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The empirical Colebrook equation from 1939 is still accepted as an informal standard way to calculate the friction factor of
turbulent flows (4000 < Re < 10%) through pipes with roughness between negligible relative roughness (¢/D — 0) to very rough
(up to ¢/D = 0.05). The Colebrook equation includes the flow friction factor A in an implicit logarithmic form, A being a function of
the Reynolds number Re and the relative roughness of inner pipe surface &/D: A = f(A, Re, &/D). To evaluate the error introduced by
the many available explicit approximations to the Colebrook equation, A = f{Re, ¢/D), it is necessary to determinate the value of the
friction factor A from the Colebrook equation as accurately as possible. The most accurate way to achieve that is by using some
kind of the iterative method. The most used iterative approach is the simple fixed-point method, which requires up to 10 iterations
to achieve a good level of accuracy. The simple fixed-point method does not require derivatives of the Colebrook function, while
the most of the other presented methods in this paper do require. The methods based on the accelerated Householder’s approach
(3rd order, 2nd order: Halley’s and Schroder’s method, and 1st order: Newton-Raphson) require few iterations less, while the
three-point iterative methods require only 1 to 3 iterations to achieve the same level of accuracy. The paper also discusses strategies
for finding the derivatives of the Colebrook function in symbolic form, for avoiding the use of the derivatives (secant method), and
for choosing an optimal starting point for the iterative procedure. The Householder approach to the Colebrook’ equations
expressed through the Lambert W-function is also analyzed. Finally, it is presented one approximation to the Colebrook equation
with an error of no more than 0.0617%.

1. Introduction

To evaluate flow resistance in turbulent flow through rough
or smooth pipes, the empirical Colebrook equation is in
common use [1]:

1
—==-2-log,y ((251/(Re- V1)) + (¢/(3.7-D))). (1)
\/x - Colebrook

In the Colebrook equation, A represents Darcy flow
friction factor, Re Reynolds number, and &/D relative
roughness of inner pipe surfaces (all three quantities are
dimensionless).

The experiment performed by Colebrook and White [2]
dealt with flow of air through a pipe, diameter D =53.5 mm,
and length L=6m, with six different roughness of inner
surface of the pipe artificially simulated with various mixtures
of two sizes of sand grain (0.035 mm and 0.35 mm diameter)
to simulate conditions of inner pipe surface from almost
smooth to very rough. The sand grains were fixed using a sort
of bituminous adhesive waterproof insulating compound to
form five types of relatively uniform roughness of inner pipe
surfaces while the sixth one was without sand, that is, it was
left smooth. The experiment revealed, contrary to the pre-
vious, that the flow friction, A, does not have a sharp transition
from the smooth to the fully rough law of turbulence. This
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evidence Colebrook [1] later captured in today famous and
widely used empirical equation, Equation (1).

The Colebrook function relates the unknown flow friction
factor A as function of itself, the Reynolds number Re, and the
relative roughness of inner pipe surface ¢/D, A = f(A, Re, &/D).
It is valid for 4000 <Re<10® and for 0<e&/D<0.05. The
Colebrook equation is transcendent and thus cannot be
solved in terms of elementary functions [3-6]. Although
empirical, and therefore with questionable accuracy, its
precise solution is sometimes essential in order to repeat or to
evaluate the previous findings in a concise way [7-9].

Few approaches are available today for solving the
Colebrook equation:

(1) Graphical solution—Moody diagram: To represent
the Colebrook equation graphically, Rouse in 1942
had developed an appropriate diagram which Moody
later adapted in 1944 in the famous diagram widely
used in the past in engineering practice [10, 11]. The
diagram was preferred because the Colebrook
equation is implicitly given. Today, graphical solu-
tion has only value for educational purposes.

(2) Iterative solution of the Colebrook equation:

(a) Simple fixed-point iterative method. The simple
fixed-point iterative method [12] is in common use
for solving accurately the Colebrook equation
(special case of the Colebrook equation for
Re — oo gives explicit form valid only for the fully
turbulent flow in rough pipes [13-16] but which
can be used as initial starting point for all cases
covered by the Colebrook equation A4 = fle/D) —
Equation (2); now using the Colebrook equation,
new value can be calculated A;=f(1p; Re; ¢/D);
starting from i=1, the procedure A;;=f(A; Re;
e/D); i=i+1 goes until A;=A;,;, where we set
A1 —A<1078). It usually reaches the satisfied ac-
curacy after no more than 10 iterations.

(b) Householder’s iterative methods. On the other
hand, Newton’s method (also known as the
Newton-Raphson method [17-19]) needs few
iterations less compared to the fixed-point
method to reach the same level of accuracy. A
shortcoming of Newton’s method is that it ad-
ditionally requires the first derivative of the
Colebrook function (here we show analytical
form of the first derivative including the sym-
bolic form generated in MATLAB [20]). Also
knowing that the Newton-Raphson method is
the 1st order of Householder’s method [21, 22],
here we also analyze the 2nd order, which is
known as the Halley [23] and the Schroder
[24, 25] method, and also the 3rd order. The
third-order methods use the third, the second,
and the first derivative, the 2nd order use the
second and the first, while the 1st order use only
the first derivative. Today, all mentioned types of
iterative solutions can easily be implemented in
software codes and they are accepted as the most
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accurate way for solving the Colebrook equation,
and hence, they are preferred compared to the
graphical solution.

(¢c) Three-point iterative methods. Three-point iter-
ative methods need only 1 to 3 iterations in three
points xo, o, and z, (three internal iterations) to
achieve the high level of accuracy [26-28]. x, is
initial starting point, y, is auxiliary step, while z,
is the solution. Three-point methods are very
accurate and can reach high accuracy in some
cases even after 1 to 2 iterations. Also slightly less
fast two-point methods in terms of required
number of iterations to reach the demanded
accuracy do exist.

(3) Approximations of the Colebrook equation: Cole-
brook’s equation can be expressed in the explicit
form only in an approximate way: A=f(Re, &/D)
[29-36]. Numerous explicit approximations to the
Colebrook equation are available in the literature
[29-32, 34-36]. The iterative solutions as the most
accurate methods are used for evaluation of accuracy
of such approximations. Also, based on our findings,
we provide an approximation, Equation (28), with
the error of no more than 0.69% and 0.0617%. The
Colebrook equation can also be approximately
simulated using Artificial Neural Networks [37-39].

(4) Lambert W-function: Until now, the only one known
way to express the Colebrook equation exactly in
explicit way is through the Lambert W-function,
A=W(Re, ¢/D) [3, 8, 40-43], where further evalua-
tion of the Lambert W-function can be only ap-
proximated [44-48]. Here, we show the procedure
how to solve the Lambert W-function using the
Householder iterative procedure (2nd order: Halley’s
method and 1st order: Newton-Raphson). Also
approach with the shifted Lambert W-function in
terms of the Wright Q-function exists [40, 43].

In this paper, we show the three-point and the
Householder iterative procedures (the 3rd order, the 2nd
order: Halley’s [49] and Schroder’s method, and the Ist
order: Newton-Raphson) with the additional recommen-
dations in order to solve the empirical Colebrook equation
implicitly given in respect of the flow friction factor A. The
goal of this paper is to show the improved iterative solutions
which can obtain the value of the unknown friction factor A
accurately after the least possible number of iterations.
Additionally, we developed a strategy how to choose the best
starting point [50] for the iterative procedure in the domain
of interest of the Colebrook equation, how to generate re-
quired symbolic derivatives to the Colebrook equation in
MATLAB, and how to avoid use of the derivatives (secant
method). Finally, we use findings from our paper to present
a novel explicit approximation of the Colebrook equation,
which would be interesting for engineering practice. We also
present distribution of the relative error in respect of the
presented approximation over the applicability domain of
the Colebrook equation.
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To evaluate the efficiency of the presented methods, the
unknown flow friction factor A is calculated for two pairs of
the Reynolds number Re and relative roughness of inner
pipe surfaces ¢/D: (1) (Re= 5.10%, ¢/D=2.510"") — A=
0.010279663295529 and (2) (Re=3-10%, &/D=910")
—> 1=0.038630738574792.

2. Initial Estimate of Starting Point for the
Iterative Procedures

The starting point is a significant factor in convergence
speed in the three-point and the Householder methods
[50], and there are the different methods to choose a good
start, but here we examine (1) starting point as function of
the input parameters and (2) initial starting point with the
fixed value.

One of the essential issues in every iterative procedure is to
choose the good starting point [51, 52]. Here, we try to find the
fixed starting point (the initial value of the flow friction factor
Ao or the related transmission factor x, = (1/~/1,)) valid for all
cases from the practical domains of applicability of the Cole-
brook equation which is for the Reynolds number Re,
4000<Re<10°%, and for the relative roughness /D,
0<¢/D<0.05. In the cases when this approach does not work
efficiently, we show how to choose the starting value in function
of the Reynolds number Re and the relative roughness /D, that
is, using some kind of the rough approximations to the
Colebrook equation which can be relatively inaccurate but
simply and which put the initial value reasonable close to the
final and accurate solution. This initial guess then needs to be
plugged into the shown numerical methods and iterated re-
cursively few times (usually two or three times and up to ten in
the worst case) to converge upon the final solution. In any case,
a sample of size 65536 was considered for analysis of the it-
eration methods. The input sample was generated according to
the uniform density function of each input variable. The low-
discrepancy Sobol sequences were employed [53]. These so-
called quasirandom sequences have useful properties. In con-
trary to the random numbers, quasirandom numbers cover the
space more quickly and evenly. Thus, they leave very few holes.

The Colebrook equation can also be expressed in terms
of the Lambert W-function analytically, A = f(A, Re, ¢/D) —
A= W(Re, /D) [41, 42, 54]. The Lambert W-function further
can be evaluated only approximately through the House-
holder iterative procedures which also require the appro-
priate initial starting point. The analysis of this initial
starting point has wider applicability, because the Lambert
W-function has extensive use in many branches of physics
and technology [55, 56].

