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m--The usefulness of quasi-Newton methods for the solution of nonlinear systems of equations is 
demonstrated. After a review of the Newton Iterative method. several quasi-Newton updates are presented 
and tested. Special attention is devoted to the solution of large sparse systems of equations such as those 
issued from spatial discretization cif continua by finite elements. 

The numerical examples presented comprise static and dynamic analyses of geometrical, material and 
combined nonlinear structural problems and a model fluid flow problem with different levels of non- 
linearity. All the results are assorted with a complete discussion of the different methods used, of the wn- 
vcrgence rates and of the associated computer costs. 

From the present studies, it can be concluded that computational costs for the solution of large nonlinear 
systems of equations can be reduced drastically by using convenient quasi-Newton updates or by adquate 
combined Newton/quasi-Newton strategies. 

The best known method for solving large systems of 
nonlinear equations iteratively is Newton’s method, 
sometimes modified so as to improve its computational 
e&iency. Davidon, for the minim&ation problem, and 
Broydcn, for systems of equations, introduced in the 
early sixties new methods which although iterative in 
nature, were quite unlike any other one in use at the 
time [l]. This new class of algorithms has been called 
by the names quasi-Newton, variable metric, secant, 
update or modification methods, the basic idea being 
to replace the costly evaluation of the eiiective Jacobian 
or Hessian matrix involved by some economically 
obtained approximation. 

In recent years there has been a proliferation of quasi- 
Newton methods applicable to the unconstrained 
minimization problem. The same is not true for solving 
nonlinear equations: according to [l], the only quasi- 
Newton meth.od that has been seriously used to solve 
nonlinear equations is the one proposed by Broyden. 
In the context of nonlinear structural and continuum 
analysis using the finite element method, theapplication 
of quasi-Newton methods for the solution of the associ- 
ated systems of equations has been suggested for the 
first time by Strang and Mathies [2]. Since then a 
growing amount of literature has developed on the 
subject through various nonlinear finite element 
applications [3-8, lo]. At first sight, quasi-Newton 
methods seem to be particularly attractive to dynamic 
analysis where the unknown increments are necessarily 
kept small in order to achieve a sufficient accuracy in the 
time-marching procedure [3,4, 71. In this paper it will 
be shown that various quasi-Newton updates are also 
of interest for static nonlinear problems, either of 
structural or continuum nature and that important 
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savings can be obtained on the total cost of such prob- 
lems too. It will also be demonstrated how, in the con- 
text of nonlinear analysis using the finite element 
method, advantage can be taken of the sparse pattern 
of the structural matrices to achieve an optimum 
implementation of the method. 

The remaining of the paper is divided into five sec- 
tions: in the second one, we recall the basic Newton 
method for the solution of systems of nonlinear equa- 
tions and the composition of such systems issued from 
finite element structural and fluid problems. In Section 
3, the most common quasi-Newton updating formulas 
are described, including rank-one and rank-two up- 
dates. Approximations to the inverse Jacobian are 
presented together with the concept of line search that 
can be associated with the iterative procedure. A brief 
outline of stability and convergence properties of 
Newton and quasi-Newton procedures is given. Section 
4 deals with the practical implementation of the updat- 
ing method in relation with sparse finite element 
systems of equations. Coupling between Newton and 
quasi-Newton methods is proposed for highly non- 
linear problems and a shifting strategy is presented and 
tested. Several numerical applications are described in 
Section 5 where nonlinear structural and fluid flow 
problems with different level of nonlinearity are 
analyzed by Newton method and various quasi- 
Newton updates. The final section draws the conclu- 
sions of the analysis and present research directions 
that should be explored in the future. 

2. NEWTON METHODS 

Consider the, problem of finding a solution to the 
system of equations 

r(q)=0 
where r and q are n-dimensional vectors. 

Newton’s method of solution can be 
assuming that we have an approximation 
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(1) 

derived by 
4 to q, and 



74 M. GERA DIN ei al 

that in the neighbourhood of q the linear mapping 

is a good approximation to riqb A presumably better 
approximation to q can then be obtained by equating 
(2) to zero. 

