-
tems, which we use as a target use case. A traditional abstraction-based control
synthesis pipeline consists of three distinct stages:

1. Abstracting the continuous state system into a finite automaton whose under-
lying transitions faithfully mimic the original dynamics [21,23].

2. Synthesizing a discrete controller by leveraging data structures and symbolic
reasoning algorithms to mitigate combinatorial state explosion.

3. Refining the discrete controller into a continuous one. Feasibility of this step
is ensured through the abstraction step.

This pipeline appears in tools PESSOA [12] and SCOTS [19], which can exhibit
acute computational bottlenecks for high dimensional and nonlinear system
dynamics. A common method to mitigate these bottlenecks is to exploit a spe-
cific dynamical system’s topological and algebraic properties. In MASCOT [7]
and CoSyMA [14], multi-scale grids and hierarchical models capture notions of
state-space locality. One could incrementally construct an abstraction of the
system dynamics while performing the control synthesis step [10,15] as imple-
mented in tools ROCS [9] and ARCS [4]. The abstraction overhead can also
be reduced by representing systems as a collection of components composed in
parallel [6,13]. These have been developed in isolation and were not previously
interoperable.

1.2 Methodology

Figure 1 depicts this paper’s methodology and organization. The existing control
synthesis formalism does not readily lend itself to algorithmic modifications that
reflect and exploit structural properties in the system and specification. We use
the theory of relational interfaces [22] as a foundation and augment it to express
control synthesis pipelines. Interfaces are used to represent both system models
and constraints. A small collection of atomic operators manipulates interfaces
and is powerful enough to reconstruct many existing control synthesis pipelines.

One may also add new composite operators to encode desirable heuristics
that exploit structural properties in the system and specifications. The last
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three sections encode the techniques for abstraction-based control synthesis from
Sect. 1.1 within the relational interfaces framework. By deliberately deconstruct-
ing those techniques, then reconstructing them within a compositional frame-
work it was possible to identify implicit or unnecessary assumptions then gener-
alize or remove them. It also makes the aforementioned techniques interoperable
amongst themselves as well as future techniques.

Interfaces come equipped with a refinement partial order that formalizes
when one interface abstracts another. This paper focuses on preserving the
refinement relation and sufficient conditions to refine discrete controllers back to
concrete ones. Additional guarantees regarding completeness, termination, pre-
cision, or decomposability can be encoded, but impose additional requirements
on the control synthesis algorithm and are beyond the scope of this paper.

1.3 Contributions

To our knowledge, the application of relational interfaces to robust abstraction-
based control synthesis is new. The framework’s building blocks consist of a col-
lection of small, well understood operators that are nonetheless powerful enough
to express many prior techniques. Encoding these techniques as relational inter-
face operations forced us to simplify, formalize, or remove implicit assumptions
in existing tools. The framework also exhibits numerous desirable features.

1. It enables compositional tools for control synthesis by leveraging a theoretical
foundation with compositionality built into it. This paper showcases a prin-
cipled methodology to seamlessly combine the methods in Sect. 1.1, as well
as construct new techniques.

2. It enables a declarative approach to control synthesis by enforcing a strict
separation between the high level algorithm from its low level implementation.
We rely on the availability of an underlying data structure to encode and
manipulate predicates. Low level predicate operations, while powerful, make
it easy to inadvertently violate the refinement property. Conforming to the
relational interface operations minimizes this danger.

This paper’s first half is domain agnostic and applicable to general robust control
synthesis problems. The second half applies those insights to the finite abstrac-
tion approach to control synthesis. A smaller Dubins vehicle example is used
to showcase and evaluate different techniques and their computational gains,
compared to the unoptimized problem. In an extended version of this paper
available at [1], a 6D lunar lander example leverages all techniques in this paper
and introduces a few new ones.