2.1. Starting Point as Function of Input Parameters

2.1.1. Starting Point as Function of the Relative Roughness ¢/D
(When Re — 00). 'The special case of the Colebrook equation
when Re — oo physically means that the flow friction factor A
in that case depends only on &/D, for Re — 00, A = f(¢/D), that
is, the flow friction factor A is not implicitly given [14]. In that
way, the starting point can be calculated using the explicit

equation which has only one variable, Ay =f(e/D) (Equation
(2)). The results obtained in that way are accurate only for the
case Re— 0o but for the smaller values of the Reynolds
number Re which corresponds to the smooth turbulent flow,
the error can goes up to 80% [13, 57]. Anyway, in that way,
calculated value can be efficiently used as an initial starting
guess for the iterative procedures for the whole domain of
applicability of the Colebrook equation.

Xg = —— = —2.log,, (e/ (3.7 - D)). )

Vi

The initial starting point obtained using the previous
equation is referred as “traditional,” and it introduces the
maximal relative error of 80% over the domain of appli-
cability of the Colebrook equation where the error can be
neglected in case of fully developed turbulent flow through
the pipes with very rough inner surface. To reach the ac-
curacy of A, —A;< 107%, usually 6 steps are enough re-
garding the Newton-Raphson method (Figure 1).

rough part of Colebrook

2.1.2. Starting Point Obtained Using Approximations to the
Colebrook Equation. Every approximation to the Colebrook
equation, A = f(Re, ¢/D), can be used to put the initial starting
point as close as possible near the final accurate solution
[30]. For example, using one of the approximations with the
error of up to 10% for calculation of the initial starting point
xo = (1/ V1), the final accurate value of the flow friction
factor A is reached in the worst-case scenario after 3 iter-
ations using the Colebrook equation and one of the pro-
cedures from Section 3.2. After 3 iterations, the whole
practical domain of applicability of the Colebrook equation
is covered with the difference between the two final itera-
tions less than 1078, 4,,, - 1,< 1078 (Figure 2). In average, the
method requires 2.7 iterations in average for all cases with
the set precision (stopping criterion) very close to zero
(about 107®) when calculation goes through the transmission
factor x. The results from Figure 1 are from the 65536 pairs of
the Reynolds number Re and the relative roughness &/D over
the domain of applicability of the Colebrook equation do-
main (values of the Reynolds number Re between 4000 and
10* and the relative roughness ¢/D between 0 and 0.05,
dividing them into 256 points each).

2.2. Fixed Initial Starting Point. An idea from geometry to
find “center of gravity” is used for the points for which the
Newton-Raphson, the Halley, Schréder, and the three-point
methods converge slowly. If we put the initial starting point
in this zone, the less number of iterations is required to reach
the final solution [58].

2.2.1. Fixed Initial Starting Point for the Newton-Raphson
Method. The “center of gravity” for the “slow area” in which
the Newton-Raphson method requires the increased
number of iterations is shown in Figure 1. The “center of
gravity” has coordinates: log(Re)=4.4322 — Re = 27000
and -log(e/D)=5.7311 — /D= 1.85:10"° for which the
flow friction factor A and the corresponding transmission
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FIGURE 1: “Slow area” which requires 6 iterations to reach accuracy of 10 regarding the “traditional” option for the starting point calculated
through Equation (2), for solving Colebrook’s equation in Newton’s procedure when calculation goes through the transmission factor x.
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FIGURE 2: Area in which 2 iterations (left) and 3 iterations (right) are sufficient to calculate the flow friction factor A with accuracy of 1078
using Colebrook equation solved in Newton’s procedure when calculation goes through the transmission factor x and using approximation

with error of up to 10%.

factor x = (1/V1) can be calculated using any of the
available methods. In that way, calculated x became the
starting point x, for all combinations of the Reynolds
number Re and the relative roughness /D in the domain of
applicability of the Colebrook equation. With this new
starting point x,, the maximal required number of iterations
is 4 (Figure 3), while before in the worst case was 6 (Figure 1)
when the starting point x, was obtained through the “tra-
ditional formula” for this purpose, Equation (2), all valid for
the case when the flow friction factor A is calculated with the
accuracy of A1 —A;< 1078 using the Colebrook equation
solved in Newton’s procedure when calculation goes
through the transmission factor x.

The physical interpretation of this “slow area” is in the
fact that this area corresponds to the initial zone of the

turbulent flow through the smooth pipes, while Equation (2)
is accurate only for the fully developed turbulent flow
through the rough pipes. So, Equation (2) can already obtain
accurate solution in the case of the fully developed turbulent
flow through the rough pipes even without the iterative
process, where Equation (2) introduces the relative error of
almost 80% in the case of initial phases of the turbulent flow
through the smooth pipes.

With the initial starting point fixed at the “center of
gravity” of the “slow area,” in the worst cases, maximum 4
iterations as shown in Figure 3 are enough for the required
accuracy of 10~® (before with the “traditional” version of the
initial value provided using Equation (2) was 6 as indicated
in Figure 1). The new fixed starting point is set as
Ao =0.024069128765100981, that is, xo = 6.44569593948452.
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FIGURE 3: Decreased maximal number of required iterations from 6
to 4 to reach accuracy of 107® for solving Colebrook’s equation in
Newton’s procedure when calculation goes through the trans-
mission factor x where the initial starting point is with the fixed
value: x, = 6.44569593948452.

It corresponds to  log(Re)=4.4322 — Re = 27000
and -log (¢/D) =5.7311 — &/D ~ 1.85-10"°.

The new starting point xo=6.44569593948452 is very
robust and it seems to be an optimal starting point for all
combinations when calculation goes through the trans-
mission factor x = (1/v/1) as explained in Section 3.2.

2.2.2. Fixed Initial Starting Point for the Halley and Schréder
Method. The starting point for calculation through the
Halley and the Schroder method using Equation (2) re-
quires in the worst cases up to 4 iterations to reach the
required accuracy (Figure 4). Compared with the
Newton-Raphson method, it is improvement of two it-
erations: up to 6 iterations required in Figure 1 and up to 4
iterations in Figure 4. The “worst-case” area for Halley’s
and Schroder’s method that requires 4 iterations using
staring point Equation (2) has coordinates: (log;o(Re)=
5.3108 — Re = 204550; -logyo (¢/D) =4.9431 — ¢/D =
1.14107°) — 1 = 0.015663210285978339, that is, x,=
7.990256504. This value is the new optimal initial starting
point in the case of the Halley and the Schroder method.

With the new initial starting point x=7.990256504,
three iterations are required at maximum to reach the re-
quired accuracy in case of the Halley and the Schrdder
method (Figure 5) as described in Section 3.2.

2.2.3. Fixed Initial Starting Point for the Three-Point Iterative
Methods. The optimal normalized parameters for the fixed
initial starting point for the three-point iterative methods
explained in Section 3.4. of this paper [26-28] are as follows:
(log,o (Re) = 4.90060379974617 —> Re = 79543.33576;  -log
(¢/D) = 5.33355157079189 — ¢/D = 4.6392610°°) — o=
0.018904186734624 —> x,=7.273124147.  The = DzZuni¢-
Petkovic method is shown in Section 3.4. Additional

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
log; (Re)

FIGURE 4: “Slow area” which requires 4 iterations to reach accuracy
of 107® regarding the “traditional” option for the starting point
calculated through Equation (2), for solving Colebrook’s equation
in Halley’s and Schroder’s procedure when calculation goes
through the transmission factor x.
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FIGURE 5: Decreased maximal number of required iterations from 4
to 3 to reach accuracy of 10~® for solving Colebrook’s equation in
Halley’s and Schroder’s procedure when calculation goes through
the transmission factor x where the initial starting point is with the
fixed value: x,=7.990256504.

recommendations about the initial starting point regarding the
three-point iterative methods can be found in [59].

2.3. Starting Point for the Lambert W-Expressed Colebrook
Equation. 'The friction factor A in the Colebrook equation
can be expressed in the explicit way through the Lambert
W-function [3, 5, 8, 30, 42, 60, 61]. The Lambert W-function
can further be evaluated using some types of the House-
holder iterative methods as shown in Section 3.5 of this

paper.



The Colebrook equation in a closed form through the
Lambert W-function can be expressed in two ways,
Equations (3) and (4). The first expression is [3, 30, 60, 62]
as follows:

I 5.1 2-2.51-W(y) £
Vr %%0\ TReIn(10) 37D
(3)
- €

=-2. log10(10( woumay —— D),
where y = ((Re - In(10))/(2-2.51)) = (Re/2.18).

The argument of the Lambert W-function in this case
depends only on the Reynolds number, Ay = Re/2.18. Knowing
that the practical range of the Reynolds number goes from
4000 to 10 the argument of the Lambert W-function is goes
from about 1835 to 45871560, where W(1835) = 5.763291081
and W(45871560) = 14.93748223. The Halley procedure is fast
and any initial starting point can be chosen between 5 and 15,
but the Newton-Raphson method is very slow and we found
that, for the best results, the initial starting point 15 has to be
chosen. Note that for W(45871560) = 14.93748223, the
Newton-Raphson procedure does not work in Excel for the
values of initial starting point lower than 8.814.

Due to transformations of coefficients, Equation (3) can
introduce the relative error up to 2% and should be con-
sidered as explicit approximation to the Colebrook equation
rather to its equivalent [63].

The second expression is as follows [42, 54]:

B 2 « Re- (¢/D) -
A_<1n(10)'w(e )- 3.7-2.51 ) ’ )

where a= ((Re- (¢/D)- In(10))/(2-2.51-3.7))—1n
((2-3.7)/(Re - In(10)))).

Argument of the Lambert W-function in this case is
e” which for the certain combinations of the Reynolds
number Re and the relative roughness &/D from the
practical domain of the Colebrook equation is too big to be
calculated in registers of computers [6, 41, 54]. This can be
overwhelmed with the Wright Q-function, w(f) = W (e%)
[40, 43, 64-66].