Thus, Newton’s method takes an initial approxima- 
tion q0 to q, and attempts to improve it iteratively by 

qe+r=qt-S;‘rti k=O, 1,. 13) 
taking rt = r(qk) and with the definition of the Jacobian 3. QUASI-NEWTON METHODS 
matrix 3. I Direcr updates 

14) 

The finite element discretizatlon of static nonlinear 
structural problems leads to systems of type (1) with 

r(qt=K(q)q-g=O 1.5) 

where q is the vector of the unknown displacements and 
g the vector of the applied nodal loads. 

Nonlinearities arise in general from material behav- 
ior or adaptation of the geometry; they are implicitly 
contained in the internal forces K(q)q which result 
from the spatial lnte~ation of the internal stresses u 

K(q)q = s B’adV (6) 
Y 

where K(q) is the structural stiffness matrix. The Jacob- 
ian matrix (4) is in this case the tangent stifIness matrix 

s(q) = K’(q) = -& CWd 

plus a contnbution of the external forces &/aq if 
these forces are dependent upon geometry changes: 
this term is generally omitted to preserve the symmetry 
of the Jacobian matrix. 

In nonlinear structural dynamics, the effective loads 
in (5) are the difference between externally applied loads 
and inertia forces, so that the spatially discretized 
systems read 

r(q)= K(q)q(c)f M#t)-g(r)=O. (8) 

The Jacobian matrix of Newton’s method is thus not 
only a function of the tangent stiffness matrix K’ but 
also of the temporal integration scheme used in the 
response. If such schemes are limited to those con- 
tained in Newmark’s formula: 

where the subscript i denotes the ith time-step, h the 
time-step size and fl, y the Newmark’s parameters, the 
Jacobiin matrix becomes 

(10) 

The last term appears only for geomet~~e~nd~t 
external forces and again is usually omitted for sym- 
metry purposes. 

In viscous incompressible fluid flow problems [8], 
the system of discretized nonlinear equations of motion 
reads 

r(q)=[KfC(qf]q-_g=O (11) 

where K and C(q) are the diffusive and convective 

matrices. q is the vector of unknown nodal velocities 
and pressures and g is the vector representing “virtual 
work” equivalent body forces and surface tractions. 
Note that only K is symmetrical and unknown- 
Independent, so that the Jacobian matrix 

S(qj=K+;; [C(qMl 

Is always unsymmet~~l. 

The major expense m Newton’s method is the cal- 
culation of the Jacobian s(q3 and its inversion. 

In contrast, quasi-Newton methods consist in deriv- 
ing an approximation G to the Jacobian by evaluating 
r(q) at two successive points 4 and q. Indeed if we 
expand r around q by Taylor’s theorem 

~qP=r~q)-~~~+Ar (13) 

where d=q -4 and Ar+O as q-Q. When neglecting the 
term Ar in eqn (13), we obtain 

G(qP=r(q)-r(#=Y - 114) 
which is called the q~-Newton equation. It is exact if 
r derives from a quadratic functional and nearly exact 
in a sufficiently small neighbourhood of the solution if 
that functional is not quadratic but strictly convex. 
Therefore it is desirable that any matrix candidate to G 
sat%& eqn (14). It is also desirable that the approxima- 
tion G to S be easily computabie from G(Q), y and d 
by adding to G(q) a correction matrix which depends 
upon the above quantities while satisfying eqn (14). 
The simplest among such relations is the single-rank 
update 

(15) 

where u is an arbitrary vector such that u’d+ 0. 
Quasi-Newton iteration consists thus, given initial 

arbitrary q. and G, to calculate a new dire&on by 
eqn (3) and next, to generate a new matrix G,,, by 
eqn ( 15), i.e. 