1.4 Notation

Let = be an assertion that two objects are mathematically equivalent; as a
special case ‘≡’ is used when those two objects are sets. In contrast, the operator
‘==’ checks whether two objects are equivalent, returning true if they are and
false otherwise. A special instance of ‘==’ is logical equivalence ‘⇔’.
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Variables are denoted by lower case letters. Each variable v is associated with
a domain of values D(v) that is analogous to the variable’s type. A composite
variable is a set of variables and is analogous to a bundle of wrapped wires. From
a collection of variables v1, . . . , vM a composite variable v can be constructed
by taking the union v ≡ v1 ∪ . . . ∪ vM and the domain D(v) ≡ ∏M

i=1 D(vi).
Note that the variables v1, . . . , vM above may themselves be composite. As an
example if v is associated with a M -dimensional Euclidean space R

M , then it is a
composite variable that can be broken apart into a collection of atomic variables
v1, . . . , vM where D(vi) ≡ R for all i ∈ {1, . . . , M}. The technical results herein
do not distinguish between composite and atomic variables.

Predicates are functions that map variable assignments to a Boolean value.
Predicates that stand in for expressions/formulas are denoted with capital let-
ters. Predicates P and Q are logically equivalent (denoted by P ⇔ Q) if and
only if P ⇒ Q and Q ⇒ P are true for all variable assignments. The universal
and existential quantifiers ∀ and ∃ eliminate variables and yield new predicates.
Predicates ∃wP and ∀wP do not depend on w. If w is a composite variable
w ≡ w1 ∪ . . . ∪ wN then ∃wP is simply a shorthand for ∃w1 . . . ∃wNP .

2 Control Synthesis for a Motivating Example

As a simple, instructive example consider a planar Dubins vehicle that is tasked
with reaching a desired location. Let x = {px, py, θ} be the collection of state
variables, u = {v, ω} be a collection input variables to be controlled, x+ =
{p+x , p+y , θ+} represent state variables at a subsequent time step, and L = 1.4 be
a constant representing the vehicle length. The constraints

p+x == px + v cos(θ) (Fx)

p+y == py + v sin(θ) (Fy)

θ+ == θ +
v

L
sin(ω) (Fθ)

characterize the discrete time dynamics. The continuous state domain is D(x) ≡
[−2, 2] × [−2, 2] × [−π, π), where the last component is periodic so −π and π
are identical values. The input domains are D(v) ≡ {0.25, 0.5} and D(ω) ≡
{−1.5, 0, 1.5}

Let predicate F = Fx ∧ Fy ∧ Fθ represent the monolithic system dynam-
ics. Predicate T depends only on x and represents the target set [−0.4, 0.4] ×
[−0.4, 0.4] × [−π, π), encoding that the vehicle’s position must reach a square
with any orientation. Let Z be a predicate that depends on variable x+ that
encodes a collection of states at a future time step. Equation (1) characterizes
the robust controlled predecessor, which takes Z and computes the set of states
from which there exists a non-blocking assignment to u that guarantees x+ will
satisfy Z, despite any non-determinism contained in F . The term ∃x+F prevents
state-control pairs from blocking, while ∀x+(F ⇒ Z) encodes the state-control
pairs that guarantee satisfaction of Z.

cpre(F,Z) = ∃u(∃x+F ∧ ∀x+(F ⇒ Z)). (1)
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The controlled predecessor is used to solve safety and reach games. We can
solve for a region for which the target T (respectively, safe set S) can be reached
(made invariant) via an iteration of an appropriate reach (safe) operator. Both
iterations are given by:

Reach Iter: Z0 = ⊥ Zi+1 = reach(F,Zi, T ) = cpre(F,Zi) ∨ T. (2)
Safety Iter: Z0 = S Zi+1 = safe(F,Zi, S) = cpre(F,Zi) ∧ S. (3)

Fig. 2. Approximate solution to the
Dubins vehicle reach game visualized as
a subset of the state space.

The above iterations are not guaran-
teed to reach a fixed point in a finite
number of iterations, except under certain
technical conditions [21]. Figure 2 depicts
an approximate region where the con-
troller can force the Dubins vehicle to
enter T . We showcase different improve-
ments relative to a base line script used to
generate Fig. 2. A toolbox that adopts this
paper’s framework is being actively devel-
oped and is open sourced at [2]. It is writ-
ten in python 3.6 and uses the dd pack-
age as an interface to CUDD [20], a library
in C/C++ for constructing and manipulat-
ing binary decision diagrams (BDD). All experiments were run on a single core
of a 2013 Macbook Pro with 2.4 GHz Intel Core i7 and 8 GB of RAM.

