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Summary:  Free vibration analysis is an essential requirement to capture the behaviour of 

composite structures subject to dynamic loading environment. To enhance the vibratory 

behaviour of composite structures, variable stiffness (VS) concept offers increased design 

flexibilities to tailor the structural response to meet a wide range of applications. 

Mechanically, the increased design space created by VS techniques leads to complexities of 

non-classical stiffness couplings which necessitate robust computational frameworks with 

enriched kinematics to predict the dynamic response accurately and efficiently. In this regard, 

this study proposes an enhanced differential quadrature based Strong Unified Formulation 

(SUF) to investigate the free vibration behaviour of thermally prestressed constant and 

variable stiffness composite beams. The proposed SUF model exploits the flexible kinematical 

description of the Theory of Unified Formulation to combine a hierarchical serendipity 

Lagrange-based 2D finite element (FE) with 1D differential quadrature method beam element 

for efficient free vibration characterisation of composite beams induced with prestress at 

different temperatures. The proposed SUF free vibration solutions of constant stiffness and VS 

beams demonstrate satisfactory accuracy and achieved improved efficiency with up to 99.9% 

computational savings when benchmarked against ABAQUS 3D FE solutions. Finally, a 

numerical study reveals that the effects of thermal prestress significantly contribute to the free 

vibration response of constant stiffness and VS laminated beams underscoring the importance 

of the study.     

1 INTRODUCTION 

 

Application of carbon fibre reinforced plastic (CFRP) composites has received wide 

attention in the area of high-performance mechanical structures, e.g., aerospace, automotive, 

offshore etc, thanks to their high strength-to-weight and stiffness-to-weight ratios in addition 

to their increased design space that makes it feasible to achieve tailoring of composite materials 

to meet specific requirements [1, 2]. The creation of variable angle tow (VAT) technology 

through fibre placement technologies such as Automated Fibre Placement (AFP) [3], Tailored 

Fibre Placement (TFP) [4] and Continuous Tow Shearing (CTS) [5] has further expanded the 

design space to achieve improved response of composite structures, for example, regarding 

enhanced buckling response of stiffened blade panels [6] and improved aeroelastic response of 

composite wings [7].  

In the context of application of VAT designs or laminated composites in general, 
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prestressing is an effective procedure to introduce internal stresses into the structure with the 

goal of counteracting stresses resulting from applied loads [8]. According to nonlinear finite 

element analysis of VAT structures [9], the inclusion of thermal curing (residual) stresses may 

have a beneficial effect on the buckling response of composite structures and the prestress state 

of VAT structures should be taken into account for accurate prediction of the buckling 

behaviour. This observation was further emphasised in [10] where residual stresses introduced 

during curing are found to be responsible for the discrepancies between experimental and 

theoretical predictions of the buckling load of VAT structures. On this basis, Ojo et al [11] 

recently investigated the effect of thermal prestress on the postbuckling behaviour of composite 

beams and concluded that thermal prestressing significantly affects the response of the beam 

subject to moderate loading, but the effect of thermal prestress becomes neutralised as the beam 

experiences large rotations and axial deformation caused by high loading.  

Accurate determination of the vibration behaviour of composite structures is of fundamental 

importance in structural dynamics analysis to avoid resonances. In this regard, some of the 

early works centred on theoretical analysis of the vibration of composite beams with solid 

cross-sections were pioneered by Teoh and Huang [12,13]. In their study, Timoshenko beam 

kinematics was adopted to demonstrate that the wavelength of the vibration mode is 

significantly influenced by shear deformation and bending-torsion coupling of orthotropic 

beams. Later, Jensen, Crawley, and Dugundji [14] employed a Rayleigh-Ritz procedure to 

determine the sensitivity of the accuracy of predicted lowest three natural frequencies of an 

unbalanced cantilevered laminated plates to the choice of assumed mode shapes. The authors 

showed (with experimental validation) that the inclusion of chordwise bending is vital to 

successfully predict the torsional frequencies for plates with high bending-torsion stiffness 

coupling. Summarising these findings, Dewey et al [15] concluded that the (geometrical and 

material) assumptions used in theoretically characterising the cross-section generally influence 

the free vibration response of composite beams. This conclusion presupposes that modelling 

the free vibration behaviour of 3D composite beams requires high-fidelity theories that 

encapsulates the complex (extension-bending-shear or bending-torsion) coupling effects 

dictating the modal response of the laminate. Consistent with this reality, and further 

considering the complex anisotropy induced by variable stiffness effects (in the form of 

variable bending-extension, bend-twist, and shear-extensional stiffness couplings), the 

necessity for high-fidelity theory to examine free vibration behaviour of composite laminates 

becomes even more crucial with implications on the accuracy, convergence, numerical 

stability, and efficiency of the computational process. It is therefore imperative to seek an 

efficient computational tool which can accurately predict the free vibration behaviour of 3D 

laminated constant stiffness (SC) and VAT beam structures.  