The argument of the Lambert W-function in this case,
exp(ap), depends on both Re and ¢/D, but as explained
due to exponential form, the calculation is not always
possible and because of that limited possibility of use the
appropriate starting point in this case is not evaluated
[41, 54, 67, 68].

3. Iterative Methods Adopted for the
Colebrook Equation

The Householder method [22] is a numerical algorithm for
solving the nonlinear equation such as Colebrook’s. During
the Householder procedure, in successive calculation, that
is, in iterative cycles, the original assumed value of the
unknown quantity (the initial starting point [50]) needs to
be brought as much as possible close to the real value of the
quantity using the least possible number of iterations. The
same situation is with the three-point methods [28].
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The following types of the method are used in this
paper: the first-order Householder method (Newton-
Raphson [18, 19]), the 2nd order (Halley [69, 70] and
Schroder [25]), and the 3rd order, as well as the three-
point methods [28]. All these methods require the cal-
culation of the derivatives which is usually underlined as
the most important shortcoming of the Householder and
the three-point methods compared with the simple fixed-
point procedure in respect of the Colebrook equation.
The Newton-Raphson and the three-point methods (in
most cases) require only the first derivative, the Halley
and the Schréder method requires the first and the
second derivative, while the 3rd requires the first, the
second, and the third derivative. In addition to the first
derivate in analytical form, all required derivatives of the
Colebrook function were present also in a simple and
computationally inexpensive symbolic form. The de-
rivatives in symbolic form were generated in MATLAB.
In addition, the secant method which does not require
derivatives is shown as a variant of the Newton-Raphson
method [71].

All shown approaches with the Householder methods in
our case usually require only 2 to 4 iterations to reach the
final accurate solution [72]. This number can be slightly
higher depending on the chosen method where the secant
method requires by default 1-2 iterations more. Also some
simple transformations of the Colebrook equation, such as
introduction of the transmission factor in form of the shift
x = (1/v/1), can reduce the number of required iterations.
Knowing that the right form of equation is essential for all
types of the Householder methods, here are examined the
two at first look very similar options: (1) direct calculation of
A in Section 3.1 and (2) indirect calculation of A through
transmission factor x = (1/+/1) in Section 3.2.

Finally, the Colebrook equation can be rewritten in an
explicit form through the Lambert W-function [41, 42, 54, 73]
and the Lambert W-function is solved in Section 3.5 using the
Newton-Raphson and the Halley procedure.

3.1. Direct Calculation of A with Derivative Calculated in
Analytical Way. The proposed technique requires the
Colebrook equation in the form f(A, Re, ¢/D) =0, Equation
(5), where A is treated as variable, the first derivative f'(A,
Re, ¢/D), Equation (6) of the Colebrook equation with
respect to A and the initial value of the friction factor A, as
starting point. Most probably, the function will have res-
idue f/f'#+0 which needs to be minimized through the
iterative process.

Here are the required steps for the Newton-Raphson
procedure:

The Colebrook equation in the form f(A, Re, /D) =0:

o
= (1/AJA]) + 2 - Tog,, ((2.51/ (Re - V/|A])) + (¢/ (3.7 - D))) = 0.

Colebrook: f (1)=0

(5)

The first derivative f with respect to A in exact analytical
way:
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') = %f()t) = —(172) - (UNIN)? - (1 +((2-2.51)/(In(10) - Re - ((2.51/(Re - V/]M])) + (¢/ (3.7 - D)))))). )

Initial value A, is selected as explained in Section 2 of this
paper in order to calculate the residue f/f and start the
iterative procedure:

(1/@) +2- logw(<2.51/<Re. o] )) +(e/ (3.7 D)))

Ist derivative f' (\)-analytical

A=A - (f()‘o)/f, (Ao)) =X -

Newton-Raphson

The procedure A;,; =A;— f(1)/f'(1;) needs to be followed
until the residue f(),)/f'(A;) = 0.

The explained Newton-Raphson procedure is shown in
Tables 1 and 2 for two numerical examples: (1) (Re= 5.10°,
¢/D=2.510"") — 1 =0.010279663295529 and (2)
(Re=3-10%, &/D=910") — 1=0.038630738574792. As
explained in Section 2 of this paper, the initial starting point
Ao in Table 1 depends on the input parameters, while in
Table 2 it is with the fixed value.

Here shown direct calculation of the unknown flow
friction factor A is sensitive on the chosen initial starting
point Ay [50]. The fixed initial point Ay chosen as in Section
2.2 in some cases requires the increased number of it-
erations to reach the final solution although the procedure
still maintains very good convergent properties [71, 72].
To reduce the number of the required iterations, use of
some of the explicit approximations to the Colebrook
equation is advised in order to bring the initial starting
point Ay as close as possible near the final calculated value.
Therefore, the approach with the fixed starting point as
explained in Section 2.2 of this paper, in this case, cannot
be advised in comparison with the approach with the
starting point obtained using approximations as explained
in Section 2.1.

Comparing the same approach but with the different
starting points (Tables 1 and 2), we can conclude that the one
single calculated negative value for flow friction factor A can
increase the number of required iterations significantly.
These negative values can occur if the initial starting point is
chosen too far away from the final calculated solution. This

~(172) - (1/@)3 (1+(@18y(Re- ((251(Re- o] ) ) + (137 D”))))

(7)

problem can be overwhelmed with the Colebrook function
slightly rearranged as in Section 3.2.

3.2. Indirect Calculation of A through the Transmission Factor
x = (1/v/A). The appropriate form of the function is es-
sential to reduce the number of required iteration to reach
the final solution. In order to accelerate the procedure, an
appropriate shift x = (1/+/1) is used to provide some kind of
linearization of the problem.

The Newton-Raphson procedure with these changes has
similar steps as already shown:

Shift in form of the transmission factor x = (1/v/X)
should be introduced in order to transform the Colebrook
equation in form f(x, Re, ¢/D) =0:

f(x)=x+2-log,,(((2.51 - x)/Re) + (¢/(3.7-D))) = 0.
Colebrook: f (x)=0

(8)

The first derivative of Equation (8) in respect of the
transmission factor x can be calculated analytically, but also
in symbolic form (where both approaches give identical
results), Sections 3.2.1 and 3.2.2.

3.2.1. Indirect Calculation of A through the Transmission
Factor x= (1/V1) with the Derivative Calculated
Analytically. The first derivative f with respect to x can be
obtained analytically, Equation (9) (also Equation (11) gives
the same results):

f(x)= %f(x) =1+2-((2.51/(Re- In(10)))/((e/ (3.7 - D)) + ((2.51/Re) - x))) . (9)

Initial value of the flow friction factor A, should be
chosen and the residue f/f’ is calculated in order to start the
Newton-Raphson procedure:

Ist derivative f' (x)—analytical
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TaBLE 1: Newton-Raphson procedure. Option 1: starting point 1o depends on input parameters: Equation (2), calculation of A: Equation (7),
and analytical derivative f'(1): Equation (6).

Re=5-10% ¢/D=2.510""

f(A), Equation (5)

f'(A), Equation (6)

Ao =0.009352225155363

Iteration 1 0.495092014 —573.0134258 0.010216239839661
Iteration 2 0.031705666 ~502.2190127 0.010279370993451
Iteration 3 0.000145453 —497.622807 0.010279663289327
Iteration 4 0.000000003 —497.6016902 1=0.010279663295529
Control step 0.000000000 —497.6016898 0.010279663295529
Re=310% ¢/D=910"° f(A), Equation (5) f'(A), Equation (6) Ao =0.036588313752304
Iteration 1 0.143632267 ~73.25157738 0.038549121591193
Iteration 2 0.005520057 —67.74092562 0.038630609361351
Iteration 3 0.000008725 —67.52696208 0.038630738574469
Iteration 4 0.000000000 —67.5266237 1=0.038630738574792
Control step 0.000000000 —67.5266237 0.038630738574792

TaBLE 2: Newton-Raphson procedure. Option 2: fixed initial starting point Ay = 0.024069128765100981 from Section 2.2.1, calculation of A:

Equation (7), and analytical derivative f'(1): Equation (6).

Re=5-10% &/D=2.510""

f(A), Equation (5)

f'(X), Equation (6)

Ao =0.024069128765101

Iteration 1 ~3.554956084 —139.7424853 ~0.001370207567104
Iteration 2 17.630891548 ~10069.59089 0.000380696888310
Iteration 3 42275315189 —68216.8306 0.001000416608714
Iteration 4 22.325487096 ~16105.99979 0.002386576262278
Iteration 5 10.932300910 —4398.30144 0.004872149626988
Iteration 6 4.615550920 ~1516.202309 0.007916302041016
Iteration 7 1426053458 ~734.846953 0.009856914916156
Iteration 8 0.217044469 —529.7853757 0.010266598684182
Iteration 9 0.006507144 —498.5470019 0.010279650902858
Iteration 10 0.000006167 —497.602585 0.010279663295518
Iteration 11 0.000000000 —497.6016898 1=0.010279663295529
Control step 0.000000000 —497.6016898 0.010279663295529
Re=3-10% ¢/D=910"° f(A), Equation (5) f'(A), Equation (6) Ao =0.024069128765101
Iteration 1 1.391712394 —137.1740994 0.034214720386916
Iteration 2 0.326434508 ~80.9945153 0.038245048943635
Iteration 3 0.026240732 —68.54940037 0.038627849256271
Iteration 4 0.000195117 —67.53419088 0.038630738412914
Iteration 5 0.000000011 —67.52662412 1=0.038630738574792
Control step 0.000000000 —67.5266237 0.038630738574792
B [ f B xo +2-logyo (((2.51 - xg)/Re) + (¢/ (3.7 - D)))
=% = ()l f (%)) = %o =175 ((2.51/(Re - In(10)))/ (¢/ (3.7 - D)) + ((2.51/Re) - x,))’ (10)

Newton—Raphson

The procedure x;,; =x; — f(x;))/f (x;) should be followed
until the residue f{x;)/f (x;) =~ 0. Then, the final solution is
A, = x,,?, where n=i+1 is the final iteration.

