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Abstract. A numerical model for the load transfer mechanism in mooring anchor systems, 
commonly used in offshore petroleum industry, is presented in this work. Special attention is 
paid to the mechanical modelling of the contact interaction of the two medium components, 
namely the soil and the embedded mooring line.  Resorting to the “embedded element 
concept” [1], a mixed 3D-1D finite element formulation is developed in the context of finite 
elastoplasticity. A Tresca-like model is used to describe the nonlinear material behaviour of 
the surrounding soil under undrained conditions, whereas the embedded mooring line 
regarded as curvilinear bar-like inclusion is assumed to behave elastically with account for 
geometric nonlinearities.  The Mohr-Coulomb model is employed to define the bond-stress 
and bond-slip relationships at the interface. Nonlinear static and dynamic analyses are 
performed with a corotational kinematic description in order to include large deformation in 
the problem [2]. Preliminary results indicate that the main frequencies of the dynamic load 
applied to the mooring line-soil system are much lower than those of the system itself, thus 
the overall system may be evaluated disregarding inertial effects. Further simulations based 
on parametric studies by varying relevant problem parameters are needed to corroborate this 
result. Moreover, the average load attenuation induced by friction along the soil/mooring line 
interface for the studied cases is around 25%. Formulation of the interface constitutive 
behaviour in the context of large strain to address large relative movements between 
embedded inclusion and surrounding soil is an ongoing task [3]. Parallel implementation of 



Karena Q. Jimenez, Jorge P. Tamayo, Samir Maghous and Alexandre Braun 

 

 2

the finite element model with specific data structure storage and iterative solver is currently 
addressed to handle large 3D computational models. 

 
1 INTRODUCTION 

Exploitation of petroleum in oceans is an activity which requires the use of floating 
platforms at the sea level in the worksite. These platforms, which are subjected to 
aerodynamic and hydrodynamic loads at their surface, are stabilized by means of mooring line 
systems composed of mooring lines and anchors. The applied loads at the platform are 
transferred to the mooring lines through fairlead points in which friction forces develop along 
the mooring line by contact with the sea water and soil, i.e. the developed load in the 
anchoring device at the end of the mooring line is different from that at the platform surface. 
At the end of the trajectory, the anchoring device penetrates the sea bed and fixes the platform 
by free fall, generating a buried segment. Precisely, the evaluation of friction forces along this 
segment becomes a crucial issue in this problem, as the overall system depends upon the 
anchor strength. Similar works about this topic may be found in references [4, 5]. 

In this paper a mixed 3D-1D formulation based on the displacement finite element method 
is presented to model the buried segment of the mooring line system. Installation effects are 
not accounted for in the analysis for simplification. Also, it is considered that the mechanical 
system is in equilibrium at the start of the analysis. In this approach the soil composed of 
matrix particles is a three-dimensional solid medium, while the buried segment or inclusion is 
represented by one-dimensional bar elements embedded in the solid elements. This approach 
is efficient considering that size of the inclusion is much smaller than the size of the soil 
medium. The solid elements are represented by eight-node one point integration finite 
elements with stabilization matrices to avoid locking, rank deficiency and spurious modes [6]. 
However, they may suffer from convergence problems when plasticity problems are involved. 
Then, the performance of classical hexahedral finite elements with selective integration is also 
considered for the undrained situation. In all cases, load attenuation due to friction forces is 
addressed.  

2 FINITE STRAIN APPROACH 

2.1 Corotational description of matrix particles motion and constitutive equation 

A corotational description as shown in Figure 1 is adopted to describe the motion of the 
continuum body. The reference frame is decomposed into a base configuration, namely the 
undeformed configuration, and a corotated one attached to the rigid body motion. The 
coordinate system of the corotated configuration 𝐱, which is defined at the finite element 
center, follows the material motion and is related to the global coordinate system by means of 
a rotation matrix. Note that rotation R transforming the current configuration into the 
corotational configuration is defined by the rotation component in polar decomposition of 
deformation gradient.  In this manner, the strain rate tensor in the corotational system may be 
defined as: 
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where subscript m refers to matrix particles and def
mv̂  represents the velocity field associated to 

the deformation part of the motion according to the corotational system. Considering that all 
kinematics variables are known at configuration t = tn, the displacement field can be obtained 
from integration of the strain rate tensor in the time interval [tn,tn+1].  