The following section uses relational interfaces to represent the controlled
predecessor cpre(·) and iterations (2) and (3) as a computational pipeline. Sub-
sequent sections show how modifying this pipeline leads to favorable theoretical
properties and computational gains.

3 Relational Interfaces

Relational interfaces are predicates augmented with annotations about each vari-
able’s role as an input or output1. They abstract away a component’s internal
implementation and only encode an input-output relation.

Definition 1 (Relational Interface [22]). An interface M(i, o) consists of a
predicate M over a set of input variables i and output variables o.

For an interface M(i, o), we call (i, o) its input-output signature. An interface is a
sink if it contains no outputs and has signature like (i, ∅), and a source if it con-
tains no inputs like (∅, o). Sinks and source interfaces can be interpreted as sets
whereas input-output interfaces are relations. Interfaces encode relations through
their predicates and can capture features such as non-deterministic outputs or

1 Relational interfaces closely resemble assume-guarantee contracts [16]; we opt to use
relational interfaces because inputs and outputs play a more prominent role.
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blocking (i.e., disallowed, error) inputs. A system blocks for an input assign-
ment if there does not exist a corresponding output assignment that satisfies the
interface relation. Blocking is a critical property used to declare requirements;
sink interfaces impose constraints by modeling constrain violations as blocking
inputs. Outputs on the other hand exhibit non-determinism, which is treated as
an adversary. When one interface’s outputs are connected to another’s inputs,
the outputs seek to cause blocking whenever possible.

3.1 Atomic and Composite Operators

Operators are used to manipulate interfaces by taking interfaces and variables
as inputs and yielding another interface. We will show how the controlled pre-
decessor cpre(·) in (1) can be constructed by composing operators appearing in
[22] and one additional one. The first, output hiding, removes interface outputs.

Definition 2 (Output Hiding [22]). Output hiding operator ohide(w,F )
over interface F (i, o) and outputs w yields an interface with signature (i, o \ w).

ohide(w,F ) = ∃wF (4)

Existentially quantifying out w ensures that the input-output behavior over the
unhidden variables is still consistent with potential assignments to w. The oper-
ator nb(·) is a special variant of ohide(·) that hides all outputs, yielding a sink
encoding all non-blocking inputs to the original interface.

Definition 3 (Nonblocking Inputs Sink). Given an interface F (i, o), the
nonblocking operation nb(F) yields a sink interface with signature (i, ∅) and
predicate nb(F ) = ∃oF . If F (i, ∅) is a sink interface, then nb(F ) = F yields
itself. If F (∅, o) is a source interface, then nb(F ) = ⊥ if and only if F ⇔ ⊥;
otherwise nb(F ) = �.

The interface composition operator takes multiple interfaces and “collapses”
them into a single input-output interface. It can be viewed as a generalization
of function composition in the special case where each interface encodes a total
function (i.e., deterministic output and inputs never block).

Definition 4 (Interface Composition [22]). Let F1(i1, o1) and F2(i2, o2) be
interfaces with disjoint output variables o1 ∩ o2 ≡ ∅ and i1 ∩ o2 ≡ ∅ which
signifies that F2’s outputs may not be fed back into F1’s inputs. Define new
composite variables

io12 ≡ o1 ∩ i2 (5)
i12 ≡ (i1 ∪ i2) \ io12 (6)
o12 ≡ o1 ∪ o2. (7)

Composition comp(F1, F2) is an interface with signature (i12, o12) and predicate

F1 ∧ F2 ∧ ∀o12(F1 ⇒ nb(F2)). (8)

Interface subscripts may be swapped if instead F2’s outputs are fed into F1.



Flexible Pipelines for Abstraction-Based Control Synthesis 597

Interfaces F1 and F2 are composed in parallel if io21 ≡ ∅ holds in addition to
io12 ≡ ∅. Equation (8) under parallel composition reduces to F1 ∧ F2 (Lemma
6.4 in [22]) and comp(·) is commutative and associative. If io12 �≡ ∅, then they
are composed in series and the composition operator is only associative. Any
acyclic interconnection can be composed into a single interface by systematically
applying Definition 4’s binary composition operator. Non-deterministic outputs
are interpreted to be adversarial. Series composition of interfaces has a built-in
notion of robustness to account for F1’s non-deterministic outputs and blocking
inputs to F2 over the shared variables io12. The term ∀o12(F1 ⇒ nb(F2)) in
Eq. (8) is a predicate over the composition’s input set i12. It ensures that if a
potential output of F1 may cause F2 to block, then comp(F1, F2) must preemp-
tively block.