(1) d,= -G;‘r 

12) Compute y,lu, 

(16) 

k=O, 1. . . . - 

(3) Gk+, =Gk+‘Yk-u$d3n’ 
k k 

(17) 

Several rank-one updates are possible, Obviously 
ii is highly desirable that u depends only on 4 Y and 
G. Broyden proposes u=d, so that - - 

cts, 
It has been shown that in this way G is t& “closest” 

to S when measuring the distance by tht Frobenius 
norm [l]. Note that Broyden’s update is’~~~~~c 
and hence does not preserve the eventual symmetry of 
e. 

For symmetric systems of equatio_ns, Davidon 
suggests to use the direction u= y -Gd. The new 
corrective matrix becomes 

G 

D 
=e+(Y -MY -MT 

(y -GdjTd (19) 
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Which inSlK; the symmetry Of the SUCCe&VC 8pIKOXim- 
ation matrices. It is known to dispense with aaxrate 
line searches [I23 but there is no guarantee that G, is 
positive de!initc even if G exhibits this property. 

Rank-two formulas 8re often proposed, for instance 
the Powell symmetric Broyden update (PSB), the 
Brodie update, etc.. . Sawal of them, in addition to 
preserving symmetry, have the property of safeguard- 
ing positive definite matrices. Among them, the most 
widely used are the ~~do~~~~-Powe~ update 
(DFP): 

G,,,-(I++$+-$ (20) 
and the Broyden-Fletcher-Gold&&S&o formula 
(BFGS): 

G (21) 

Both formulas satisfy the-qua&Newton equation (14). 
in the same manner as for eqn (li’), the iterative pro- 
cedure is @tained by setting in eqns (20) and (21) 
G=Gt+l. G=Gby=ybd=d,. -- 

3.2 Inverse updates 
To solve the linear problem (16) at Ieast expense, 

it is wnvenicnt to obtain directly from (15) the new 
approximation to the inverse Jacobian. This is possible 
using the property that El23 : 

(A mr)-l =A-‘-flx$ (221 
with x=A-%I, z==AeTv and fl=a(l+avTA-‘u)-‘. 
Thus, the general rank-one update (15) becomes 

G_lIG_l+‘d-“-‘yp’ 
v% 

(23) 

for an 8rbitrary vector?, with v’y @. Broyden’s update 
is obtained when v =_G- ‘d, an= Davidon’s symmetric 
update when v = d -G - ‘y, i.e. - 

G;l=b-l+@-f-l~)f~-l 
TG (23’) 

G,t =G_2 +fd-i%td~~-‘y)’ 

(d-G-‘yl’y (23.) 

All the rank-two updates may also be ~0~~ 
in the same manner to obtain dire&y the inverse 
matrix G- I, yielding 

(24) 
- - _ 

It is useful to note that DFP and BFGS updates are 
related by the transformation 

d-ry; G+G-’ 

(see eqns 20-25 and G-24); these -updates are called 
“dual” or “complementary” updates [I]. 

3.3 Line search 
In order to improve the w nvergenc e rate, 8n optima1 

step length ~7~ in the direction determined by eqn (16) 
can be evaluated such as to cancel the projection of the 

residual vector in thrtt direction, i.e. 

6=d,rr(qlt+a&=O 

and then 

(26) 

(27) 
This is an expensive operation since it may involve 
numerous evaluations of the residual vector to achieve 
great accuracy. One may expect, however, that the 
more accurate the line search is, the better is the chance 
of achieving convergence in 8 minimum number of 
iterations. 

In Ref. [3], the 8UthorS report that satisfactory rate of 
convergence is obtained without line search when 

Id:r(q,+d,)l &I:rcSJ1 with rl=OJ (28) 
This has been wni&med by the numerical experiments 
described in the present paper. When eqn (28) is not 
satisfied suaxasive linear ~t~~tions may be per- 
formed in order to det&ne the optimal length ok 
such that 

kWlk+%.%)l~ IrP:tiqk)l. (29) 
Strang [ 131 reports that the choice q = 0.9 should be a 
good compromise for accuracy vs cost of the line 
search, especially for fiuid problems. 