 
Figure 1: Kinematics of mechanical system 

The strain increment is computed at the reference configuration t = tn+1/2 in the corotational 
system by using a mid-point integration rule [6].  
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where def
mˆu  and n 1 2ˆ x  represent the deformation part of the displacement increment mˆu and  

the intermediate geometric configuration in the corotational system, respectively.  The latter is 
defined in the following manner: 

 n+1 2 n+1 2 n+1 2 n+1 2 n n+1

1
ˆ

2
    x R x R x x  

(3) 

where Rn+1/2 is an orthogonal matrix, which performs rotation from the global to the 
corotational coordinate system at element level. The global displacement increment mu in 

time interval [tn, tn+1] is decomposed as: 

def rot
m m m   u u u  (4) 

with def
mu and rot

mu denoting the deformation and rotation parts of the displacement 

increment. Meanwhile, the same quantity expressed in the corotational system is defined as: 
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in which subscripts n and n+1 refer to geometric configurations at times tn and tn+1, 
respectively. Omitting time subscripts, the rotation matrix can be expressed as:   
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where  , ,    and x are respectively vectors defining the natural and global nodal 

coordinates of the current element [2]. Otherwise, the state equation which relates a rotational 
time derivate of stress tensor to the strain rate tensor is defined in the following manner: 

 J e p J
m m m m m m m m m

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆwith     D d d +             (8) 

in which p
md̂ , m̂ and m̂ denotes the plastic strain rate tensor, spin tensor and Cauchy stress 

tensor in the corotational system, respectively. Meanwhile, 𝐃  could represent the fourth-
order elastic or elastic-plastic constitutive tensor of the matrix. The aforementioned equation 
is integrated within the time interval in the context of large strains. 

2.2 Description of deformation in embedded inclusion and constitutive equation 

The inclusion intrinsically follows a corotational description as already depicted in Figure 
1. The kinematics is described based on the reference configuration tn, in which the Green-
Lagrange axial strain writes: 

c c
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t t t
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c cu u

u lE  (9) 

where cu  is the displacement vector at any point along the embedded inclusion, xt refers to 

the current tangent direction of the inclusion as illustrated in Figure 1, and l is the unit vector 
along the inclusion. The displacement vector cu  may be written in terms of the relative 

tangential displacement us, and the displacement components in the global coordinate system 
of the geometrically coinciding matrix particle um as follows: 

c m su u u l  (10) 

Otherwise, it is assumed an elastic behavior for the inclusion in which the stress increment 
of second Piola-Kirchhoff stress ∆π during the time interval [tn,tn+1] is related to axial strain 
by means of the elastic stiffness of the inclusion Ec. 

ccE  E  (11) 
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2.3 Constitutive behavior of the interface  

The kinematics of the inclusion is better described in its local coordinate system in terms 
of tangential and normal relative displacement components. Particularly, the relative 
displacement in the normal direction is zero due to assumption of bond-slip at the interface.  
The Mohr-Coulomb yield criterion is then used to separate elastic and elastic-plastic stresses. 
The incremental form of the constitutive equations at the interface in the elastic regime is 
given by the following expression: 

 int s sk u    (12) 

While in the plastic regime it is written as: 
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int
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k tg tg h sign



  

  




 
(13) 

in which ϕ and ψ are respectively the friction and dilatation angles of the interface and h is the 
hardening modulus of cohesion. Meanwhile, kn and ks refer to normal and tangential stiffness 
moduli in force per cubic length. The aforementioned equation is obtained in [6] by applying 
the consistency condition and forcing a null component of displacement in the normal 
direction. 

2.4 Finite element discretization 

An iterative incremental approach is employed to trace the nonlinear response of the 
mechanical system. Incremental strains are evaluated based on the previous configuration and 
corresponding stresses are update according to the material behavior. Although the soil and 
cable may undergo large strains, a fundamental assumption is that strains at the soil-cable 
interface remain infinitesimal. As already mentioned, a corotational description of the 
mechanical system is adopted, in which eight-node hexahedral and two-node bar finite 
elements are used respectively to represent the soil and cable. The unknown variables of the 
problem are the global vector of nodal displacements of the soil us and relative displacements 
of the cable elements wt in the tangential direction. In this manner, the total displacement of 
the cable is recovered by adding these two variables in the global coordinate system. By using 
the principle of virtual work and applying the finite element method, the following coupled 
equation is obtained at the element level.    