The final atomic operator is input hiding, which may only be applied to sinks.
If the sink is viewed as a constraint, an input variable is “hidden” by an angelic
environment that chooses an input assignment to satisfy the constraint. This
operator is analogous to projecting a set into a lower dimensional space.

Definition 5 (Hiding Sink Inputs). Input hiding operator ihide(w,F ) over
sink interface F (i, ∅) and inputs w yields an interface with signature (i \ w, ∅).

ihide(w,F ) = ∃wF (9)

Unlike the composition and output hiding operators, this operator is not included
in the standard theory of relational interfaces [22] and was added to encode a
controller predecessor introduced subsequently in Eq. (10).

3.2 Constructing Control Synthesis Pipelines

The robust controlled predecessor (1) can be expressed through operator com-
position.

Proposition 1. The controlled predecessor operator (10) yields a sink interface
with signature (x, ∅) and predicate equivalent to the predicate in (1).

cpre(F,Z) = ihide(u, ohide(x+, comp(F,Z))). (10)

The simple proof is provided in the extended version at [1]. Proposition 1 sig-
nifies that controlled predecessors can be interpreted as an instance of robust
composition of interfaces, followed by variable hiding. It can be shown that
safe(F,Z, S) = comp(cpre(F,Z), S) because S(x, ∅) and cpre(F,Z) would be
composed in parallel.2 Figure. 3 shows a visualization of the safety game’s fixed
point iteration from the point of view of relational interfaces. Starting from
the right-most sink interface S (equivalent to Z0) the iteration (3) constructs a
sequence of sink interfaces Z1, Z2, ... encoding relevant subsets of the state space.
The numerous S(x, ∅) interfaces impose constraints and can be interpreted as
monitors that raise errors if the safety constraint is violated.
2 Disjunctions over sinks are required to encode reach(·). This will be enabled by the

shared refinement operator defined in Definition 10.
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Fig. 3. Safety control synthesis iteration (3) depicted as a sequence of sink interfaces.

3.3 Modifying the Control Synthesis Pipeline

Equation (10)’s definition of cpre(·) is oblivious to the domains of variables
x, u, and x+. This generality is useful for describing a problem and serving as a
blank template. Whenever problem structure exists, pipeline modifications refine
the general algorithm into a form that reflects the specific problem instance.
They also allow a user to inject implicit preferences into a problem and reduce
computational bottlenecks or to refine a solution. The subsequent sections apply
this philosophy to the abstraction-based control techniques from Sect. 1.1:

– Sect. 4: Coarsening interfaces reduces the computational complexity of a prob-
lem by throwing away fine grain information. The synthesis result is conser-
vative but the degree of conservatism can be modified.

– Sect. 5: Refining interfaces decreases result conservatism. Refinement in com-
bination with coarsening allows one to dynamically modulate the complexity
of the problem as a function of multiple criteria such as the result granularity
or minimizing computational resources.

– Sect. 6: If the dynamics or specifications are decomposable then the control
predecessor operator can be broken apart to refect that decomposition.

These sections do more than simply reconstruct existing techniques in the lan-
guage of relational interfaces. They uncover some implicit assumptions in existing
tools and either remove them or make them explicit. Minimizing the number of
assumptions ensures applicability to a diverse collection of systems and specifi-
cations and compatibility with future algorithmic modifications.

4 Interface Abstraction via Quantization

A key motivator behind abstraction-based control synthesis is that computing
the game iterations from Eqs. (2) and (3) exactly is often intractable for high-
dimensional nonlinear dynamics. Termination is also not guaranteed. Quantizing
(or “abstracting”) continuous interfaces into a finite counterpart ensures that
each predicate operation of the game terminates in finite time but at the cost of
the solution’s precision. Finer quantization incurs a smaller loss of precision but
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can cause the memory and computational requirements to store and manipulate
the symbolic representation to exceed machine resources.