The theory of Unified Formulation (UF) [16] is a reliable tool to investigate the response of 

a wide range of complex structures due to the generic qualities of the kinematics adopted which 

allow for arbitrary expansion of displacement variables to achieve high-fidelity 

characterisation. In the context of beam structures, UF is characterised by three-dimensional 

displacement fields comprising a predetermined cross-sectional deformation often defined by 

hierarchical expansion functions over the cross-section, and unknown 1D global displacement 

fields [16]. According to many studies, UF-based models have proved effective for accurate 

prediction of static, buckling, dynamic and free vibration, and postbuckling responses [16-19]. 

As a further development to achieve spectral convergence, the theory of UF has been explored 

within the context of strong form systems combined with high-order numerical methods like 

the differential quadrature method (DQM) and radial basis function to realise efficient 
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predictions of linear static [20-23], dynamic [20], buckling [20] and large deflection [24-26] 

responses of constant stiffness and variable stiffness composite structures. In another 

development, UF-based strong form systems combined with the recently proposed inverse 

differential quadrature method (iDQM) [27-28] have shown promise of spectral convergence 

for linear static analysis of composite beams [29]. In consistence with the merits of UF together 

with the spectral qualities of DQM, this study proposes to investigate the free vibration 

behaviour of prestressed constant and variable stiffness composite beams using an enhanced 

DQM-based dynamic Strong Unified Formulation (SUF). The rest of the paper is described as 

follows: 

Preliminaries of UF are treated in section 2 while the mathematical derivations for linear 

thermoelastic and prestressed dynamic SUFs are outlined in sections 3. Furthermore, in section 

3, discretisation by DQM is provided followed by conversion of the dynamic system to a 

steady-state eigenvalue system. Numerical examples and discussion on free vibration analysis 

of prestressed CS and VAT composite beam structures are presented in section 4 before the 

concluding remarks in section 5. 

2 UNIFIED FORMULATION PRELIMINARIES 

The theory of Unified Formulation (UF) describes the displacement fields [𝑢𝑥, 𝑢𝑦, 𝑢𝑧] in the 

three dimensions, 𝑥-, 𝑦- and 𝑧-axes of a 3D beam composite structure (see figure 1) of length 

L in the cartesian coordinate system by the relation 

   𝒖(𝑥, 𝑦, 𝑧) = 𝐹𝜏(𝑥, 𝑧)𝒖𝜏(𝑦),      (1) 

where 𝐹𝜏 is the function that captures the cross-sectional deformation and can be expanded to 

any order 𝜏 for the enrichment of the beam’s kinematical description. The cross-sectional 

function 𝐹𝜏 adopted in this study is the so-called Serendipity Lagrange expansion (SLE) 

function that describes the cross-sectional behaviour of the beam accurately and efficiently 

without the need for re-meshing or loss of numerical stability (for example, see [21-24]). The 

stresses (𝝈 = [𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜏𝑦𝑧 𝜏𝑥𝑧 𝜏𝑥𝑦]𝑇) and strains (𝜺 =
[휀𝑥𝑥 휀𝑦𝑦 휀𝑧𝑧 𝛾𝑦𝑧 𝛾𝑥𝑧 𝛾𝑥𝑦]𝑇) relationship is governed by 

   𝜺 = 𝑩𝑙𝜏𝒖𝜏(𝑦)        (2a) 

𝝈 = 𝑪𝜺         (2b) 

where 𝑪 ∈ ℝ6×6 is a 6 × 6 transformed material stiffness and 𝑩𝑙𝜏 is the linear strain-

displacement matrix (see [30] for example). 