Approach with the indirect calculation of A through
the transmission factor x is much more stable compared
with the direct calculation of A as can be seen from Ta-
bles 2 and 3 comparing the number of required iterations
to reach the same accuracy (11 iterations for the direct
approach compared with only 3 iterations in the indirect

L d
fr =221

approach  using  fixed  starting point  xp=
6.445695939 for Re=5-10% ¢/D=2.5-10").

3.2.2. Indirect Calculation of A through the Transmission
Factor x = (1/V/A) with the Symbolic Derivative. The exact
analytical expression of the first derivative f’ with respect to
x can be obtained in MATLAB, Equation (11); results are
the same as using Equation (9):

=(5.02/(Re - In(10) - (((10/37) - (¢/D)) + ((251 - x)/ (100 - Re))))) + 1 = ((9287 - In(10) - x + 1000 - In(10) - (&/D) - Re + 18574)/ (In(10) - (9287 - x + 1000 - (¢/D) - Re))).

1st derivative f'(x)-MATLAB

(11)
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TaBLE 3: Newton-Raphson procedure. Option 3: fixed initial starting point x, = 6.445695939 — A, = 0.024069128765101 from Section 2.2.1,
indirect calculation of A through the transmission factor x: Equation (10), and analytical derivative f'(x): Equation (9).

Re= 5~106, e/D=2.510"" f(x), Equation (8) f'(x), Equation (9) Xo =6.445695939 Ao =10.024069128768719
Iteration 1 —3.554956085 1.043635910 9.852014225862620 0.010302673560706
Iteration 2 —0.011430857 1.037259804 9.863034470914730 0.010279663490514
Iteration 3 —0.000000097 1.037242198 x=9.863034564455800 1=0.010279663295529
Control step 0.000000000 1.037242198 9.863034564455800 0.010279663295529
Re=310% &/D=9-10"° f(x), Equation (8) f'(x), Equation (9) Xy =6.445695939 Ao =0.024069128768719
Iteration 1 1.391712393 1.024454486 5.087204750239650 0.038640395682209
Iteration 2 —0.000651990 1.025427001 5.087840572945700 0.038630738577020
Iteration 3 0.000000000 1.025426528 x=5.087840573092420 1=0.038630738574792
Control step 0.000000000 1.046830475 5.087840573092420 0.038630738574792

Initial value of the flow friction factor A, should be
chosen and the residue f/f is calculated in order to start the
Newton-Raphson procedure:

o ) o xo +2-logyo (((2.51 - x4)/Re) + (¢/ (3.7 - D)))
%= %0~ (o)l f (0)) = %0~ (5135517 2, 7 2302.58 - (/D) - Re + 18574)7 (21364.11 - %y + 2302.58 - (e/D) - Re)
Newton—Raphson
(12)
The procedure x;,; =x; — f{x;))/f (x;) should be followed The iterative procedure can be accelerated using Halley’s

until the residue f(x;)/f'(x;) = 0. Then, the final solution is formula instead of the Newton-Raphson:
A, = x,2, where n=i+1 is the final iteration.

X1 = Xp _((f(xo)/f, (xo))/(l _((f(xo) : f” (xo))/(Z- (f, (xo))z)))) = Xp _((2 - f (%) - f, (xo))/(z' (f, (xo))2 = f(x)- f" (xo)))-

Halley

Halley

(13)

In general, x; =x;,; and xo=x;; i=0 to n, where n+1 is

The second derivative f’(x) in respect of x is required:
the final iteration in which x, = x,,, .

" _ d 1
f (X)_ﬁf (x)

=(-12.6/(Re’* - In(10) - (((10/37) - (¢/D)) + (251 - x)/ (100 - Re)))*) ) =(~172496738/(In (10) - (9287 - x + 1000 - (&/D) - Re)*)).

2nd derivative f” (x)-MATLAB

(14)

The Newton-Raphson method belongs to the 1st order ~ while the 3rd order can be expressed using the following
and the Halley to the 2nd order of Householder’s method,  equation:

=% =(((6° F (o) (F (a)?) =3+ (£ o)) £ o) V(6 (F )’ = (6 F () - £ (ko) " (o)) +((F (o)) £ (30) ) ) )

3rd order Householder

(15)
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TaBLE 4: Newton-Raphson procedure. Option 4: starting point x, depends on input parameters: Equation (2), indirect calculation of A
through the transmission factor x: Equation (12), and the symbolic derivative f'(x): Equation (11).

Re=510°% ¢/D=2.510" flx), Equation (8)

f'(x), Equation (11)

Xp=10.34052343 Ao =0.009352225155363

Iteration 1 0.495092014 1.036495031 9.862863625818000 0.010280019623455
Iteration 2 —0.000177305 1.037242471 9.863034564433310 0.010279663295576
Iteration 3 0.000000000 1.037242198 x=9.863034564455800 1=0.010279663295529
Control step 0.000000000 1.037242198 9.863034564455800 0.010279663295529
Re=310% ¢/D=9-10"° f(x), Equation (8) f'(x), Equation (11) Xo=5.227918429 Ao=0.036588313752304
Iteration 1 0.143632267 1.025322691 5.087833489750430 0.038630846139210
Iteration 2 —0.000007263 1.025426533 5.087840573092400 0.038630738574793
Iteration 3 0.000000000 1.025426528 x=5.087840573092420 1=0.038630738574792
Control step 0.000000000 1.025426528 5.087840573092420 0.038630738574792

Again, x; =x;,; and xo=x;; i=0 to n, where n+ 1 is the
final iteration in which x, = x,,, ;.

=g

The required 3rd derivative f"(x) can be expressed using
the following equation:

=(63.253/(Re’ - In (10) - (((10/37) - (¢/D)) + (251 - x)/ (100 - Re)))’ ) ) =(32039544116.2/(In (10) - (9287 - x + 1000 - (¢/D) - Re)*)).

3rd derivative f" (x)~-MATLAB

Also here one has to be underlined that the Halley
method [74] is not the unique Householder method of the
2nd order [22]. For example, the Schroder method [25] also
belongs to the group:

x1 = %0 = (f (o) f (20)) =((F" () - (F () )12 (F (30)))).

Schroder

(17)

Further, x; =x;,, and x, = x;; i = 0 to n, where n + 1 is final
iteration in which x, = x,,,.

Using the presented Householder procedures, the Ist
order: the Newton-Raphson, the 2" order: Halley, and the
3rd order, the unknown flow friction factor A should be
calculated for the two given pairs of the Reynolds number Re
and the relative roughness ¢/D: (1) (Re= 5.10°,
¢/D=2.510") — 1 =0.010279663295529 and (2)
(Re=310%, &/D=9-10") — 1 =0.038630738574792. 'The
calculation presented in Tables 4-7 is through the trans-
mission factor x, using the symbolic derivative f'(x), but
with the different initial starting point A,.

3.3. Secant Method. The secant method is similar to the
Newton-Raphson; it requires two starting points Ao and A_;
but does not require calculation of the derivatives [71]. The
approach with the direct calculation of A with the two re-
quired starting points Ay and A_; is formulated:

_ f ()
(f (o) = £ (A))/ (A = Ao)

Counter i starts from i—1 and goes to n+1 in which
An=Api1e

A=A (18)

(16)

The approach through the transmission factor x is as
follows:

— f(xo)
T a—xy 1

As already described, counter i also starts from i— 1 and
goes to n+1 in which x,, =x,,,1.

The flow friction factor A is calculated in Tables 8 and 9
for two pairs of the Reynolds number and the relative
roughness (1) Re= 5.10° ¢/D=2.510", and (2) Re=3-10%
¢/D=9-10"", using the secant procedure with direct calcu-
lation of A and indirect through the transmission factor x.

Calculation using the secant procedure also confirms
that the indirect calculation of A through the transmission
factor x requires in general less number of iterations to reach
the same level of accuracy. In the case from Tables 8 and 9,
the required number of iterations is 6 in direct calculation
and 5 in indirect for Re=5-10% &/D=2.5-10"", and the re-
quired number of iterations is 4 in direct calculation and 3 in
indirect for Re=3-10", &/D=9-10""

X1 =Xy

3.4. Three-Point Methods. Three-point iterative methods re-
quire in every iteration an evaluation of the function fat three
points: xo, yo, and z,. However, these methods converge very
fast to the accurate solution. The mathematical background of
the three-point iterative methods is given by Sharma and
Arora [28]. Here, we will apply the Dzuni¢-Petkovi¢-Petkovi¢
three-point iterative method to the Colebrook equation
[26, 28]. It requires only one iteration (up to 2 in the worst
cases) to reach the final accurate solution and we will show all
steps to calculate the friction factor A, Equation (20), where the
numerical values are for Re=510° /D =2.510"". The initial
starting point is x, = 7.273124147 as described in Section 2.2.3.
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TasLE 5: Halley procedure. Option 5: fixed initial starting point xo = 7.990256504 — 1, = 0.015663210285978339 from Section 2.2.2, indirect
calculation of A through the transmission factor x: Equation (13), and the symbolic derivatives f'(x) and /" (x): Equations (11) and (14).
Re=5-10°,

e/D=2510" flx), Equation (8)  f'(x), Equation (11)  f"(x), Equation (14) Xo="7.990256504 Ao =0.015663210285978
Iteration 1 —1.945484250 1.040493788 —0.001887828 9.863203600915390 0.010279310950983
Iteration 2 0.000175332 1.037241928 —0.001596798 x=9.863034564455800 A =0.010279663295529
Control step 0.000000000 1.037242198 —0.001596821 9.863034564455800 0.010279663295529
—2.10%
5%__391.?0’,3 f(x), Equation (8)  f'(x), Equation (11)  f"(x), Equation (14) Xo=7.990256504 Ao =0.015663210285978
Iteration 1 2.973246188 1.023435376 —0.000632309 5.087698791122220 0.038632891696967
Iteration 2 —0.000145387 1.025426633 —-0.000744326 x=5.087840573092420 1 =0.038630738574792
Control step 0.000000000 1.025426528 —0.000744320 5.087840573092420 0.038630738574792

TaBLE 6: Third-order Householder’s procedure. Option 6: starting point x, depends on input parameters: Equation (2), indirect calculation
of A through the transmission factor x: Equation (15), and the symbolic derivatives f'(x), f”(x), and " (x): Equations (11), (14), and (16).

