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Abstract. In this paper we propose stabilized finite element methods for both Stokes’ and
Darcy’s problems that accommodate any interpolation of velocities and pressures. Apart from the
interest of this fact, the important issue is that we are able to deal with both problems at the same
time, in a completely unified manner, in spite of the fact that the functional setting is different.
Concerning the stabilization formulation, we discuss the effect of the choice of the length scale
appearing in the expression of the stabilization parameters, both in what refers to stability and to
accuracy. This choice is shown to be crucial in the case of Darcy’s problem. As an additional feature
of this work, we treat two types of stabilized formulations, showing that they have a very similar
behavior.
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1. Introduction. In this paper we present a unified finite element approxima-
tion of the Stokes and the Darcy problems, which allows the use of arbitrary conform-
ing velocity-pressure interpolations. The key ingredient in the unified treatment of
both problems is to consider a generalized Stokes problem with a source term that we
will call Stokes-Darcy problem (and which is also called the Brinkman model), and
define a functional setting that is well behaved both when the viscosity is zero (Darcy’s
problem) and when there is no source term (Stokes’ problem). This is possible not
only for the discrete finite element problem, but also at the space continuous level.
The analysis of the continuous case provides a valuable guide about the results to be
expected in the approximated problem. The graph norm for the diffusion-reaction op-
erator associated to the velocity allows us to construct a norm in the velocity-pressure
space that has the correct behavior in the limits v — 0 (zero viscosity, that is to say,
Darcy’s problem) and ¢ — 0 (infinite permeability, that is to say, the classical Stokes
problem).

The Galerkin approximation of both the Stokes and the Darcy problems requires
the use of velocity-pressure interpolations that satisfy the adequate inf-sup conditions
(see, for example, [6, 19]). Different interpolation pairs are known to satisfy this
condition for each problem independently, but the key issue is to find interpolations
that satisfy both at the same time. The design of this kind of mixed velocity-pressure
interpolations, even in the nonconforming case for the Stokes problem, is a difficult
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task (see [24, 1]). Furthermore, the resulting mixed interpolations are expensive and
in some cases restricted to specific typologies of meshes.

In order to alleviate this restriction, we choose here the use of stabilized finite
element methods. In fact, we will show that with the formulations we analyze, it is
possible to use any velocity-pressure pair, provided the discrete spaces are conforming.
The most important feature, however, is that the same formulation works for the
Stokes and the Darcy problems.

The framework of our stabilization techniques is the variational multiscale method,
proposed in the finite element context in [20, 21]. It is based on the decomposition
of the unknowns into their finite element component and a subscale, that is, the
component of the continuous unknown that cannot be captured by the finite element
mesh. However, we will not describe here neither the motivation of the formulations
nor the design of the stabilization parameters on which they depend. Our concern
is to analyze the convergence properties of the formulations and to show that they
are optimal in both the Stokes and the Darcy limits. We will see that the continuous
functional setting is reproduced by the stabilized finite element methods we analyze.
We consider two possibilities, namely, what we call an algebraic subgrid scale (ASGS)
approach and the orthogonal subscale stabilization (OSS) method.

An important aspect of the work presented is that we discuss the effect of the
choice of the length scale appearing in the expression of the stabilization parameters,
both in what refers to stability and to accuracy. This choice is shown to be crucial in
the case of Darcy’s problem. It is shown that depending on the order of the velocity
and pressure interpolations, one possibility might be more convenient than another.

The literature about stabilized finite element approximations for the Stokes and
the Darcy problems is vast, particularly for the former. For Darcy’s problem, one of
the stabilization techniques we will consider was proposed in [25] (and extended in
[26, 22]). Tt is what we will call ASGS formulation. The analysis, including the use
of discontinuous velocity interpolations, can be found in [7]. The second formulation,
the OSS method, is an extension to Darcy’s problem of the method proposed in [10].
The description of the ASGS approach and two other stabilization techniques (one
of them originally designed for the Stokes problem in [18]) can be found in [4]. An
alternative to the use of stabilization techniques for Darcy’s problem is to use least-
square formulations, which can also be used together with interpolations satisfying
the inf-sup condition (see, for example, [5]).