uu uw s t uu

wu ww t t ww

     
          

u

w

k k p q

k k r q
 

(14) 

in which kuw and kwu  are coupled matrices of soil and cable, kuu contains the cable and soil 
contributions and matrix kww contains the cable and interface rigidities. Variables pt and rt are 
respectively the nodal external forces of soil and cable, while quu and qww refer to 
corresponding internal nodal forces. The explicit expressions of these matrices can be found 
in reference [6] and the reader is referred to that work for details . After assembling all 
element contributions, the set of equations of the incremental form of the nonlinear problem 
of the coupled system is written in the following form: 
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tan ext int( ) ( )  K U U F F U  (15) 

where Ktan is the global tangent stiffness matrix related to left hand side of Equation (14), Fext 
and Fint are the global external and internal force vectors, respectively. The unknown 
incremental displacement U contains the increments of displacements of soil ∆us  and relative 
displacement at the interface ∆wt.   

3 NUMERICAL APPLICATION 

3.1 Problem description 

A typical mooring system as depicted in Figure 2 is composed of a mooring line and a 
torpedo anchor. The mooring line has a suspended part in the seawater and a buried segment 
below the sea bed. As it may be seen, the buried segment joins the point on the seabed surface 
with that of the torpedo position. Torpedo anchors are introduced into the seabed by free fall 
from the platform, penetrating 30 m to 150 m into the soil. The holding capacity of the 
torpedo is then established with soil properties and penetration depth. In this context, the 
numerical simulation is restricted to the study of the embedded part in which load fb is applied 
at the upper end of the cable. This load is known in advance since load record Fp is monitored 
at the platform. The focus of the study is to determine load ft acting at the anchoring device 
after attenuation due to friction forces at the soil-cable interface. Load ft is an important issue 
in design of anchors related to the undrained load capacity of the system.   

 
Figure 2: Schematic representation of load transfer along mooring line and equivalent bar modeling of buried 

segment 

The geometry and finite element model used after a mesh sensitivity analysis are shown in 
Figure 3.  This is a parallelepiped volume of soil (15 m height, 40 m length and 7 m width) 
whose upper face lies on the seabed plane y = 0 in which the load fb is applied at the cable. 
The dimensions are established in order to avoid the influence of the boundary conditions 
over the region of interest. The shape of the embedded mooring line has an inverse catenary 
form where an equivalent circular cross section is assumed to represent the mooring line made 
up of chains. The mooring line is located at the vertical mid-plane of the domain in which 
various cable segments are automatically defined according to mesh discretization. Smooth-
wall boundary conditions are imposed on the bottom and lateral surfaces of the computational 
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domain. A hydrostatic load qw representing the pressure exerted by the seawater (H=2135 m) 
is applied on the top surface. The anchoring point at the end of the embedded mooring line is 
considered to be fixed, indicating that the torpedo is sufficiently rigid to constraint all degrees 
of freedom at this point.  

The mechanical response of the soil-mooring cable system under undrained loading 
conditions is investigated in the context of total stress constitutive behavior. The soil is 
assumed to be elastic and perfect plastic material following a Tresca-like model in which the 
undrained shear strength and Young modulus increase linearly with depth. The mooring line 
is considered to be elastic with an axial rigidity defined by the product of its equivalent area 
and Young modulus. The elastic-plastic behavior of the soil-cable interface is defined by 
normal and tangential stiffness moduli kn and ks, cohesion c, friction angle ϕ and dilatancy 
angle ψ. Table 1 summarizes all material properties.  

 

 
Figure 3: Finite element mesh corresponding to the anchoring point at h = 15 m depth. 

Table 1: Mechanical properties 

Soil  Undrained shear strength Su(y) = αy α = 1.4 kPa/m 

 Elastic modulus E(y) = β Su(y) β = 300 

 Poisson ratio ν = 0.495 

 Saturated specific weight γ = 15.1 kN/m3 

Mooring cable Equivalent bar diameter dc = 0.24 m 

 Axial rigidity EcAc = 1.1x106 kN 

Soil-cable-interface Cohesion c = 0 kPa 

 Internal friction angle ϕ = 30o 

 Dilatancy angle ψ = 0o 
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The initial stress distribution in the soil before load application is assumed to be 
undisturbed by the anchor installation process, e.g. horizontal and vertical stress components 
are considered to be equal. A typical load record without spectral filtering acting at the upper 
end of the cable is shown in Figure 4(a), while its corresponding frequency density function is 
depicted in Figure 4(b). As it may be observed, the mean load is approximately fb ≈ 4000 kN 
and associated main frequencies of load record are around 0.002 Hz.   