Re=5-10°, f(x), Equation  f'(x), Equation  f"(x), Equation  f"'(x), Equation

¢/D=2.510"" ) 1) (14) (16) Xo=10.34052343 Ao=0.009352225155363
Iteration 1 0.495092014 1.036495031 —0.001533392 0.000128855 9.863034531578420 0.010279663364062
Iteration 2 —0.000000034 1.037242198 —0.001596821 0.000136933 x=9.863034564455800 A =0.010279663295529
Control step  0.000000000 1.037242198 —0.001596821 0.000136933 9.863034564455800 0.010279663295529
Re=310% flx), Equation  f'(x), Equation  f"(x), Equation " (x), Equation B 3

¢/D=910"3 ) a1) (14) (16) Xo=10.34052343 Ao=0.009352225155363
Iteration 1 0.143632267 1.025322691 —0.000738253 0.000043046 5.087840573035260 0.038630738575660
Iteration 2 0.000000000 1.025426528 —0.000744320 0.000043578 x=5.087840573092420 A =0.038630738574792
Control step 0.000000000 1.025426528 —0.000744320 0.000043578 5.087840573092420 0.038630738574792

TaBLE 7: Schréder procedure. Option 7: fixed initial starting point xo=7.990256504 — 1= 0.015663210285978339 from Section 2.2.2,

indirect calculation of A through the transmission factor x: Equation (17), and the symbolic derivatives f'(x) and f”(x): Equations (11) and
(14).

—510°

5;_75212.1’0,5 f(x), Equation (8)  f'(x), Equation (11)  f"(x), Equation (14) Xo=7.990256504 Ao =0.015663210285978

Iteration 1 —1.945484250 1.040493788 —0.001887828 9.863198212166060 0.010279322183170

Iteration 2 0.000169742 1.037241937 —0.001596799 x=9.863034564455800 A =0.010279663295529

Control step 0.000000000 1.037242198 —0.001596821 9.863034564455800 0.010279663295529
P

5;__391'?013 f(x), Equation (8)  f'(x), Equation (11)  f"(x), Equation (14) Xo=7.990256504 Ao =0.015663210285978

Iteration 1 2.973246188 1.023435376 —0.000632309 5.087701128882780 0.038632856193927

Iteration 2 —0.000142990 1.025426632 —0.000744326 x=5.087840573092420 A =0.038630738574792

Control step 0.000000000 1.025426528 —0.000744320 5.087840573092420 0.038630738574792

TaBLE 8: Secant procedure. Option 8: two initial starting points Ao and A_; required: starting point A_, is with fixed value
A_1=0.024069128765101 (i.e., x_; = 6.445695939) as in Section 2.2.1, while starting point Ay depends on input parameters: Equation (2), and
direct calculation of A: Equation (18).

Re=510°% &/D=2.510"  f(A.,), Equation (5)  f(\,), Equation (5)  ((f (A, 1)— f (A (A —A)) A =0.024069128765101
Ao=0.009352225155363

Iteration 1 0.495092014 —3.554956084 —275.1970255 0.011151270814558
Iteration 2 —-0.408071981 0.495092014 —502.0239429 0.010338417191085
Iteration 3 —-0.029111936 —-0.408071981 —466.2094551 0.010275973292109
Iteration 4 0.001836644 —-0.029111936 —495.6221591 0.010279679026163
Iteration 5 —-0.000007828 0.001836644 —497.734448 0.010279663299743
Iteration 6 —0.000000002 —0.000007828 —497.6011214 1=0.010279663295529
Control step 0.000000000 —0.000000002 —497.6012179 0.010279663295529

Re=3-10% ¢/D=9-10"° f(Ai_1), Equation (5)  f(A,), Equation (5) (FA)=FAN/ (A =A)) A1 =0.024069128765101
Ao =0.036588313752304

Iteration 1 1.391712394 0.143632267 -99.69340079 0.038029053721052
Iteration 2 0.143632267 0.041110009 —71.15944585 0.038606770549177
Iteration 3 0.041110009 0.001619232 —68.35663251 0.038630458556837
Iteration 4 0.001619232 0.000018909 —67.5583902 0.038630738444645
Iteration 5 0.000018909 0.000000009 —67.52699052 1=0.038630738574792

Control step 0.000000009 0.000000000 —67.52662212 0.038630738574792
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TaBLE 9: Secant procedure. Option 9: two initial starting points xo and x_; required: starting point A_; is with fixed value x_; = 6.445695939
(i.e, A-;=0.024069128765101) as in Section 2.2.1, while starting point A, depends on input parameters: Equation (2), and indirect

calculation of A through the transmission factor x: Equation (19).

Re=510°, fixis),  flx;), Equation X, =6.445695939 ), =0.024069128765101
e/D=2510"" Equation (8) 8) ((F i) = fED Cri =2%0) 71034052343 A =0.009352225155363
Iteration 1 ~3.554956084  0.495092014 1.039853012 9.864406125318800 0.010276804896656
Iteration 2 0.495092014  0.001422639 1.03686501 9.863034066961850 0.010279664332547
Iteration 3 0.001422639  —0.000000516 1.037241104 9.863034564456330 0.010279663295528
Iteration 4 ~0.000000516  0.000000000 1.0372422 x=9.863034564455800 1 =0.010279663295529
Control step 0.000000000  0.000000000 1.037162162 9.863034564455800 0.010279663295529
Re=3.10% fixis),  flx;), Equation X_, = 6445695939 ), =0.024069128765101
¢/D=910"" Equation (8) (8) (FCr) = fOI (i =20) T 5597018429 Ay =0.036588313752304
Iteration 1 1391712394  0.143632267 1.024883541 5.087773465040530 0.038631757665255
Iteration 2 0143632267  —0.000068814 1.025374564 5.087840576494990 0.038630738523123
Iteration 3 ~0.000068814  0.000000003 1.025426553 x=5.087840573092420 1 = 0.038630738574792
Control step 0.000000003  0.000000000 1.025426591 5.087840573092420 0.038630738574792

xo = 7.273124147,

2.51-
f (%) =xo+2-10gm<< ° x°)+< ‘ )) = ~2.692152546,

Re 3.7-D
£ (x0) = 9287 - In(10) - x, + 1000 - In(10) - (¢/D) - Re + 18574 _ 5.02 .
o In(10) - (9287 - x, + 1000 - (¢/D) - Re) ~ Re- In(10) - (((10/37) - (e/D)) +((2.51 - x,)/Re))
= 1.041894438,
£ (x) ~2.692152546
Vo = Xo— 7 =7.273124147 - ——=""""" — 9.857025593360860,
1" (x0) 1.041894
2.51-y e
f(yo) =Yo +2- 10g10<T0 + ﬂ) = —0006232787,
f(xo) f()’o)
Z0= Yo— . = 9.863035589,
’ 0 f(xo)—z‘f()’o) f’(xo)
251z e
fzo) =25 +2- loglo( e %+ 53 D) = —0.006232787,
f(Zo)

X1 =2y

= 9.863034564,
x; =9.863034564 — A, = 0.010279663295529.

Three-point methods are also shown in detail in Praks
and Brki¢ [75].

3.5. Expressed through the Lambert W-Function. The
mathematical background of the Lambert W-function is
presented in the literature [44-46]. Moreover, an application
of the Lambert W-function in hydraulic problems is given by
(41, 54, 73].

The Lambert W-function W(y) [46] is the solution of
y =z - €%, which needs to be in the appropriate form:

f(z)=z--y=0. (21)

The first derivative f'(z) is as follows:

_f’ (xo) - [1_2‘ (f()’o)/f(xo))_(f()’o)/f(xo))z] (1= (f (2o)/f (Po))] - [1=2- (f (20)/ f (x0))]

(20)

fl2)=¢ - (z+1). (22)

Choose initial value z, calculate the residue f/f’, and start
the procedure:

2 =z _f(=)
b f'(z0)

=zy—((zg €= y)/(e” - (24 + 1)))

Newton—Raphson

z, - €% —(Re/2.18)
e - (zy+1)

_ZO

(23)
Then follow the procedure z;,; =z;— f(z;)/f (z;) until the
residue f(z;)/f'(z;)~0, where n=i+1 in final iteration.
Halley’s procedure:
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f(z)
F'(20) = ((f(20) - f" (20)) (2 f' (20)))

Zy =25~

13

=20=((20- €" =)/ (€™ - (20 + 1) = (((z0- €* = ¥) - (20 + 2))/(2- (20 + D))));

where the second derivative is

_fz) f"(z0) (f (=)

= 2 —((e- &~ Y)I(-

Halley
(24)

fl(2) =€ (z+2). (25)

The Schréder expression is as follows:

(z+1))) —((ez (z+2)-(z-€ —y)z)/(Z (e (z+ 1))3)) .

2-(f'(=0))’

Further, in all cases, the Newton-Raphson, the Halley,
and the Schroder; z; = z;,; and zy = z;; i = 0 to n, where n + 1 is
final iteration in which z, =z, .

The argument of the Lambert W-function y, in our case
defined by Equation (3), is y = Re/2.18. Therefore, it does not
depend on the relative roughness e¢/D but only on the
Reynolds number Re. In Table 10, z is calculated in the
iterative procedure using the Newton-Raphson and the
Halley method for Re=5-10° and Re=3-10" where initial
starting point is set as zo = 15 as recommended in Section 2.3
of this paper (for z, < 8.814, the Newton-Raphson procedure
cannot start).