For both the ASGS and the OSS formulations, it is crucial to introduce pressure
jumps across interelement boundaries to allow the use of discontinuous pressure in-
terpolations. The motivation of our way to deal with these jumps can be found in
[15]. Similar ideas have been used in [14] applied to the three field formulation of the
Stokes problem.

Even though we will pay attention to the Darcy problem, our starting objective
is to deal with the Stokes—Darcy problem. The ASGS formulation allows us to do
that, and, in fact, a complete analysis was already undertaken in [11]. However, the
design of the stabilization parameters in that reference does not allow us to consider
v = 0, that is, the pure Darcy problem. Several other attempts based on some sort of
stabilization can be found in the literature. For example, in [9] it is proposed to use a
continuous linear velocity and piecewise constant pressure interpolation, since a com-
mon stabilization procedure can be designed for the Stokes and the Darcy problems
using this element (even though these two problems are studied independently).

Another reason of interest for the analysis of the Stokes and the Darcy prob-
lems is the coupling of both through interfaces, possibly using domain decomposition
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strategies. A way to deal with this problem is succinctly explained in section 5, and a
numerical example is presented in section 6. As it is indicated in section 5, our unified
formulation for both problems naturally motivates a monolithic approach to this cou-
pled problem. For the time being, let us mention that the choice of the approximation
spaces in each subproblem is crucial in the domain decomposition algorithm (see, for
example, [17, 16, 23, 27]). The possibility of using the same interpolation for each
subproblem offered by our stabilized formulations clearly simplifies the enforcement
of the transmission conditions on the interfaces.

The paper is organized as follows. In section 2 we state the continuous problem
and prove and inf-sup condition, which clearly displays the functional setting of the
problem. This analysis is valid for all values of viscosity and inverse of permeability,
including the case when one of these two parameters is zero. The analysis of the sta-
bilized formulations we propose is presented in section 3. We describe the stabilized
methods we wish to consider and prove optimal stability and convergence results for
each. These formulations depend on algorithmic parameters, the so-called stabiliza-
tion parameters, which, in turn, depend on a length scale of the problem that needs
to be chosen a priori. Whereas this length scale is irrelevant when there is viscosity, it
plays a crucial role in the accuracy of the stabilized Darcy formulation. To highlight
this effect, in section 4 we obtain L2-error estimates for the velocity and the pressure
using duality arguments for the Darcy problem. Section 5 is devoted to explain how
the coupling of Stokes and Darcy problems through interfaces can be done. The rates
of convergence predicted by the theory are confirmed in the numerical tests carried
out in section 6. Some concluding remarks close the paper in section 7.

2. Continuous problem.

2.1. Problem statement. Let Q C R? d = 2,3, be a polyhedral domain (with
Lipschitz boundary) where we consider the Stokes-Darcy (or Brinkman) problem,
which consists in finding a velocity u : 2 — R? and a pressure p : Q — R such that

(2.1) —vAu+ou+ Vp=f,
V-ou=y,

where f and g are given data and the physical parameters are the viscosity v and the
inverse of the permeability o. For simplicity, as boundary conditions we will consider
u=0ifr>0and n-u=0if v =0, n being the unit normal exterior to 2. In the
second case we could also consider the pressure prescribed on part of the boundary,
although this would not affect significantly the following developments. In all what
follows we will consider that either v or o may be zero, but obviously not both.

Let H3(Q)? be the space of vector-valued functions with components in H'()
with zero trace on 92, with dual H~1(Q)%, and let Hp(div,2) be the space of vector
fields in H(div, ), with zero normal trace on 9. If v > 0, the problem is well posed
if the unknowns are taken as u € Hi (), p € L?(Q2), and the data are such that
f e H Y Q) ge L*(Q). If v = 0, that is, for the Darcy problem, the problem can
be thought in two different ways:

1. The singular limit ¥ — 0. In this case it would be natural to require that

(2.3)  we Hy(div,Q), peL*(Q)/R, fe Hy(div,Q), g L*Q).