3.4 Stability and convergence of quasi-Newton methods 
[I, 121 

Under the assumption that r is continuously differ- 
entiable in an open convex set C pertaining to R” and 
that there is a solution q* to eqn (1) for which s(q*) is 
nonsingular, then Newton algorithm is known to 
possess 8 domain of attraction A, which is an open set 
inning q* such that for any q. E A the Newton 
iterates an well-de&d, remain in A and converge to 
q*. This implies that if Newton iterates pertsin to A, 
they will remain in A and insures in some sense the 
stability of the iterative procedure. 

Moreover, there exists a sequence {a,.} which con- 
verges to zero and such that 

I!%+ 1 -s*~~e&/~q*-q*l~r k=O,. . . (30) 
where [I ’ 11 stands for the Lz vector norm 1/xii =(Z,X~)~‘” 
or the consistent matrix norm. This result is known as 
superliiear convergence. This is more than* linear 
convergence for which with o! E (0, 1) 

II%+, -Q*lI4%-9*11 kh (31) 
and guarantees only that the error will eventually be 
decreased by the factor a < 1. If in addition r satisfies 
a Lipshitz condition at q*, i.e. if there is a wnstant p 
such that 

1 ll~q)-~q*~l dSkl -s*ll* 9 E c (321 
then second order or quadraticconvergence is obtained, 
i.e. there is 8 constant y such that 

II%+1 -q*l)<yl(ql,-q*j12, k-4. . . (33) 
which is a well-known property of Newton method 
seldom obtained in practice due to requirement (32). 

Any quasi-Newton iteration generated by eqn (16): 

qk+l=qk- G; irk k=O, 1, . . . 

will be locally convergent at q*, i.e. (qk) is well-defined 
and converges to q*, if there is an E > 0 and 8 6 > 0 such 
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that whenever q. E A and G, E A, (A, is the set of the 
various Jacobian approximations which might be 
used in the iterative process) they satisfy 

ll%l--9’11 <c 
IlG,-stq*)ll<& 

(34) 

Now such a sequence converges superlinearly to q* if 
and only if 

An equivalent but more geometric formulation of this 
condition is that it requires d, in the iterative method to 
asymptotically approach the Newton correction 

df= -S;‘r, 

in both magnitude and direction. This follows from the 
fact that 

d,-d~ =dk+S;‘rk=S~ ‘[Sk-G,]d, 

and thus eqn (35) is equivalent with 

lim Ildtd~! =O 

k-w lldx ’ (36) 

This characteristic of local and superlinear converg- 
ence is shared by Broyden’s method eqn (1.5) and its 
mod~~tion by Schubert for sparse Jacobians (see 
next section). Convergence of the other direct updates 
or of the inverse updates has only been proved in the 
frame of unconstrained minimization, in which case r is 
the gradient vector (and S the Hessian matrix) of an 
objective function [ 1, 121. 

4. CO~~ATIONAL I~PLRME~ATION OF 

FUJI-NEWTON UPDATES 

The natural way of performing quasi-Newton cor- 
rections to the Jacobian matrix is in the form implied by 
the updates of Section 3, i.e. by adding a correction 
matrix to the previous approximation or by imple- 
menting a correction in product form [2]. 

Inspection of the procedure in a finite element con- 
text, where most of the elements of the Jacobian matrix 
S are known to be zero owing to the topology of the 
discretization mesh and where a frontal solution tech- 
nique is used with substructuring to perform block 
elimination, reveals that careful attention has to be 
devoted to the correction procedure in order to pre- 
serve the sparse pattern of the true Jacobian. Schubert 
[9] has proposed a variant of Broyden’s unsymmetric 
updatein which G,, 1 is forced to have the same sparsity 
as S. Such a technique has been developed for sym- 
metric correction in [7] since we expect an optimal 
correction procedure for s~et~c systems using 
symmetric updates. 