3 LINEAR THERMOELASTIC FORMULATION 

In the preliminary stage, the laminated beam is subjected to residual prestress at a predefined 

temperature difference 𝜃. For simplicity, the value of 𝜃 is assumed to be constant throughout 

the laminate. Then, the total linear thermoelastic strain in the structure under the influence of 

constant temperature change 𝜃 is given as 

𝜺 = 𝜺𝑚 + 𝜺𝑡         (3) 

where 𝜺𝑚 and 𝜺𝑡 are, respectively, the global linear mechanical and thermal strains. The 

thermal strains in the global cartesian coordinate are explicitly expressed in the compact form 

as 
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𝜺𝑡 = −𝜶𝜃,        (4) 

with 𝜶 = [𝛼𝑥 𝛼𝑦 𝛼𝑧 𝛼𝑦𝑧 𝛼𝑥𝑧 𝛼𝑦𝑧]𝑇 being the coefficient of thermal expansion and 

𝒗 = [𝑣𝑥, 𝑣𝑦 , 𝑣𝑧]
𝑇
 is the displacement of the beam in the thermoelastic stage.  

    

 (a)       (b)     (c) 
Figure. 1 Cartesian frame of reference for (a) laminate stack (b) constant stiffness lamina orientation, and 

(c) variable stiffness lamina orientation [24]. 

The corresponding stress 𝝈 = [𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜏𝑦𝑧 𝜏𝑥𝑧 𝜏𝑥𝑦]𝑇 in the linear thermoelastic 

stage is expressed as 

𝝈 = 𝑪(𝜺𝑚 + 𝜺𝑡).       (5) 

The virtual strain energy for the thermoelastic problem is obtained according to the principle 

of virtual work, as 

 

𝛿𝐺 = ∫ 𝛿
𝑉
(휀𝑚𝑥𝑥𝜎𝑥𝑥 + 휀𝑚𝑦𝑦𝜎𝑦𝑦 + 휀𝑚𝑧𝑧𝜎𝑧𝑧 + 𝛾𝑚𝑦𝑧𝜏𝑦𝑧 + 𝛾𝑚𝑥𝑧𝜏𝑥𝑧 + 𝛾𝑚𝑥𝑦𝜏𝑥𝑦)  dV = 0, (6) 

 

Substituting for strains in Eq. (6) in terms of displacement 𝒗 and applying partial integration-

by-parts along the axial dimension 𝑦 leads to (see [24-26]) 

𝛿𝐺 = ∫ 𝛿
𝑉
(𝜺𝑇𝝈) dV = ∫ 𝛿

Ω
(𝑣𝑥𝜏𝐹𝜏𝜏𝑥𝑦 + 𝑣𝑦𝜏𝐹𝜏𝜎𝑦𝑦 + 𝑣𝑧𝜏𝐹𝜏𝜏𝑦𝑧) dΩ|

𝑦=0

𝑦=𝐿
+ ∫ 𝛿

𝑉
(𝑣𝑥𝜏 [𝐹𝜏𝑥𝜎𝑥𝑥 +

𝐹𝜏𝑧𝜏𝑥𝑧 − 𝐹𝜏
𝜕𝜏𝑥𝑦

𝜕𝑦
] + 𝑣𝑦𝜏 [𝐹𝜏𝑥𝜏𝑥𝑦 − 𝐹𝜏

𝜕𝜎𝑦𝑦

𝜕𝑦
+ 𝐹𝜏𝑧𝜏𝑦𝑧] + 𝑣𝑧𝜏 [𝐹𝜏𝑧𝜎𝑧𝑧 − 𝐹𝜏

𝜕𝜏𝑦𝑧

𝜕𝑦
+ 𝐹𝜏𝑥𝜏𝑥𝑧])  dV = 0 

            (7) 