The limit v — 0 is singular in the sense that the regularity of the veloc-
ity drops from H'(Q)? to H(div,), but the regularity of the pressure is
maintained. The regularity required for the data is modified accordingly.
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2. A mixed formulation of the Poisson problem. In this case, the functional
setting is

(2.4) we LX) pe HYQ)/R, feL*Q)% ge H Q).

We may take f = 0. Otherwise, we may decompose f = Vpy + ug, with
V -up = 0, and take as unknowns u —ug and p — pg. Note that the boundary
condition n-u = 0 holds in H~1/2(9Q). In this case it would be convenient to
prescribe boundary conditions on the pressure, but, as it has been mentioned,
this is irrelevant for our discussion.

In fact, whichever the situation is, it will be determined by the data. In the next
subsection we will obtain an inf-sup condition that can be trivially translated into
velocity-pressure stability if the data are regular enough.

Let us denote by (f1, f2) the integral of two (generalized) functions f; and fo
(either scalar or vector-valued) in . The regularity of both is such that the integral
is well defined. For example, if fi € H}(Q), we may take fo € H~!(2). When both
f1, f2 € L3(Q), we will write their L?(Q) inner product as (f1, f2) = (f1, f2). The
associated norm will be denoted by || f1l|z2(0) = || f1]|. We will use || - |x to indicate
the norm in a Banach space X, with the abbreviation || - ||_; when X = H—1(Q).

Either in the situation (2.3) or in (2.4) the variational formulation of the problem
consists in finding a velocity-pressure pair [u,p] in the appropriate functional space
(to be specified in the following) such that

(2.5) B([u,p], [v,q]) = L([v,4q])

for all test functions [v, g], where the bilinear form B and the linear form L are defined
by

(2.6) B([u,pl, [v,q]) = v(Vu, Vo) + o(u,v) = (p, V- v) + (¢, V - u),
(2.7) L([v,q]) = (f,v) + (9,9)-

The correct functional setting of the problem for all values of v and ¢ is a consequence
of the inf-sup condition proved next.

2.2. Generalized stability estimate. Let us introduce the operator
Lu = —vAu+ou
and the associated graph norm
(2.8) lull = ]| Ve + o ful.

Let V, be the Banach space obtained as the closure of C’go(Q)d with respect to this
norm. Its dual space V. is endowed with the norm

(2.9) lw||zr == sup <u,v)'
veve |vlie

Obviously, Vy = H} (), Vi = H ()% if v > 0, and V; =V} = L2(Q)? if v = 0.
A key ingredient in the following discussion is the introduction of a characteristic

length scale of the problem that we denote by L, which may be taken, for example,

as the diameter of the computational domain 2. Whereas for the Stokes problem,
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its introduction is unnecessary, it will play a key role in the Darcy problem. The
ultimate reason to explain this fact is that in the Stokes case the seminorm ||Vul|
controls the whole norm in H} (€2)? because of the Poincaré-Friedrichs inequality, and
thus a stability estimate in this seminorm suffices. However, for the Darcy problem,
we need to control both w and V - u to obtain stability in H(div,(2), and the only
way to incorporate both norms in a single one is through the introduction of a length
scale. While this discussion might seem unnecessary to obtain theoretical stability
estimates (and thus to determine the functional framework of the problem), it will
lead to important consequences in the discrete finite element problem.

Let now V be the closure of C§°(€2)%, with respect to the norm ||v|| 2 ++/& Lo|| V-0 ||
and Q the closure of C*°(Q)/R, with respect to (v 4o L3)~"/?||q|| + || Vq||z:. The pair
V x Q reduces to H}(Q)4 x L?(€2)/R when v > 0 and to Ho(div, Q) x H(Q)/R when
r=0. On V x @ we define

(2.10) llv, glI* = [[vl|Z + o L3]IV - w]|* + +I1VallZ-

2
ol
Let us anticipate that this will be the finest norm in which stability can be proved
without using shift assumptions that involve the regularity of the domain (see Re-
mark 2.1 below).