The procedure is however rather heavy to handle 
and another way of performing the quasi-Newton up- 
date [2, 7] consists of applying the correction on the 
direction of search d instead of modifying the matrix G 
itself. In fact, using the inverse update as described by 
eqn (23), at the kth iteration, G-i can be written as 

G;‘iG,’ + i &vivf. (37) 
i=0 

For instance, for Davidon’s update, eqn (23% we have 
v,=crdi-G;ly, and P,=Ca,di-G,~ Ly,)Tyi]-l. If at 

each iteration the correction vector v, and coefficient 
8, are stored on auxiliary memory. the kth direction 
can be obtained from (16) as 

d,= -(G,' + 2 &vivf)c(qk). (38) 
,=o 

The new correction vector for Davidon’s update is then 

vk = akdk - G, 'Yk- i: ~iv~v~Y~ 139) - 1=0 - 
This procedure is also applied by Crisfied using only one 
correction vector at each iteration [5]. 

Computational efficiency of this updating technique 
stems from the fact that, if an initial sparse Jacobian 
G, is given, it may be triangularized and stored only 
once. The successive products G; * rfqk) = dko needed in 
eqns (38) and (39) may easily be performed solving the 
t~angula~z~ system of equation 

Cod: = r&l. 

In this manner only the nonzero elements of G, after 
Gauss elimination, the vectors v, and the coefficients 
p, have to be stored. When the number of correction 
vectors becomes too large [from our experience, say 
around 10 without exceeding this limit since con- 
vergence will not be reached later on], the algorithm 
may be restarted with the initial matrix G; t. 

In practice a new problem shoutd be attacked tirst 
with the quasi-Newton iteration procedure. If strong 
nonlinearities are present and require Newton method, 
this latter technique should be used for k iterations 
until the convergence test E be reasonably approached 
(say ~~rk~~<102 E); then the iterative scheme should be 
shifted to the quasi-Newton update for the end of the 
solution procedure. This changing strdtegy is illustrated 
in the next section for fluid problems and requires 
obviously the sim~~neous implem~~tion of the two 
algorithms into the associated computer program. Such 
an implementation is symbolized on the flow chart of 

Fig. 1. 
A last observation is about the theoretical prom that 

one can expect between Newton and quasi-Newton 
iteration. In Newton method, the computation and 
triangularization of Sk requires 0(n3) arithmetic opera- 
tions. In quasi-Newton method, for every iteration 
from the second this expense is reduced to qn’). 

5. NUMERICAL APPLICATIONS 

5.1 Clamped spherical cap 
The first example considered is the nonlinear struc- 

tural analysis of a clamped spherical cap submitted to a 
sudden pressure loading, and where geometric and 
material nonlinearities are simultaneously present. 
Its geometric and material properties are su~a~zed 
on Fig. 2. This is a classical example taken from [lo]. 

The structure is modelled with 8 axisymmetric cubic 
shell elements [ 141. The resulting finite element model 
numbers 72 degrees of freedom. Only 3 Gauss points are 
used to integrate the constitutive law over the thick- 
ness: this relatively crude integration rule may be 
foreseen to generate oscillations in the numerical solu- 
tion when plasticity develops. 

Static a~~sis. The structure w as f i rs t  t est ed static- 
ally with the pressure load described on Fig. 2. 

The iterative procedure is stopped when 

iirkli~(\idi +ligintj/)G 1o-4 
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k.k+l m 

Fig. 1. Flow chart for Newton and quasi-Newton iterative procedures. 

where g&ands for &qk in-qn (5). 
The purpose of this analysis is the comparison in com- 

puter times necessary to obtain the solutions with 
Newton and quasi-Newton methods 

In this problem, the only external existing loads are 
the pressure loads. These loads introduce an unsym 
metrical contribution to the Jacobian matrix which is 
neglected in the present analysis (see Section 2). There- 
fore, it seems natural that an unSymmetriCal quasi- 
Newton update would give the best results. 

Table 1 summarizes ~~~O~~O~~W~ 
using a Newton technique and quasi-Newton item- 
tions, with the symmetrical Davidon’s update and the 
unsymmetrical Broyden’s update respectively. 

In opposition to what was expected Davidon’s up- 
dates give the best efhciency with a gain of 35% with 
respect to the standard Newton method. In fact, in this 
problem the geometrical nor&linen&is are mild and 
thus the successive Jacobian matrices are nearly sym- 
metrical. It is the reason why a symmetrical update is the 
most d%&nt. 