By further substituting for stresses in terms of displacements, the thermoelastic strain energy 

in a compact form becomes 

𝛿𝐺 = 𝛿𝒗𝜏
𝑇 ∫ 𝐹𝜏�̅�𝑩𝑙𝑠dΩΩ⏟        𝒗𝑠

𝚷𝑙𝜏𝑠

|

𝑦=0

𝑦=𝐿

𝒗𝑠 + ∫ 𝛿𝒗𝜏
𝑇 ∫ (�̅�𝑙𝜏

𝑇 𝑪𝑩𝑙𝑠 − 𝐹𝜏𝑸𝑩𝑙𝑠) dΩΩ⏟                
𝐊𝑙𝜏𝑠

𝐿
𝒗𝑠dy −

𝛿𝒗𝜏
𝑇 ∫ 𝐹𝜏�̅�𝜶dΩΩ⏟      𝜃

𝚷𝛼𝜏

|

𝑦=0

𝑦=𝐿

− ∫ 𝛿𝒗𝜏
𝑇 ∫ (�̅�𝑙𝜏

𝑇 𝑪𝜶 − 𝐹𝜏�̅�𝜶 − 𝐹𝜏�̅�𝜷) dΩΩ⏟                    
𝐊𝛼𝜏

𝐿
𝜃dy,    (8) 

where 

𝜷 =
𝜕𝜶

𝜕𝑦
, 𝑸 =

𝜕𝑪

𝜕𝑦
, �̅� = 𝑹𝑪,  �̅� = 𝑹𝑸,  𝑹 = [

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

]. (9) 
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The explicit expression for the terms �̅�𝑙𝜏  is given in [11]. It should be noted that the terms 

containing 𝑸 and 𝜷 are responsible for inducing variable stiffness effects in the laminated 

beam. As such, these terms vanish for constant stiffness laminates. The governing equations 

and the boundary conditions for the thermoelastic problem are consequently derived from Eq. 

(8) as 

𝐊𝑙𝜏𝑠𝒗𝑠 − 𝐊𝛼𝜏𝜃 = 0,       (10a) 

   𝚷𝑙𝜏𝑠𝒗𝑠 − 𝚷𝛼𝜏𝜃|𝑦=0
𝑦=𝐿

= 0,                           (10b) 

Equation (10) represents one-dimensional governing system of equations and boundary 

conditions of the thermoelastic problem which can be expanded to any order 𝜏, 𝑠 for high-

fidelity prediction of the residual prestress. In a compact form, Eq. (10) reads 

 

𝐊𝜏𝑠𝒗𝑠 − 𝐟𝜏 = 𝟎       (11) 

 

Equation (11) can be expanded and assembled layer-wise to form the global system of equation 

for the thermoelastic problem. 

3.1 Dynamic Strong Unified Formulation for thermally prestressed beam 

 After the initial thermal prestress 𝝈𝑝 ∈ ℝ
6×1, the composite beam is investigated for free 

vibration. The total stress 𝑺 in the structure while accounting for the effect of thermal prestress 

𝝈𝑝 is given as 

𝑺 = 𝑺𝑚 − 𝝈𝑝(𝒗)       (12) 

where 𝒗 is thermoelastic-induced displacement computed from Eq. (11). The terms subscripted 

with 𝑚 represent mechanical-load induced variables while the terms subscripted with 𝑝 are 

prestress related. According to the principle of virtual displacement, the virtual work 

equilibrium relations for the modal response of the prestressed 3D laminated beam can be 

expressed in the form 

𝛿𝐿𝑖𝑛 + 𝛿𝐿𝑚 − 𝛿𝐿𝑝 = 0      (13) 

where 𝛿𝐿𝑖𝑛, 𝛿𝐿𝑚, and 𝛿𝐿𝑝 are, respectively, the virtual inertial work, virtual strain energy, and 

virtual work done due to prestressing which are computed through the relation 

   𝛿𝐿𝑖𝑛 = 𝛿𝒖𝜏
T ∫ 𝐹𝜏𝜌𝑠𝐹𝑠𝑉

dΩ�̈�𝑠       (14a) 

   𝛿𝐿𝑚 = ∫ 𝛿𝒖𝜏
𝑇(𝑩𝑙𝜏

𝑇 𝑺𝑚)𝑉
 dV                            (14b) 