4. Approximations: Simplified Equations for
Engineering Practice

Using the optimal fixed initial starting point for the Halley
and the Schréder method as explained in Section 2.2.2, the
first iteration of the procedures from Section 3.2.2, the

Schroder
(26)

simplification using the fact that the first derivative of
the Colebrook function is almost always near one, f ~ 1, and
using acceleration through Equation (28) [76, 77], the fol-
lowing approximations, Equation (27), can be formed. Using
Equation (27), the maximal relative error in the domain of
applicability of the Colebrook equation is 8.29% (Figure 6),
and using acceleration Equation (28), that is, single fixed-
point iterative method [12], the maximal relative error is
0.69% (Figure 7), 0.0617% (Figure 8), etc.

——~8-((2-A)/(2-A-B)) = 8—A—((A2-B)/2)
Halley

£~
o

Schroder

~8-((6-4-3-A%-B)/(6-6-A-B+ A’ C)).

3rd order

(27)

Then, Ay from Equation (27) is used in

=2 log10<(2.51/Re) (1o ) + @137 D),

1st Colebrook’s acceleration

—= -2 loglo((Z.Sl/Re) : (1/\//\71) +(e/ (3.7 - D)))

2st Colebrook’s acceleration

= 2-logy,| (251/Re)- -2-1og10((z.51/Re)-(1/\/70)+(s/(3.7-1)))) +(e/(37-D)) |,

(28)

1st Colebrook’s acceleration

2st Colebrook’s acceleration

1
Ai-v—l

~ -2- log10<(2.51/Re) : (1/@) + (el (3.7 - D))>,

Colebrook’s acceleration
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TasLE 10: Calculation of W(y) where y=Re/2.18 using the Newton-Raphson, the Halley, and the Schroder iterative methods.

Re=510°% y=Re/2.18=2293411.45

Re=3-10% y=Re/2.18=13760.47

Newton-Raphson Halley Schroder Newton-Raphson Halley Schroder
Iteration 0 zo=15 zo=15 zo=15 zo=15 zo=15 zo=15
Iteration 1 14.10634749 13.29860556 13.68208338 14.06276308 13.1333396 13.59610616
Iteration 2 13.28604947 12.2757343 12.62556802 13.12986539 11.29171838 12.20340124
Iteration 3 12.62863905 12.14855784 12.17738057 12.20257063 9.520829163 10.83006437
Iteration 4 12.25343232 z=12.14835704 12.14836628 11.28354302 8.068323472 9.505729616
Iteration 5 12.15407754 12.14835704 z=12.14835704 10.37904335 7.530266826 8.341483562
Iteration 6 12.14837461 — 12.14835704 9.504505014 7.512930233 7.637280252
Iteration 7 z=12.14835704 — — 8.697314341 z2="7.512929679 7.513654122
Iteration 8 12.14835704 — — 8.037456295 7.512929679 z2=7.512929679
Iteration 9 — — — 7.640105762 — 7.512929679
Iteration 10 — — — 7.52154464 — —
Iteration 11 — — — 7.512971011 — —
Iteration 12 — — — 7.51292968 — —
Iteration 13 — — — z2=7.512929679 — —
Iteration 14 — — — 7.512929679 — —

Equation (27); A,

10* W
107 o8
&
€yno, 7 )
Ids number: Re 10 e Qg>® VJ\O
m 4-8%
m 0-4%

FiGURE 6: Distribution of the relative error over the domain of
applicability of the Colebrook equation of the approximation,
Equation (27); for i=0, the maximal relative error is 8.29%.

Equation (28); A,

10* 107,
107 &
B
X 105 ‘o%
€ynolds 107 102
ny, NSO
Mmber. Re 108 B

m 0.35-0.70%
m 0.00-0.35%

FiGure 7: Distribution of the relative error over the domain of
applicability of the Colebrook equation of the approximation,
Equation (28); for i=0, the maximal relative error is 0.69%.

Equation (28); A,

! | 6
10* 10
10°

- 5

Re 10° 107 &

Y0lds 107 107 & o
I Re 100 ¥

= 0.04-0.08%
= 0.00-0.04%

Ficure 8: Distribution of the relative error over the domain of
applicability of the Colebrook equation of the approximation,
Equation (28); for i= 1, the maximal relative error is 0.0617%.

where A, B, and C are

16 €
Az8+2~logm<§+—37.D),

_ —74914381.46

= (29)
1391459721232.67
C= v ,
where V
3
V = 74205.5 + 1000 - B - Re. (30)

The shown procedure is efficient and does not require
extensive computing resources since the accuracy of more
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than 0.69% can be reached using only two logarithmic forms,
while very high accuracy of 0.0617% can be reached using
only three logarithmic forms (in all cases, exponents are only
whole numbers) [6, 8, 33].

The error analysis is in the domain of applicability of
the Colebrook equation and can be further reduced using
one more accelerating step as shown, genetic algorithms
[31, 78, 79], Excel fitting tool [80], or Monte Carlo
[81, 82].

Zigrang and Sylvester [77] used the similar approach.
They use an iterative procedure to produce an approxi-
mation, Equation (31), where «; and a, represent internal
iterative steps, while constant 13 in «, is fixed starting point.
Shacham [83] used the same approach, but he set the fixed
starting point as 14.5, while [31] also optimized that pa-
rameter which makes clear that it does not to be fixed.

L ( e _5.02a>
Ny 80\37. D Re M)

£ 5.02

= 1o8u( 35 5 e %) GV
£ 13

%= 1°g1°<3 7-D _§>'

Equation (31) includes three logarithmic forms and
produces the maximal relative error of 0.114%. The same
approach is used by Schorle et al. [83]. However, although
Equation (31) and also the here presented Equation (28)
include three logarithmic forms, the maximal relative error
of Equation (28) for i=1 is only 0.0617%. Thus, the here
presented approach reduced the maximal relative error of
the three logarithmic form approximation by factor
0.114/0.0617~1.8.

5. Conclusions

The paper presents a fast but reliable approximations and
iterative methods for pipeline hydraulics, useful for the
reliable modelling of water and gas distribution networks
where a large number of network simulations of random
component failures and their combinations need to be
automatically evaluated and statistically analyzed [84-89].
Accurate, fast, and reliable estimation of the flow friction
factor is essential for the evaluation of pressure drops and
flows in large network of pipes, because, for example,
compression station failures can be only approximated in
the transmission level by user-defined logic rules obtained
from hydraulic software [81, 82, 90-92]. Iterative solutions
and approximations for the calculation of the flow friction
factor are implemented in software packages which are in
common use in everyday engineering practice [88]. So in
this paper, we analyzed selected iterative procedures in order
to solve the Colebrook equation [93, 94], and we found that
up 2 to 3 iterations of the Halley and the Schroder method
are suitable for the accuracy required by engineering
practice, when the fixed initial starting point described in
Section 2.2.2 is applied. On the other hand, using a three-
point iterative method with the same initial conditions, the
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required high accuracy can be reached after only 1 iteration
(2 in the worst case) but using three internal steps [26-28].

Moreover, for implementing simplified engineering
calculations, we recommend taking into consideration the
following:

(1) The indirect calculation of A through the trans-
mission factor x in most cases accelerates the iter-
ative procedures.

(2) Knowing that the Colebrook equation is used in
engineering practice only in the limited domain of
the Reynolds number Re between 4000 and 108, and
for relative roughness of inner pipe surface ¢/D up to
0.05, we evaluated the number of iterations required
to reach sufficient accuracy. We detected zones of
input parameters, in which iterative methods con-
verge slowly, and thus, additional number of itera-
tions is required. Therefore, we put the fixed initial
point to start the iterative procedure in those zones
in order to decrease the number of required
iterations.

(3) Using the simplified Halley and the simplified
Schroder procedure with the fixed starting point,
after only one iteration, one can reach results with
good accuracy (error up to 8.29%). This is near the
accurate value, and therefore, the simplified
Newton-Raphson method can be used from the
second iteration to reach an accuracy of 0.69%.
Moreover, one can reach an accuracy of 0.0617%
using the third iteration. With the methods pro-
posed herein, the first derivative of the Colebrook
function is always near one, f'=1 (for f — 1, the
Newton-Raphson method becomes the fixed-point
method). Consequently, accuracy of 0.69% can be
reached using only two logarithmic forms and of
0.0617% with only three logarithmic forms without
requiring extensive computational efforts (the goal
being to use the least possible number of logarithmic
functions or functions with noninteger power) [6, 33].
Moreover, the computational cost of iterations can also
be reduced by Padé polynomials [95, 96]. We also
analyzed the Colebrook equation expressed through
the Lambert W-function, and we found that the Halley
and the Schroder method can be advised in compar-
ison with the Newton-Raphson method (where the
problem with the initial starting point exists).

The Colebrook equation is valid only for turbulent flow,
while to include also laminar regime, different models
should be used [98].

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Disclosure

The views expressed are those of the authors and may not in
any circumstances be regarded as stating an official position



16

of the affiliated authors’ employers, European Commission,
Alfatec, and VSB-Technical University of Ostrava. The
paper is registered within the European Commission system
for publication Pubsy JRC112754.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Pavel Praks and Dejan Brki¢ contributed equally to this
study.

Acknowledgments

We thank Marcelo Masera for the careful reading of our
manuscript and for his insightful comments and suggestions.
The European Commission covers the Article Processing
Charges to make this paper available to all interested parties
through the gold open access model. Part of the research is
from project iii44006 of the Ministry of Education, Science
and Technological Development of the Republic of Serbia.

Supplementary Materials

For the purpose of easier use of the methods described in the
manuscript, all used equations are listed in the Supple-
mentary Materials. In that way, the readers who want to
transpose the presented methods into software codes would
have a list of all required formulas in one place and in
a condensed manner. (Supplementary Materials)

References

[1] C. E. Colebrook, “Turbulent flow in pipes with particular
reference to the transition region between the smooth and
rough pipe laws,” Journal of the Institution of Civil Engineers,
vol. 11, no. 4, pp. 133-156, 1939.

[2] C. Colebrook and C. White, “Experiments with fluid friction
in roughened pipes,” Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences, vol. 161,
no. 906, pp. 367-381, 1937.

[3] D. Brki¢, “W solutions of the CW equation for flow friction,”
Applied Mathematics Letters, vol. 24, no. 8, pp. 1379-1383,
2011.