Dynmnk analysis. For the nonline.tu response to step 
loading, time integration is performed with Newmark’s 
scheme (B- l/4, y= l/2) and a relatively large time step 
Ar of 1.5 lo-’ set has been adopted. Equilibrium itera- 
tion is now stopped within each time step n when 

ll~l/(l~t~l~ + ilg~il) <lo- 3* 
Figure 3 displays the time history of the axial dis- 

pkoment it the opcx of the cap for the following 
ma&ial and geometrical beh8viors: 
-linear dart& 

-elasti5phMic ma&al, ~rn~~~ly linear, 
-mat&l and geometrical nonlinearities simultant- 

ously present. 
Very little difkence is observed in the numerical results 
with different methods of solution. For this example 
also, the only interest of the comparison lies in com- 
puter times and numbers of iterations to obtain the 
solution. 

To solve this problem, the comparison has been 
made between Newton iterations and the quasi-Newton 
method using suoeessively the Davidon and BFGS up- 
dates. The performsnoes obtained to integrate the first 
17 steps have been summarized in Table 2 for the 
combined nonlinear response. 

The Newton solution corresponds to a strategy in 
which the stiffness is reevaluated at iterations 1.2,s and 
8 of each time step. 

Quasi-Newton iterations have been performed with 
and without line search Davidon’s update has been 
tested using the vectorial uxrection (starting from K, 
at each time step). The best results were obtained with- 
out line search. 

The last two columns correspond to the BFGS up 
dates with substructure correction (starting from the 
tangent stiffness matrix at each time step) [7]. One 
observes a sign&ant increase in the number of itera- 
tions when the process is not restarted at each time 
step, due to the fact that the number of updates on G, 
becomes excessive. 

In spite of the small size of this problem (involving 
only 72 do.f.), the dilkence of computer costs between 
the reevaluntion of stiikss (with Gauss elimination) 
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Table 1. Spherical cap static analyst. EBkiency of Newton and quast-Newton lteratmns 

TotaL number oi iterations 

rota1 C.P.U. Time 

x IBM 370/158 

Table 2. Sphmsai fap dynamic analysts Efficiency of Newton and quasL-Net’ewton zteratL5ns 

Number of iteration per step 

Total number of resrdua: 

evaluations 

and the calculation of the residual vector is yet sig- 
nificant. Quasi-Newton iteration is the most efficient 
procedure. 

In fluid Aow problems the relation between the vis- 
cosity and the density of the fluid plays an important 
role in the nonlinear character of the solution. Thus 
similar problems with d&rents Reynolds number 
become nearly linear or largely nonlinear for lower or 
higher Reynolds number. This interacts with the con- 
vergence properties of the solution and is an easy way 
of testing the diffints methods proposed here. The 
second example deais thus with the computation of the 
velocity pro&s of two-dimensional f&rid f low  between 
two paraifel walls. 

A 4 x 4 isoparametric finite element mesh is used 
yielding a total of 129 do-f. Each element possesses a 
quadratic velocity field and a iinear pressure field [S]. 
The boundary condition are represented on Fig. 4. 

Table 3 shows the efficiency of the dserent methods 
used for Re- 10, in all cases the starting sohttionq, cor- 

Fig. Z Spbericai cap submrtted to step pressure loading. responds to the Stokes solution. i.e. the solution of eqn 
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5 

Fig. 3. Spherical cap, displacement W at apex node. 
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Fig. 4.2 D-Flow between parallel walls. 