This section first introduces the notion of interface abstraction as a refine-
ment relation. We define the notion of a quantizer and show how it is a simple
generalization of many existing quantizers in the abstraction-based control lit-
erature. Finally, we show how one can inject these quantizers anywhere in the
control synthesis pipeline to reduce computational bottlenecks.

4.1 Theory of Abstract Interfaces

While a controller synthesis algorithm can analyze a simpler model of the dynam-
ics, the results have no meaning unless they can be extrapolated back to the orig-
inal system dynamics. The following interface refinement condition formalizes a
condition when this extrapolation can occur.

Definition 6 (Interface Refinement [22]). Let F (i, o) and F̂ (̂i, ô) be inter-
faces. F̂ is an abstraction of F if and only if i ≡ î, o ≡ ô, and

nb(F̂ ) ⇒ nb(F ) (11)
(
nb(F̂ ) ∧ F

)
⇒ F̂ (12)

are valid formulas. This relationship is denoted by F̂ � F .

Definition 6 imposes two main requirements between a concrete and abstract
interface. Equation (11) encodes the condition where if F̂ accepts an input,
then F must also accept it; that is, the abstract component is more aggres-
sive with rejecting invalid inputs. Second, if both systems accept the input
then the abstract output set is a superset of the concrete function’s output set.
The abstract interface is a conservative representation of the concrete interface
because the abstraction accepts fewer inputs and exhibits more non-deterministic
outputs. If both the interfaces are sink interfaces, then F̂ � F reduces down to
F̂ ⊆ F when F, F̂ are interpreted as sets. If both are source interfaces then the
set containment direction is flipped and F̂ � F reduces down to F ⊆ F̂ .

The refinement relation satisfies the required reflexivity, transitivity, and
antisymmetry properties to be a partial order [22] and is depicted in Fig. 4.
This order has a bottom element ⊥ which is a universal abstraction. Conve-
niently, the bottom element ⊥ signifies both boolean false and the bottom of
the partial order. This interface blocks for every potential input. In contrast,
Boolean � plays no special role in the partial order. While � exhibits totally
non-deterministic outputs, it also accepts inputs. A blocking input is considered
“worse” than non-deterministic outputs in the refinement order. The refinement
relation � encodes a direction of conservatism such that any reasoning done over
the abstract models is sound and can be generalized to the concrete model.

Theorem 1 (Informal Substitutability Result [22]). For any input that
is allowed for the abstract model, the output behaviors exhibited by an abstract
model contains the output behaviors exhibited by the concrete model.
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Fig. 4. Example depiction of the refinement partial order. Each small plot on the
depicts input-output pairs that satisfy an interface’s predicate. Inputs (outputs) vary
along the horizontal (vertical) axis. Because B blocks on some inputs but A accepts all
inputs B � A. Interface C exhibits more output non-determinism than A so C � A.
Similarly D � B, D � C, � � C, etc. Note that B and C are incomparable because
C exhibits more output non-determinism and B blocks for more inputs. The false
interface ⊥ is a universal abstraction, while � is incomparable with B and D.

If a property on outputs has been established for an abstract interface, then
it still holds if the abstract interface is replaced with the concrete one. Infor-
mally, the abstract interface is more conservative so if a property holds with the
abstraction then it must also hold for the true system. All aforementioned inter-
face operators preserve the properties of the refinement relation of Definition 6,
in the sense that they are monotone with respect to the refinement partial order.

Theorem 2 (Composition Preserves Refinement [22]). Let Â � A and
B̂ � B. If the composition is well defined, then comp(Â, B̂) � comp(A,B).

Theorem 3 (Output Hiding Preserves Refinement [22]). If A � B, then
ohide(w,A) � ohide(w,B) for any variable w.

Theorem 4 (Input Hiding Preserves Refinement). If A,B are both sink
interfaces and A � B, then ihide(w,A) � ihide(w,B) for any variable w.