[4] Y. Mikata and W. S. Walczak, “Exact analytical solutions of
the Colebrook-White equation,” Journal of Hydraulic Engi-
neering ASCE, vol. 142, no. 2, article 04015050, 2016.

[5] J. R. Sonnad and C. T. Goudar, “Explicit reformulation of the
Colebrook—White equation for turbulent flow friction factor
calculation,” Industrial and Engineering Chemistry Research,
vol. 46, no. 8, pp. 2593-2600, 2007.

[6] A. R. Vatankhah, “Approximate analytical solutions for the

Colebrook equation,” Journal of Hydraulic Engineering ASCE,

vol. 144, no. 5, article 06018007, 2018.

J. J. Allen, M. A. Shockling, G. J. Kunkel, and A. J. Smits,

“Turbulent flow in smooth and rough pipes,” Philosophical

Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, vol. 365, no. 1852,

pp. 699-714, 2007.

[7

Advances in Civil Engineering

[8] D.Clamond, “Efficient resolution of the Colebrook equation,”
Industrial and Engineering Chemistry Research, vol. 48, no. 7,
pp. 3665-3671, 2009.

[9] L. I. Langelandsvik, G. J. Kunkel, and A. J. Smits, “Flow in
a commercial steel pipe,” Journal of Fluid Mechanics, vol. 595,
pp. 323-339, 2008.

[10] M LaViolette, “On the history, science, and technology in-
cluded in the Moody diagram,” Journal of Fluids Engineering
ASME, vol. 139, no. 3, article 030801, 2017.

[11] L. F. Moody, “Friction factors for pipe flow,” Transactions of
ASME, vol. 66, no. 8, pp. 671-684, 1944.

[12] D. Brki¢, “Solution of the implicit Colebrook equation for flow
friction using Excel,” Spreadsheets in Education (eJSiE),
vol. 10, no. 2, article 2, 2017.

[13] D. Brki¢, “Can pipes be actually really that smooth?,” In-
ternational Journal of Refrigeration, vol. 35, no. 1, pp. 209-215,
2012.

[14] D. Brki¢, “A note on explicit approximations to Colebrook’s
friction factor in rough pipes under highly turbulent cases,”
International Journal of Heat and Mass Transfer, vol. 93,
pp. 513-515, 2016.

[15] H. Herwig, D. Gloss, and T. Wenterodt, “A new approach to
understanding and modelling the influence of wall roughness
on friction factors for pipe and channel flows,” Journal of
Fluid Mechanics, vol. 613, pp. 35-53, 2008.

[16] M. P. Schultz and K. A. Flack, “The rough-wall turbulent

boundary layer from the hydraulically smooth to the fully

rough regime,” Journal of Fluid Mechanics, vol. 580,

pp. 381-405, 2007.

S. Abbasbandy, “Improving Newton-Raphson method for

nonlinear equations by modified Adomian decomposition

method,” Applied Mathematics and Computation, vol. 145,

no. 2-3, pp. 887-893, 2003.

[18] F. Cajori, “Historical note on the Newton-Raphson method of
approximation,” American Mathematical Monthly, vol. 18,
no. 2, pp. 29-32, 1911.

[19] T.J. Ypma, “Historical development of the Newton-Raphson
method,” SIAM Review, vol. 37, no. 4, pp. 531-551, 1995.

[20] L. F. Shampine, “Accurate numerical derivatives in MAT-
LAB,” ACM Transactions on Mathematical Software, vol. 33,
no. 4, article 26, 2007.

[21] D. V. Griffiths and I. M. Smith, Numerical methods for en-
gineers, CRC Press, Boca Raton, FL, USA, 2006.

[22] A. S. Householder, The Numerical Treatment of a Single
Nonlinear Equation, McGraw-Hill, New York, NY, USA,
1970.

[23] E. Halley, “A new, exact and easy method of finding the roots
of equations generally, and that without any previous re-
duction,” Philosophical Transactions of the Royal Society,
vol. 18, no. 210, pp. 136-148, 1694.

[24] M. S. Petkovi¢, L. D. Petkovi¢, and D. Herceg, “On
Schroder’s families of root-finding methods,” Journal of
Computational and Applied Mathematics, vol. 233, no. 8,
pp. 1755-1762, 2010.

[25] E. Schroder, “Uber unendlich viele Algorithmen zur
Auflésung der Gleichungen,” Mathematische Annalen, vol. 2,
no. 2, pp. 317-365, 1870.

[26] J. Dzuni¢, M. S. Petkovi¢, and L. D. Petkovi¢, “A family of
optimal three-point methods for solving nonlinear equations
using two parametric functions,” Applied Mathematics and
Computation, vol. 217, no. 19, pp. 7612-7619, 2011.

[27] M. S. Petkovi¢, B. Neta, L. D. Petkovi¢, and J. Dzunié,
“Multipoint methods for solving nonlinear equations:

[17


http://downloads.hindawi.com/journals/ace/2018/5451034.f1.pdf

Advances in Civil Engineering

a survey,” Applied Mathematics and Computation, vol. 226,
pp. 635-660, 2014.

[28] J. R. Sharma and H. Arora, “A new family of optimal eighth
order methods with dynamics for nonlinear equations,”
Applied Mathematics and Computation, vol. 273, pp. 924-933,
2016.

[29] D. Brki¢, “Review of explicit approximations to the Colebrook
relation for flow friction,” Journal of Petroleum Science and
Engineering, vol. 77, no. 1, pp. 34-48, 2011.

[30] D. Brki¢, “Determining friction factors in turbulent pipe
flow,” Chemical Engineering (New York), vol. 119, no. 3,
pp. 34-39, 2012.

[31] D. Brki¢ and Z. Cojbasi¢, “Evolutionary optimization of
Colebrook’s turbulent flow friction approximations,” Fluids,
vol. 2, no. 2, article 15, 2017.

[32] S. Geni¢, I. Arandelovié, P. Kolendi¢, M. Jari¢, N. Budimir, and
V. Geni¢, “A review of explicit approximations of Colebrook’s
equation,” FME Transactions, vol. 39, no. 2, pp. 67-71, 2011.

[33] O. Giustolisi, L. Berardi, and T. M. Walski, “Some explicit

formulations of Colebrook-White friction factor considering

accuracy vs. computational speed,” Journal of Hydro-

informatics, vol. 13, no. 3, pp. 401-418, 2011.

G. A. Gregory and M. Fogarasi, “Alternate to standard friction

factor equation,” Oil and Gas Journal, vol. 83, no. 13,

pp. 125-127, 1985.

[35] H.K. Winning and T. Coole, “Explicit friction factor accuracy

and computational efficiency for turbulent flow in pipes,”

Flow, Turbulence and Combustion, vol. 90, no. 1, pp. 1-27,

2013.

D.J. Zigrang and N. D. Sylvester, “A review of explicit friction

factor equations,” Journal of Energy Resources Technology

ASME, vol. 107, no. 2, pp. 280-283, 1985.

[37] S. Bardestani, M. Givehchi, E. Younesi, S. Sajjadi,

S. Shamshirband, and D. Petkovi¢, “Predicting turbulent flow

friction coefficient using ANFIS technique,” Signal, Image and

Video Processing, vol. 11, no. 2, pp. 341-347, 2017.

D. Brki¢ and Z. Cojbasi¢, “Intelligent flow friction estima-

tion,” Computational Intelligence and Neuroscience, vol. 2016,

Article ID 5242596, 10 pages, 2016.

[39] M. Ozger and G. Yildirim, “Determining turbulent flow
friction coeflicient using adaptive neuro-fuzzy computing
technique,” Advances in Engineering Software, vol. 40, no. 4,
pp. 281-287, 2009.

[40] D. Biberg, “Fast and accurate approximations for the Cole-
brook equation,” Journal of Fluids Engineering ASME,
vol. 139, no. 3, article 031401, 2017.

[41] D. Brki¢, “Comparison of the Lambert W-function based
solutions to the Colebrook equation,” Engineering Compu-
tations, vol. 29, no. 6, pp. 617-630, 2012.

[42] G.Keady, “Colebrook-White formula for pipe flows,” Journal
of Hydraulic Engineering ASCE, vol. 124, no. 1, pp. 96-97,
1998.

[43] P. Rollmann and K. Spindler, “Explicit representation of the
implicit Colebrook-White equation,” Case Studies in Thermal
Engineering, vol. 5, pp. 41-47, 2015.

[44] D. A. Barry, J. Y. Parlange, L. Li, H. Prommer,
C. J. Cunningham, and F. Stagnitti, “Analytical approxima-
tions for real values of the Lambert W function,” Mathematics
and Computers in Simulation, vol. 53, no. 1, pp. 95-103, 2000.

[45] J. P. Boyd, “Global approximations to the principal real-
valued branch of the Lambert W-function,” Applied Mathe-
matics Letters, vol. 11, no. 6, pp. 27-31, 1998.

[34

[36

(38

17

[46] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and
D. E. Knuth, “On the Lambert W function,” Advances in
Computational Mathematics, vol. 5, no. 1, pp. 329-359, 1996.

[47] B. Hayes, “Why W?,” American Scientist, vol. 93, no. 2,
pp. 104-108, 2005.

[48] I. Mez6 and A. Baricz, “On the generalization of the Lambert
W function,” Transactions of the American Mathematical
Society, vol. 369, no. 11, pp. 7917-7934, 2017.

[49] T. R. Scavo and J. B. Thoo, “On the geometry of Halley’s
method,” American Mathematical Monthly, vol. 102, no. 5,
pp. 417-426, 1995.

[50] P. Kornerup and J. M. Muller, “Choosing starting values for
certain Newton-Raphson iterations,” Theoretical Computer
Science, vol. 351, no. 1, pp. 101-110, 2006.

[51] D. G. Moursund, “Optimal starting values for Newton-
Raphson calculation of x"/%” Communications of the ACM,
vol. 10, no. 7, pp. 430-432, 1967.

[52] G. D. Taylor, “Optimal starting approximations for Newton’s
method,” Journal of Approximation Theory, vol. 3, no. 2,
pp. 156-163, 1970.