Table 3. Fluid flow problem (Re= 10). Efficiency of Newton and quasi-Newton iterations 

QUASI-NEWTON 

NEWTON GD update CB updete 

Total number of Jacobian evaluations 4 1 I 

I Total number of residual evaluations 

I 
4 

I 
4 

I 
3 

I 

C.P.U. Time per iteration 

Number of iterations 

Total C.P.U. rime 68.8 35.2 

(11) with C -0, and the iteration is stopped when Up to Reynolds number 10, quasi-Newton updates 

ll~kll~(ll~ll+ llg,,ll) lo-” 
can be performed from a single Jacobian evaluation. 
They reveal to be quite competitive in com@son to 

where g includes the reactions to the imposed velocity standard Newton iterations. It is ranarkabie to note 
field and g = p+ c(q)b (see Section 2). that for the presant problem the need for an approxim- 
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Table 4. Fhud flow problem IRe== 100.). Effictency of Newton and qua%-Newton nerattons 

QUASI-NEWTON 

NEWTON 5 update sa update 

Total numbqr of Jacobian evaluationb IO h b 

Total numbar of residual evaluations IO I2 11 

C.P.U. Time per iteration 14. 14./2.8 14.13.8 

Number of iterations IO II IO 

Total C.P.U. Time L54. 111. 139. 

ate unsymmetrical Jacobian matrix makes Broyden’s 
update the most adequate. 

For Reynolds number higher than 10, the problem 
becomes strongly nonlinear and a quasi-Newton 
method using directly the linear matrix K as initial 
matrix does not converge, Nevertheless, another 
strategy was successfuIIy tested: during the first itera- 
tions the Jacobian matrix was evaluated and then, the 
processus is continued with quasi-Newton updates 
according to the procedure outlined in the flow chart of 
Fig. 1. 

Table 4 shows the comparison of procedures for 
Re= 100. The above procedure is applied as follows: 
the first 6 iterations are done evaluating the Jacobian 
matrix, then the remaining 5 for the Davidon’s update, 
or the remaining 4 for the Broyden’s update, are done by 
quasi-Newton corrections of the last Jacobian matrix. 
This is the only way to keep quasi-Newton methods 
very competitive. 

Unsymmetrical Broyden’s updates exhibit a better 
convergence rate than Davidon’s ones but are more 
expensive since the former require the sohttion of two 
linear systems of equations against only one for the 
latter [see eqns (23’)-(23”)]. In the present case the 
quasi-Newton procedure was started, in accordance 
with the flow diagram (Fig. l), when 

llrklliMl + Ilgi,Jb C10- ‘. 
Similar conclusions can be drawn from other fluid flow 
applications [S]. 

CONCLUSIONS 

The adequacy of various updating methods to solve 
nonlinear systems of equations of finite element struc- 
tural and continuum mechanics applications has been 
demonstrated, and ‘their implementation for sparse 
systems has been discussed. 

Quasi-Newton methods converge almost always in a 
larger number of steps than an “optimal” Newton 
strategy. The former become thus competitive only 
when the cost of Jacobian evaluation is SALTY 

larger than that of the residual vector calcnlation. This 

superiority of quasi-Newton methods is thus increased 
with the number of unknowns in a problem. 

Conversely, it is observed that strong nonlinearities 
lead to large number of quasi-Newton updates which in 
turn can lead to an ill-conditioned iteration matrix, It is 
thus advised to restart periodically the iteration pro- 
cedure either using the initial Jacobian or by c&&ting 
the efhzctive one in the actual stage of the response. 

As a corollary, the so-called vectorial correction is 
we11 adapted since it allows for an easy restart of the 
updating procedure from the initial Jacobian. 

The line search does not introduce a sign&ant 
improvement in the convergence of quasi-Newton 
methods for the problems at hand, and should be per- 
formed only in exceptional cases. 

Rank-two corrections do not yield an important 
improvement of the convergence rates. Hence, Davidon 
and Broyden rank-one corrections should be preferred 
due to their lower cost. In problems where Jacobians 
are definitely unsymmetrical. Broyden’s formula should 
be preferred despite the need for a double linear system 
solution. 

Future research and numerical tests should be de- 
voted to optimal coupling between Newton and quasi- 
Newton strategies to reach always the mmimai cost. 
Safeguarding methods described for these methods in 

the context of unconstrained mi~mi~tion (121 should 
be explored to ascertain stability and convergence 
properties even in cases when the solution does no 
longer correspond to a minimum of a functional. 
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