Proofs for Theorems 2 and 3 are provided in [22]. Theorem 4’s proof is simple
and is omitted. One can think of using interface composition and variable hiding
to horizontally (with respect to the refinement order) navigate the space of all
interfaces. The synthesis pipeline encodes one navigated path and monotonic-
ity of these operators yields guarantees about the path’s end point. Composite
operators such as cpre(·) chain together multiple incremental steps. Furthermore
since the composition of monotone operators is itself a monotone operator, any
composite constructed from these parts is also monotone. In contrast, the coars-
ening and refinement operators introduced later in Definitions 8 and 10 respec-
tively are used to move vertically and construct abstractions. The “direction”
of new composite operators can easily be established through simple reasoning
about the cumulative directions of their constituent operators.
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Fig. 5. Coarsening of the Fx interface to 23, 24 and 25 bins along each dimension for
a fixed v assignment. Interfaces are coarsened within milliseconds for BDDs but the
runtime depends on the finite abstraction’s data structure representation.

4.2 Dynamically Coarsening Interfaces

In practice, the sequence of interfaces Zi generated during synthesis grows in
complexity. This occurs even if the dynamics F and the target/safe sets have
compact representations (i.e., fewer nodes if using BDDs). Coarsening F and
Zi combats this growth in complexity by effectively reducing the amount of
information sent between iterations of the fixed point procedure.

Spatial discretization or coarsening is achieved by use of a quantizer interface
that implicitly aggregates points in a space into a partition or cover.

Definition 7. A quantizer Q(i, o) is any interface that abstracts the identity
interface (i == o) associated with the signature (i, o).

Quantizers decrease the complexity of the system representation and make
synthesis more computationally tractable. A coarsening operator abstracts an
interface by connecting it in series with a quantizer. Coarsening reduces the
number of non-blocking inputs and increases the output non-determinism.

Definition 8 (Input/Output Coarsening). Given an interface F (i, o) and
input quantizer Q(̂i, i), input coarsening yields an interface with signature (̂i, o).

icoarsen(F,Q(̂i, i)) = ohide(i, comp(Q(̂i, i), F )) (13)

Similarly, given an output quantizer Q(o, ô), output coarsening yields an inter-
face with signature (i, ô).

ocoarsen(F,Q(o, ô)) = ohide(o, comp(F,Q(o, ô))) (14)

Figure 5 depicts how coarsening reduces the information required to encode a
finite interface. It leverages a variable precision quantizer, whose implementation
is described in the extended version at [1].

The corollary below shows that quantizers can be seamlessly integrated into
the synthesis pipeline while preserving the refinement order. It readily follows
from Theorems 2, 3, and the quantizer definition.

Corollary 1. Input and output coarsening operations (13) and (14) are mono-
tone operations with respect to the interface refinement order �.
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Fig. 6. Number of BDD nodes (red) and number of states in reach basin (blue) with
respect to the reach game iteration with a greedy quantization. The solid lines result
from the unmodified game with no coarsening heuristic. The dashed lines result from
greedy coarsening whenever the winning region exceeds 3000 BDD nodes. (Color figure
online)

It is difficult to know a priori where a specific problem instance lies along
the spectrum between mathematical precision and computational efficiency. It is
then desirable to coarsen dynamically in response to runtime conditions rather
than statically beforehand. Coarsening heuristics for reach games include:

– Downsampling with progress [7]: Initially use coarser system dynamics to
rapidly identify a coarse reach basin. Finer dynamics are used to construct
a more granular set whenever the coarse iteration “stalls”. In [7] only the Zi

are coarsened during synthesis. We enable the dynamics F to be as well.
– Greedy quantization: Selectively coarsening along certain dimensions by

checking at runtime which dimension, when coarsened, would cause Zi to
shrink the least. This reward function can be leveraged in practice because
coarsening is computationally cheaper than composition. For BDDs, the win-
ning region can be coarsened until the number of nodes reduces below a
desired threshold. Figure 6 shows this heuristic being applied to reduce mem-
ory usage at the expense of answer fidelity. A fixed point is not guaranteed
as long as quantizers can be dynamically inserted into the synthesis pipeline,
but is once quantizers are always inserted at a fixed precision.