𝛿𝐿𝑇 = ∫ 𝛿𝒖𝜏
𝑇(𝑩𝑛𝑙𝜏

𝑇 𝝈𝑝)𝑉
 dV        (14c) 

where 𝑩𝑙𝜏
𝑇  and 𝑩𝑛𝑙𝜏

𝑇  are linear and nonlinear strain displacement matrices whose formulae can 

be found in [11]. After substituting Eq. (14) into Eq. (13) and applying partial integration by 

parts while noting Eq. (2), the displacement-based strong form of the governing equation for 

dynamic response of the prestressed beam is realised as 

𝛿𝒖𝜏
𝑇 (∫ 𝐹𝜏�̅�𝑩𝑙𝑠dΩΩ⏟        

𝚷𝑙𝜏𝑠

+ ∫ diag〈�̅�𝑛𝑙1𝜏𝑠
∗𝑇 �̅�𝑝〉dΩΩ⏟            

𝚷𝑝𝜏𝑠

)𝒖𝑠|

𝑦=0

𝑦=𝐿

𝒖𝑠 + ∫ 𝛿𝒖𝜏
T ∫ 𝐹𝜏𝜌𝑠𝐹𝑠Ω

dΩ⏟        
𝐌𝜏𝑠

dy
𝐿

�̈�𝑠 +
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∫ 𝛿𝒖𝜏
𝑇 ∫ (�̅�𝑙𝜏

𝑇 �̃�𝑩𝑙𝑠 − 𝐹𝜏�̅�𝑩𝑙𝑠)Ω
 dΩ⏟                𝒖𝑠

𝐊𝑙𝜏𝑠

dy
𝐿

− ∫ 𝛿𝒖𝜏
𝑇 ∫ diag〈�̅�𝑛𝑙2𝜏𝑠

∗𝑇 𝝈𝑝〉Ω
 dΩ⏟              

𝐊𝑝𝜏𝑠

𝒖𝑠dy𝐿
= 𝟎.    (15) 

The expressions for �̅�𝑛𝑙1𝜏𝑠
∗𝑇 and �̅�𝑛𝑙2𝜏𝑠

∗𝑇  are given explicitly in [11]. In addition, �̅�𝑝 = 𝑹𝝈𝑝 is the 

prestress value at the beam boundary whereas diag〈�̅�𝑛𝑙1𝜏𝑠
∗𝑇 �̅�𝑝〉 and diag〈�̅�𝑛𝑙2𝜏𝑠

∗𝑇 𝝈𝑝〉 are 3 × 3 

diagonal matrices, whose diagonal terms are the components of the column vectors �̅�𝑛𝑙1𝜏𝑠
∗𝑇 �̅�𝑝 

and �̅�𝑛𝑙2𝜏𝑠
∗𝑇 𝝈𝑝, respectively. Therefore, considering the principle of variational calculus, the 

fundamental nucleus of the dynamic response of the prestressed composite beam is captured 

in the expression 

   𝐌𝑙𝜏𝑠�̈�𝑠 + (𝐊𝑙𝜏𝑠 − 𝐊𝑝𝜏𝑠(𝒗𝑠))𝒖𝑠(𝑦) = 0,    (16a) 

   (𝚷𝑙𝜏𝑠 − 𝚷𝑝𝜏𝑠(𝒗𝑠))𝒖𝑠|
𝑦=0

𝑦=𝐿

= 0,               (16b) 

Readers are referred to [11] for the explicit terms that make up 𝐊𝑝𝜏𝑠 and 𝚷𝑝𝜏𝑠. The compact 

form of Eq. (16) reads 

𝐌𝜏𝑠�̈�𝑠 +𝐊𝑢𝜏𝑠(𝒗)𝒖𝑠 = 𝟎      (17) 

3.2 Differential quadrature method discretisation 

The solution of the one-dimensional systems of equations, i.e., Eq. (11) and Eq. (17), is 

assumed according to differential quadrature method (DQM) approximation described in [31]. 

For example, a dependent variable, 𝒖𝑠 assumes the form 

   𝒖𝑠(𝑦) = ∑ 𝐿𝑖(𝑦)𝒖𝑖𝑠
𝑁
𝑖=1 ,      (18) 

while higher derivatives of 𝒖𝑠 are approximated as, 

   
𝜕𝒖𝑠(𝑦)

𝜕𝑦
|
𝑦𝑖

= ∑ 𝑎𝑖𝑗
(1)𝒖𝑗𝑠

𝑁
𝑗=1 , for 𝑖, 𝑗 = 1,… ,𝑁,   (19a) 

   
𝜕2𝒖𝑠(𝑦)

𝜕𝑦2
|
𝑦𝑖

= ∑ 𝑎𝑖𝑗
(2)𝒖𝑗𝑠

𝑁
𝑗=1 , for 𝑖, 𝑗 = 1,… ,𝑁,                        (19b) 

where 𝐿𝑖(𝑦), 𝑎𝑖𝑗
(1)

 and 𝑎𝑖𝑗
(2)

 are weighting coefficients of the control variable, 𝒖𝑠, their first 

derivative and second derivatives respectively, defined by some sets of base polynomials (see 