[53] I. M. Sobol, V. I. Turchaninov, Y. L. Levitan, and
B. V. Shukman, Quasi-Random Sequence Generator (Routine
LPTAUS5I1), Keldysh Institute of Applied Mathematics, Rus-
sian Academy of Sciences, Moskva, Russia, 1992.

[54] J. R. Sonnad and C. T. Goudar, “Constraints for using
Lambert W function-based explicit Colebrook-White equa-
tion,” Journal of Hydraulic Engineering ASCE, vol. 130, no. 9,
pp. 929-931, 2004.

[55] M. Hosseini, H. Chizari, T. Poston, M. B. Salleh, and
A. H. Abdullah, “Efficient underwater RSS value to distance
inversion using the Lambert function,” Mathematical Prob-
lems in Engineering, vol. 2014, Article ID 175275, 8 pages,
2014.

[56] S. R. Valluri, D. J. Jeffrey, and R. M. Corless, “Some appli-
cations of the Lambert W function to physics,” Canadian
Journal of Physics, vol. 78, no. 9, pp. 823-831, 2000.

[57] D. Brki¢, “New explicit correlations for turbulent flow friction
factor,” Nuclear Engineering and Design, vol. 241, no. 9,
pp. 4055-4059, 2011.

[58] D. Brki¢, “Discussion of ‘Gene expression programming
analysis of implicit Colebrook-White equation in turbulent
flow friction factor calculation’ by Saeed Samadianfard []. Pet.
Sci. Eng. 92-93 (2012) 48-55],” Journal of Petroleum Science
and Engineering, vol. 124, pp. 399-401, 2014.

[59] B. I. Yun, “A non-iterative method for solving non-linear
equations,” Applied Mathematics and Computation, vol. 198,
no. 2, pp. 691-699, 2008.

[60] D. Brki¢, “Discussion of ‘Exact analytical solutions of the
Colebrook-White equation’ by Yozo Mikata and Walter S.
Walczak,” Journal of Hydraulic Engineering ASCE, vol. 143,
no. 9, article 0701700, 2017.

[61] J. R. Sonnad and C. T. Goudar, “Turbulent flow friction factor
calculation using a mathematically exact alternative to the
Colebrook-White equation,” Journal of Hydraulic Engineer-
ing ASCE, vol. 132, no. 8, pp. 863-867, 2006.

[62] C. T. Goudar and J. R. Sonnad, “Explicit friction factor
correlation for turbulent flow in smooth pipes,” Industrial and
Engineering Chemistry Research, vol. 42, no. 12, pp. 2878-
2880, 2003.

[63] D. Brki¢, “An explicit approximation of Colebrook’s equation
for fluid flow friction factor,” Petroleum Science and Tech-
nology, vol. 29, no. 15, pp. 1596-1602, 2011.



18

[64] R. M. Corless and D. J. Jeffrey, “The Wright w function,” in
Artificial Intelligence, Automated Reasoning, and Symbolic
Computation, Springer, Berlin, Heidelberg, Germany, 2002.

[65] E. M. Wright, “Solution of the equation ze*=a,” Bulletin of the
American Mathematical Society, vol. 65, pp. 89-93, 1959.

[66] E. M. Wright, “XII.—Solution of the Equation ze*= a,” Pro-
ceedings of the Royal Society of Edinburgh Section A: Math-
ematics, vol. 65, no. 2, pp. 193-203, 1959.

[67] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Computing Surveys,
vol. 23, no. 1, pp. 5-48, 1991.

[68] P. Kornerup and D. W. Matula, Finite Precision Number
Systems and Arithmetic, Cambridge University Press, Cam-
bridge, UK, 2010.

[69] W. Gander, “On Halley’s iteration method,” American
Mathematical Monthly, vol. 92, no. 2, pp. 131-134, 1985.

[70] J. M. Gutierrez and M. A. Herndndez, “An acceleration of
Newton’s method: super-Halley method,” Applied Mathe-
matics and Computation, vol. 117, no. 2-3, pp. 223-239, 2001.

[71] J. L. Varona, “Graphic and numerical comparison between
iterative methods,” Mathematical Intelligencer, vol. 24, no. 1,
pp. 37-46, 2002.

[72] T. Yamamoto, “Historical developments in convergence
analysis for Newton’s and Newton-like methods,” in Nu-
merical Analysis: Historical Developments in the 20th Century,
pp. 241-263, Elsevier, New York, NY, USA, 2001.

[73] D. Brki¢, “Lambert W function in hydraulic problems,”
Mathematica Balkanica, vol. 26, no. 3-4, pp. 285-292, 2012.

[74] G. H. Brown, “On Halley’s variation of Newton’s method,”
American Mathematical Monthly, vol. 84, no. 9, pp. 726-728,
1977.

[75] P. Praks and D. Brki¢, “Choosing the optimal multi-point
iterative method for the Colebrook flow friction equation-
numerical validation,” Processes, vol. 6, no. 8, article 130, 2018.

[76] T. K. Serghides, “Estimate friction factor accurately,”
Chemical Engineering, vol. 91, no. 5, pp. 63-64, 1984.

[77] D.]. Zigrang and N. D. Sylvester, “Explicit approximations to
the solution of Colebrook’s friction factor equation,” AIChE
Journal, vol. 28, no. 3, pp. 514-515, 1982.

[78] T. Bartz-Beielstein, J. Branke, J. Mehnen, and O. Mersmann,
“Evolutionary algorithms,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, vol. 4, no. 3,
pp. 178-195, 2014.

[79] Z. Cojbasi¢ and D. Brki¢, “Very accurate explicit approxi-
mations for calculation of the Colebrook friction factor,”
International Journal of Mechanical Sciences, vol. 67, pp. 10—
13, 2013.

[80] A. R. Vatankhah, “Comment on ‘Gene expression pro-
gramming analysis of implicit Colebrook-White equation in
turbulent flow friction factor calculation’,” Journal of Petro-
leum Science and Engineering, vol. 124, pp. 402-405, 2014.

[81] P. Praks, V. Kopustinskas, and M. Masera, “Probabilistic

modelling of security of supply in gas networks and evaluation

of new infrastructure,” Reliability Engineering and System

Safety, vol. 144, pp. 254-264, 2015.

P. Praks, V. Kopustinskas, and M. Masera, “Monte-Carlo-

based reliability and vulnerability assessment of a natural gas

transmission system due to random network component

failures,” Sustainable and Resilient Infrastructure, vol. 2, no. 3,

pp. 97-107, 2017.

B. J. Schorle, S. W. Churchill, and M. Shacham, “Comments

on: ‘An explicit equation for friction factor in pipe’,” In-

dustrial and Engineering Chemistry Fundamentals, vol. 19,

no. 2, pp. 228-230, 1980.

(82

[83

Advances in Civil Engineering

[84] D. Brki¢, “An improvement of Hardy Cross method applied
on looped spatial natural gas distribution networks,” Applied
Energy, vol. 86, no. 7, pp- 1290-1300, 2009.

[85] D.Brki¢, “A gas distribution network hydraulic problem from
practice,” Petroleum Science and Technology, vol. 29, no. 4,
pp. 366-377, 2011.

[86] D. Brki¢, “Iterative methods for looped network pipeline
calculation,” Water Resources Management, vol. 25, no. 12,
pp. 2951-2987, 2011.

[87] D. Brki¢, “Discussion of “Water distribution system analysis:
Newton-Raphson method revisited” by M. Spiliotis and G.
Tsakiris,” Journal of Hydraulic Engineering ASCE, vol. 138,
no. 9, pp. 822-824, 2012.

[88] D. Brki¢, “Spreadsheet-based pipe networks analysis for
teaching and learning purpose,” Spreadsheets in Education
(eJSiE), vol. 9, no. 2, article 4, 2016.

[89] M. Spiliotis and G. Tsakiris, “Water distribution system anal-
ysis: Newton-Raphson method revisited,” Journal of Hydraulic
Engineering ASCE, vol. 137, no. 8, pp. 852-855, 2010.

[90] M. Badami, A. Fonti, A. Carpignano, and D. Grosso, “Design
of district heating networks through an integrated thermo-
fluid dynamics and reliability modelling approach,” Energy,
vol. 144, pp. 826-838, 2017.

[91] D.Brki¢ and T. L. Tanaskovi¢, “Systematic approach to natural
gas usage for domestic heating in urban areas,” Energy, vol. 33,
no. 12, pp. 1738-1753, 2008.

[92] T. H. Tran, S. French, R. Ashman, and E. Kent, “Impact of
compressor failures on gas transmission network capability,”
Applied Mathematical Modelling, vol. 55, pp. 741-757, 2018.

[93] C. Chun and B. Neta, “Comparative study of eighth-order
methods for finding simple roots of nonlinear equations,”
Numerical Algorithms, vol. 74, no. 4, pp. 1169-1201, 2017.

[94] T.Zhanlav, O. Chuluunbaatar, and V. Ulziibayar, “Generating
function method for constructing new iterations,” Applied
Mathematics and Computation, vol. 315, pp. 414-423, 2017.

[95] P. Praks and D. Brki¢, “One-log call iterative solution of the
Colebrook equation for flow friction based on Padé poly-
nomials,” Energies, vol. 11, no. 7, article 1825, 2018.

[96] P. Praks and D. Brki¢, “Symbolic regression-based genetic
approximations of the Colebrook equation for flow friction,”
Water, vol. 10, no. 9, article 1175, 2018.

[97] D. Brki¢ and P. Praks, “Accurate and efficient explicit ap-
proximations of the Colebrook flow friction equation based
on the Wright-Omega function,” 2018, http://arxiv.org/abs/
1810.10273.

[98] D. Brki¢ and P. Praks,, “Unified friction formulation from
laminar to fully rough turbulent flow,” Applied Sciences, vol. 8,
no. 11, article 2036, 2018.


http://arxiv.org/abs/1810.10273
http://arxiv.org/abs/1810.10273

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal ——  Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of ) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration


https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