The most common quantizer in the literature never blocks and only increases
non-determinism (such quantizers are called “strict” in [18,19]). If a quantizer is
interpreted as a partition or cover, this requirement means that the union must
be equal to an entire space. Definition 7 relaxes that requirement so the union
can be a subset instead. It also hints at other variants such as interfaces that
don’t increase output non-determinism but instead block for more inputs.
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5 Refining System Dynamics

Shared refinement [22] is an operation that takes two interfaces and merges them
into a single interface. In contrast to coarsening, it makes interfaces more pre-
cise. Many tools construct system abstractions by starting from the universal
abstraction ⊥, then iteratively refining it with a collection of smaller interfaces
that represent input-output samples. This approach is especially useful if the
canonical concrete system is a black box function, Simulink model, or source
code file. These representations do not readily lend themselves to the predicate
operations or be coarsened directly. We will describe later how other tools imple-
ment a restrictive form of refinement that introduces unnecessary dependencies.

Interfaces can be successfully merged whenever they do not contain contra-
dictory information. The shared refinability condition below formalizes when
such a contradiction does not exist.

Definition 9 (Shared Refinability [22]). Interfaces F1(i, o) and F2(i, o) with
identical signatures are shared refinable if

(nb(F1) ∧ nb(F2)) ⇒ ∃o(F1 ∧ F2) (15)

For any inputs that do not block for all interfaces, the corresponding output sets
must have a non-empty intersection. If multiple shared refinable interfaces, then
they can be combined into a single one that encapsulates all of their information.

Definition 10 (Shared Refinement Operation [22]). The shared refine-
ment operation combines two shared refinable interfaces F1 and F2, yielding a
new identical signature interface corresponding to the predicate

refine(F1, F2) = (nb(F1) ∨ nb(F2)) ∧ (nb(F1) ⇒ F1) ∧ (nb(F2) ⇒ F2). (16)

The left term expands the set of accepted inputs. The right term signifies that
if an input was accepted by multiple interfaces, the output must be consistent
with each of them. The shared refinement operation reduces to disjunction for
sink interfaces and to conjunction for source interfaces.

Shared refinement’s effect is to move up the refinement order by combining
interfaces. Given a collection of shared refinable interfaces, the shared refinement
operation yields the least upper bound with respect to the refinement partial
order in Definition 6. Violation of (15) can be detected if the interfaces fed into
refine(·) are not abstractions of the resulting interface.

5.1 Constructing Finite Interfaces Through Shared Refinement

A common method to construct finite abstractions is through simulation and
overapproximation of forward reachable sets. This technique appears in tools
such as PESSOA [12], SCOTS [19], MASCOT [7], ROCS [9] and ARCS [4].
By covering a sufficiently large portion of the interface input space, one can
construct larger composite interfaces from smaller ones via shared refinement.
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Fig. 7. (Left) Result of sample and coarsen operations for control system interface
F (x∪u, x+). The I and Î interfaces encode the same predicate, but play different roles
as sink and source. (Right) Visualization of finite abstraction as traversing the refine-
ment partial order. Nodes represent interfaces and edges signify data dependencies for
interface manipulation operators. Multiple refine edges point to a single node because
refinement combines multiple interfaces. Input-output (IO) sample and coarsening are
unary operations so the resulting nodes only have one incoming edge. The concrete
interface F refines all others, and the final result is an abstraction F̂ .

Smaller interfaces are constructed by sampling regions of the input space and
constructing an input-output pair. In Fig. 7’s left half, a sink interface I(x∪u, ∅)
acts as a filter. The source interface Î(∅, x ∪ u) composed with F (x ∪ u, x+)
prunes any information that is outside the relevant input region. The original
interface refines any sampled interface. To make samples finite, interface inputs
and outputs are coarsened. An individual sampled abstraction is not useful for
synthesis because it is restricted to a local portion of the interface input space.
After sampling many finite interfaces are merged through shared refinement. The
assumption Îi ⇒ nb(F ) encodes that the dynamics won’t raise an error when
simulated and is often made implicitly. Figure 7’s right half depicts the sample,
coarsen, and refine operations as methods to vertically traverse the interface
refinement order.