[31]). Equations (11) and (17) are subsequently generalised using Eqs. (18-19) leading to 

   𝐊𝑣𝑖𝑗𝜏𝑠𝒗𝑖𝑠 − 𝐟𝑗𝑠 = 0,       (20) 

   𝐌𝑖𝑗𝜏𝑠�̈�𝑖𝑠 + 𝐊𝑢𝑖𝑗𝜏𝑠𝒖𝑖𝑠 = 0,                 (21) 

Equations (20-21) constitute the fundamental nuclei of the generalised governing system of the 

prestressed beam which can be expanded to any arbitrary higher order of 𝜏, 𝑠 = 1,… ,M and 

𝑖, 𝑗 = 1,… , N to form the global system of equations 

   𝐊𝑣𝒗 − 𝐟 = 0,        (22) 

   𝐌�̈� + 𝐊𝑢(𝒗)𝒖 = 0,       (23) 

By taking 𝒖(𝑦) = 𝒖0(𝑦)𝑒
𝑗𝜔𝑡, the dynamic system, i.e., Eq. (23) can be reduced to the 

generalised eigenvalue system 

     [𝜔2𝐌+𝐊𝑢(𝒗)]𝒖0 = 0,      (24) 

where 𝜔 is the natural frequency of the beam. 
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4 NUMERICAL EXAMPLES 

Numerical examples of free vibration response of prestressed laminated beam subject to 

clamped-clamped and clamped-free conditions are investigated using the proposed differential 

quadrature based Strong Unified Formulation (UF-DQ) in section 3. To induce thermal 

prestress in the preliminary thermoelastic stage of the analysis, the beam is subjected to 

temperature change while being held clamped at both ends. Then, in the free vibration stage, 

clamped-clamped or clamped-free conditions are applied accordingly. For each boundary 

condition, two laminates constituting constant stiffness (CS) and variable angle tow (VAT) 

configurations are examined at 0oC, 50oC and -50oC prestress levels. The properties defining 

the CS and VAT laminates are given in Table 1. Essentially, the first laminate consists of a 

two-layer non-symmetric, cross-ply constant stiffness configuration characterised by high 

extension-bending coupling. The second laminate represents a two-layer non-symmetric 

variable angle tow configuration with the first layer steered from 00 at the laminate edges to 

90o at the centre of the laminate while the second layer consists of 90o fibre orientation. The 

VAT laminate configuration is thus characterised by high variable extension-bending, 

extension-shear, and bend-twist couplings.  

In the first instance, ABAQUS 3D FE benchmarks are independently obtained for the non-

prestressed laminate (i.e., at 0oC prestress) to validate the accuracy of the UF-DQ estimates. 

However, for 50oC and -50oC prestress levels, ABAQUS implementation is complicated owing 

to the limitation of propagating thermoelastic stresses obtained from “ABAQUS general static 

step” to free vibration procedure performed in “ABAQUS linear perturbation step”. 

Consequently, a UF-based finite element (UF-FE) model is further implemented to corroborate 

the validity of the proposed UF-DQ solution at 50oC and -50oC prestress levels. In general, the 

UF-based models are implemented with the aid of a fifth order 2D SLE element to capture the 

deformation of the beam cross-section. In addition, the convergence of the UF-DQ model 

requires 21-noded beam element (constituting 2520 DOF) for CS and 35-noded beam element 

(constituting 4200 DOF) for VAT laminates, respectively, while the UF-FE model 

convergence requires 20 4-noded beam elements (constituting 6960 DOF) and 26 4-noded 

beam elements (constituting 9360 DOF), respectively, for the CS and VAT laminates. On the 

other hand, ABAQUS 3D FE simulation is accomplished using 43200 C3D20R 3D solid 

elements with a total of 573675 DOF. 

Table. 1: Material, geometric, and laminate properties. 