 

Figure 4: Load record: a) Force in time; b) Spectral density function 

3.2 Preliminary results 

Inertial effects can be introduced by the applied axial load to the mechanical system. To 
quantify this effect, free vibration responses are obtained by means of impulsive loads as 
illustrated in Figure 5. The loading process consists in applying a quasi-static axial load fb0 = 
fb / 4 or fb0 = fb / 2 at the free end of the mooring cable, followed by impulsive loads ∆fb = fb0 / 
2 or ∆fb = fb0 / 4. The spectral density function of the numerical simulation is then displayed 
in Figure 6. As it may be observed, the main frequencies of the mechanical system are around 
20 Hz, which are considerably greater than those of the applied load in Figure 4(b). This 
preliminary result suggests that inertial effects could be neglected with safety from the 
analysis.  
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Figure 5: Applied load and cable structural response in terms of axial displacement ub with time 

 

Figure 6: Spectral density function obtained from dynamic simulations 

3.3 Further Simulations 

The effect of anchoring depths on the evaluation of torpedo reaction is performed based on 
three configurations h = 15 m, 20 m and 25 m. The applied axial load fb is obtained from 
spectral filtering of load record depicted in Figure 4(a), which yields a smaller load record. 
Also, time duration of 1.2 seconds is preliminary adopted for numerical results since similar 
trends in response are expected for later times. Figure 7 displays evolution of torpedo reaction 
ft with time for different anchoring depths. As it may be observed, load attenuation increases 
with depth and corresponding percentages are summarized in Table 2. It may be concluded 
that an average load attenuation nearly 25% is obtained.  

To study the effect of numerical integration in the overall response of the mechanical 
system, an additional analysis is carried out for the case of 15 m depth. In this case, the results 
of the hexahedral finite element with one-integration point, named stabilized element, are 
compared with those of the classical element in Figure 8. The classical element uses selective 
integration with full and reduced integration, respectively, for the deviatory and volumetric 
parts in the undrained situation. As it may be observed, the torpedo reaction ft correlates well 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0 5 10 15 20 25 30 35 40

S
pe

ct
ra

l d
en

si
ty

Frequency (Hz)



Karena Q. Jimenez, Jorge P. Tamayo, Samir Maghous and Alexandre Braun 

 

 10

with that of the stabilized element. However, the classical element is advantageous because it 
presents a robust behavior for nonlinear problems involving high gradients of plasticity, in 
which the stabilized elements could suffer from convergence problems. Although this is not 
the case in the current example, it can occur in other scenarios. Then, more parametric studies 
are needed to verify this situation.  

Table 2: Load attenuation as function of anchoring depth  

Anchoring depth Average attenuation Attenuation at peak load 
15 m 20.7 % 23.5% 

20 m 24.6 % 26.4% 

25 m 26.8 % 27.9% 

 

Figure 7: Applied load fb and predicted load ft at the anchoring point for three different anchoring points 

 

Figure 8: Applied load fb and predicted load ft at the anchoring point for different finite elements. 

In relation to the size of the problem and computational effort, the smaller finite element 
mesh composed of 44800 hexahedral elements requires solving 149445 linear equations in 
each iteration. The common approach consisted in run a dynamic analysis ignoring inertial 
effects with at least 1200 steps for covering 1.2 seconds of load record, which gives a 
fictitious time step of 1.0E-03 seconds. A normal serial run in this condition can take seven 
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days in an desktop computer with the following system properties, Intel (R) Core (TM) i5-
2500 CPU @3.3GHz and 3.49 of RAM. At the current stage of the project, various iterative 
solvers have been tested together with parallel directives using OpenMP to reduce 
computational time. Work is in progress in this aspect. 

4 CONCLUSIONS 

- Preliminary results indicate that a static analysis is suitable for the numerical 
simulation of the mechanical system composed of embedded mooring line and 
surrounding soil in the undrained condition. This is because the main frequencies of 
the load record are much smaller than those of the system.  

- Load fb applied at the sea bed is attenuated around 25% at the point in the anchoring 
device.   

- Classical hexahedral finite elements with selective integration are shown to be 
competitive with one-point integration finite elements with stabilization. This is 
advantageous because classical elements are numerically more robust in problems 
involving high gradients of plasticity.  
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