Critically, refine(·) can be called within the synthesis pipeline and does not
assume that the sampled interfaces are disjoint. Figure 8 shows the results from
refining the dynamics with a collection of state-control hyper-rectangles that
are randomly generated via uniformly sampling their widths and offsets along
each dimension. These hyper-rectangles may overlap. If the same collection of
hyper-rectangles were used in MASCOT, SCOTS, ARCS, or ROCS then this
would yield a much more conservative abstraction of the dynamics because their
implementations are not robust to overlapping or misaligned samples. PESSOA
and SCOTS circumvent this issue altogether by enforcing disjointness with an
exhaustive traversal of the state-control space, at the cost of unnecessarily cou-
pling the refinement and sampling procedures. The lunar lander in the extended
version [1] embraces overlapping and uses two mis-aligned grids to construct a
grid partition with pN elements with only pN ( 12 )N−1 samples (where p is the
number of bins along each dimension and N is the interface input dimension).
This technique introduces a small degree of conservatism but its computational
savings typically outweigh this cost.
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Fig. 8. The number of states in the computed reach basin grows with the number of
random samples. The vertical axis is lower bounded by the number of states in the
target 131k and upper bounded by 631k, the number of states using an exhaustive
traversal. Naive implementations of the exhaustive traversal would require 12 million
samples. The right shows basins for 3000 (top) and 6000 samples (bottom).

6 Decomposed Control Predecessor

A decomposed control predecessor is available whenever the system state space
consists of a Cartesian product and the dynamics are decomposed component-
wise such as Fx, Fy, and Fθ for the Dubins vehicle. This property is common for
continuous control systems over Euclidean spaces. While one may construct F
directly via the abstraction sampling approach, it is often intractable for larger
dimensional systems. A more sophisticated approach abstracts the lower dimen-
sional components Fx, Fy, and Fθ individually, computes F = comp(Fx, Fy, Fθ),
then feeds it to the monolithic cpre(·) from Proposition 1. This section’s app-
roach is to avoid computing F at all and decompose the monolithic cpre(·).
It operates by breaking apart the term ohide(x+, comp(F,Z)) in such a way
that it respects the decomposition structure. For the Dubins vehicle example
ohide(x+, comp(F,Z)) is replaced with

ohide(p+x , comp(Fx, ohide(p+y , comp(Fy, ohide(θ+, comp(Fθ, Z))))))

yielding a sink interface with inputs px, py, v, θ, and ω. This representation and
the original ohide(x+, comp(F,Z)) are equivalent because comp(·) is associative
and interfaces do not share outputs x+ ≡ {p+x , p+y , θ+}. Figure 9 shows multiple
variants of cpre(·) and improved runtimes when one avoids preemptively con-
structing the monolithic interface. The decomposed cpre(·) resembles techniques
to exploit partitioned transition relations in symbolic model checking [5].

No tools from Sect. 1.1 natively support decomposed control predecessors.
We’ve shown a decomposed abstraction for components composed in parallel
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Decomposition Parallel Compose Reach Game
Runtime (s) Runtime (s)

F (Monolithic) 0.56 103.09
Fyθ, Fx (Partially Decomp.) 0.02 28.31
Fxθ, Fy (Partially Decomp.) 0.01 28.71
Fxy, Fθ (Partially Decomp.) 0.06 10.61
Fx, Fy, Fθ (Fully Decomp.) n/a 4.42

Fig. 9. A monolithic cpre(·) incurs unnecessary pre-processing and synthesis runtime
costs for the Dubins vehicle reach game. Each variant of cpre(·) above composes
the interfaces Fx, Fy and Fθ in different permutations. For example, Fxy represents
comp(Fx, Fy) and F represents comp(Fx, Fy, Fθ).

but this can also be generalized to series composition to capture, for example, a
system where multiple components have different temporal sampling periods.

7 Conclusion

Tackling difficult control synthesis problems will require exploiting all available
structure in a system with tools that can flexibly adapt to an individual prob-
lem’s idiosyncrasies. This paper lays a foundation for developing an extensible
suite of interoperable techniques and demonstrates the potential computational
gains in an application to controller synthesis with finite abstractions. Adhering
to a simple yet powerful set of well-understood primitives also constitutes a dis-
ciplined methodology for algorithm development, which is especially necessary
if one wants to develop concurrent or distributed algorithms for synthesis.
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