𝐸1 

(GPa) 

𝐸2 = 𝐸3 

(GPa) 

𝐺12 = 𝐺13 

(GPa) 

𝐺23 

(GPa) 

𝑣12 

 

𝑣13 

 

𝑣23 

 

136 8.76 4.54 3.32 0.25 0.43 0.32 

𝛼1 (10-6/ oC) 𝛼2 = 𝛼3 (10-6/ oC)    

0.11 31.94    

Geometric properties 

Length(m) Layer 

Thickness(m)  

Orientations Width(m) 

2 [0.05𝐿]2 [0o/90o] 0.1L 

2 [0.05𝐿]2 [<90o|0o>/<90o|90o >] 0.1L 
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4.1 Free vibration of non-prestressed constant and variable stiffness beams  

The first four frequencies of the non-prestressed beam are reported in Table 2 and excellent 

agreement is recorded between the UF-DQ, UF-FE, and 3D FE models for CS and VAT 

laminates subject to the boundary conditions examined. This outcome demonstrates the 

accuracy and robustness of the UF-DQ model while also exemplifying the high fidelity of UF 

theory in capturing the natural frequencies of 3D beams of arbitrary lamination sequence. Due 

to the high anisotropy induced by the variable stiffness effects, the UF-based models require 

finer mesh to capture the variable extension-bending, extension-shear, and bend-twist coupling 

responses leading to higher computational effort to attain convergence than CS configuration.  

Comparing the discrepancy between the computational efforts required by the UF-DQ and UF-

FE models to reach convergence, it is evident that the UF-DQ model requires 36% and 45% of 

the computational effort of UF-FE model for CS and VAT laminates respectively (see Table 

2). Thus, the strong form UF-DQ model exhibits improved efficiency in this regard. In any 

case, both UF-DQ and UF-FE models show computational savings of over 99.9% over 

ABAQUS 3D FE model indicating the excellent computational merits of the UF-based models.  

4.2 Free vibration of prestressed constant and variable stiffness beams 

The benchmarking of the UF-DQ model accuracy for prestressed analysis is accomplished with 

comparison to UF-FE model since ABAQUS 3D FE implementation is limited in this regard. 

The free vibration of the prestressed beam is investigated for prestress levels of 50oC and -50oC 

which are enough to induce significant residual stresses causing the beam to experience 

compression, or tension, or a combination of compression and tension from its default 

(undeformed) state. To a large extent, according to Table 3 and Table 4, the agreement between 

the UF-DQ and UF-FE models is satisfactory for all the boundary conditions and laminate 

sequences whether for 50oC or -50oC prestress levels indicating the accuracy of the UF-DQ 

model. Remarkably, 50oC prestressing causes the CS beam to experience lower natural 

frequency compared to the non-prestressed case owing to the net compression experienced by 

0o bottom layer making the beam to become stiffer or less flexible. On the other hand, -50oC 

prestress subject the 0o bottom layer to net tension while the top 90o layer experiences net 

compression leading to increased natural frequency since the beam is now more flexible than 

the non-prestressed beam. Obviously, the state of the 0o bottom layer after prestressing is 

significant to determine the modal response of the beam eventually. In the VAT laminate case, 

due to the variable mechanical couplings, the middle of the beam experiences net tension (due 

to expansion of the beam’s midpoint fixed at 90o fibre orientation at the top and bottom layers) 

while the edges are in net compression (due to dominating mechanical effect of the 0o bottom 

layer at the beam edges) after 50oC prestress resulting in a less stiff beam. Consequently, the 

VAT beam vibrates at lower natural frequency. Subject to -50oC, the VAT beam vibrates at a 

higher natural frequency due to flexibility induced by the net tensile state of the beam edges. 

It is thus clear that the mechanics of prestressed VAT is significantly enhanced by the presence 

of variable mechanical couplings which tend to control the in-plane behaviour of the laminate 

for improved response. 
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Table. 2: Natural frequencies of constant and variable stiffness beams at 0°C prestress level. 

Clamped-Clamped condition (∆𝑇 = 0°C) 
Frequency 

(×103 rad/s) 

Constant stiffness laminate (CS) Variable angle tow laminate (VAT) 

 UF-DQ 

(2520) 

UF-FE 

(6960) 

3D-FE 

(573675) 

UF-DQ 

(4200) 

UF-FE 

(9360) 

3D-FE 

(573675) 

𝜔1 1.1208 1.1209 1.1208 0.8917 0.8917 0.8915 

𝜔2 1.4448 1.4448 1.4447 1.0154 1.0134 1.0110 

𝜔3 2.2193 2.2194 2.2192 2.0409 2.0412 2.0409 

𝜔4 2.6528 2.6530 2.6529 2.3363 2.3334 2.3324 

Clamped-Free condition (∆𝑇 = 0°C) 
𝜔1 0.2051 0.2048 0.2048 0.1383 0.1384 0.1384 

𝜔2 0.3077 0.3076 0.3076 0.1486 0.1487 0.1484 

𝜔3 1.1028 1.1027 1.1026 0.7676 0.7680 0.7679 

𝜔4 1.1478 1.1483 1.1483 0.8381 0.8361 0.8348 

Table. 3: Natural frequencies of constant and variable stiffness beams at 50°C prestress level. 

Clamped-Clamped condition (∆𝑇 = 50°C) 
Frequency 

(×103 rad/s) 

CS VAT 

UF-DQ UF-FE UF-DQ UF-FE 

𝜔1 1.1037 1.1038 0.8592 0.8592 

𝜔2 1.2621 1.2622 0.9626 0.9619 

𝜔3 1.4498 1.4498 1.3131 1.3081 

𝜔4 2.6294 2.6295 2.0031 2.0033 

Clamped-Free condition (∆𝑇 = 50°C) 
𝜔1 0.1498 0.1495 0.0958 0.0958 

𝜔2 0.2800 0.2800 0.1042 0.1041 

𝜔3 1.0986 1.0988 0.6680 0.6683 

𝜔4  1.4087 1.4075 0.7323 0.7297 

Table. 4: Natural frequencies of constant and variable stiffness beams at −50°C prestress level. 

Clamped-Clamped condition (∆𝑇 = −50°C) 
Frequency 

(×103 rad/s) 

CS VAT 

UF-DQ  UF-FE UF-DQ UF-FE 

𝜔1  1.1375 1.1376 0.9225 0.9225 

𝜔2  1.4560 1.4560 1.0526 1.0504 

𝜔3  2.6759 2.6761 2.0821 2.0823 

𝜔4 2.8639 2.8640 2.3816 2.3789 

Clamped-Free condition (∆𝑇 = −50°C) 
𝜔1  0.2448 0.2450 0.2030 0.2031 

𝜔2 0.3321 0.3321 0.2187 0.2188 

𝜔3 1.1947 1.1952 0.8600 0.8600 

𝜔4 1.5840 1.5842 0.9362 0.9342 
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From the computational perspective, the effect of prestressing is negligible on the convergence 

or the numerical stability of the UF-based models whether for the CS or VAT laminates. 

Therefore, as observed for the non-prestressed laminate, the improved computational 

efficiency offered by UF-DQ model over UF-FE model is preserved to a large extent. This 

observation emphasises the merits of the proposed model for numerical analysis of prestressed 

structures. 

5 CONCLUSIONS 

An efficient differential quadrature-based Strong Unified Formulation (UF-DQ) has been 

developed in this study to investigate the modal response of 3D constant stiffness (CS) and 

variable angle tow (VAT) laminated beams subjected to clamped-clamped and clamped-free 

conditions. The analysis involves a preliminary thermoelastic procedure to induce 

thermoelastic residual stresses in the beam in a clamped-clamped state before examining the 

free vibration response of the beam. By benchmarking the predictions of the UF-DQ model 

with finite element-based weak Unified Formulation (UF-FE) and ABAQUS 3D FE, it is 

revealed that the UF-DQ model furnishes accurate outcomes with up to 55% computational 

efficiency over UF-FE model and up to 99.9% computational savings over ABAQUS 3D FE 

model for non-prestressed beam. In addition, the UF-DQ model possesses the high fidelity to 

satisfactorily capture the free vibration behaviour of the VAT laminates typified by variable 

mechanical couplings. In the presence of prestress, the nonsymmetric laminated CS and VAT 

beams experience thermoelastic deformation in the form of combined compression and tension 

which makes the beam to be stiffer or more flexible than the non-prestressed beam depending 

on the nature of prestress. Consequently, the beam exhibits lower frequency than the non-

prestressed laminate if the beam is induced with net compression or higher natural frequency 

than the non-prestressed laminate if the beam is induced with net tension. Interestingly, the 

proposed UF-DQ model accurately and efficiently predicted this behaviour, underscoring the 

effectiveness of the method.  
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