In what follows, C' denotes a positive constant, in our case independent of v,
o, and Ly. When dealing with the finite element approximated problem, it will be
independent also of the mesh size h. The value of C' may be different at different
occurrences. We will use the notation A 2 B and A < B to indicate that A > CB
and A < CB, respectively, where A and B are expressions depending on functions
that in the discrete case may depend on h as well.

THEOREM 2.1 (stability of the continuous problem). There exists a constant C
such that for all [u,p] € V x Q there exists [v,q] € Vi x L*(Q) for which

B([u, pl, [v,q]) = Cll[w, plll [[v, dlllv, x 222,

where the bilinear form B is given in (2.6) and the norm ||-|| in (2.10).
Proof. Let [u,p] be given. For [v1,q1] = [u,p],

(2.11) B([u,pl, [v1,q1]) = [[ul|Z-

Because the divergence operator is onto both from H}(Q)¢ and from Hg(div, Q) to
L?(Q2), we have the inf-sup conditions:

Vp € L2(Q) there exist v, € H&(Q)d | —(p,V-v,) Z |l Vopll,

1
Vp € L*(Q) there exist v, € Ho(div,Q) | — (p,V -v,) = |p|| <L—O|vp| +|V- vp|> .

In the first case we have |Vo,| 2 (LiOvaH + ||V - vp]|) (using Poincaré-Friedrichs’s
inequality), so that for the spaces V and @ we have defined, we have that for all
p € Q, there exists v, € V such that

=,V -vp) 2 pll

1
N (VVIVUpll + Vo vyl + VTLo|IV - v, -
We may choose v, such that

1

—F—=|PI|»
NETI A

VIVl + Vollvp] + VoLol|V - vy =
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which is dimensionally consistent. For [vs, g2] = [vp, 0],
B s My ) 2 - \% \% - T 72 2
([u,p], [v2, ¢2]) 2 —VI[Vul[[Vvp|| — oflullllvp]| + V+UL%||1?||
> - 2
2 ~lulleliople + sz bl
1 1
2 ~lullz pll + pl?
Il ol + 5
1
2.12 > —||lul|z + ——=lIpl®
(212) 2l + o

For w € V, we have V - u € L?(Q). Taking [vs,q3] = [0,0L3V - u] we have
(2.13) B([u,p], [v3, 3]) = o Lg||V - u|*.
Let now vy € V. be such that

(Vp, vg>

IVpller = :
[vgll

We may choose vy such that ||vg||z = ||Vp|lzr. For [va, qs] = [vg,0],

B([u,pl, [va, qa]) = —v||[Vul[[Vog|| - allullvg] + [VplZ
(2.14) 2 —llullz +[1VplZ-

Let [v,q] = Y0, ai[vi,qi] € Ve x L(Q), oy € R. From (2.11)(2.14) it is seen
that the coefficients «; can be chosen so that

B([u,pl, [v,q]) 2 I[w. plI*-

The theorem follows noting that for any combination of coefficients a; € R, we have
o, alllvexra S Uwpll. D
Remark 2.1.
1. The working norm is optimal. Observe that

1 1
I, allP = v Full® + el + 21Vl when o = 0,

1 1
I, qlI* = ollul® + o L3IV -l + 7 lpl* + ZIVPI*  when v =0,
oLj o

2. Stability in ||-|| for the solution of problem (2.5) will be obtained provided
the data are regular enough, that is, f € V. and g € L?(Q)' = L*(Q). If
the data are less regular, stability for [u,p] can be proved in norms weaker
than ||-||, and therefore [u,p] will belong to larger functional spaces than
V x Q. In particular, for ¢ = 0, we may take f € H~*(Q)? but for v = 0,
if f € Ho(div, ), control on 1{|Vp||? is lost, whereas if g € H~(2) (mixed
formulation of the Poisson problem) control on o L3||V-u/|? is lost (u € L?(Q)¢
only, we do not have u € Hy(div,€?)). These facts are easily deduced from
the proof of Theorem 2.1.
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3. Analysis of stabilized finite element method for the generalized
Stokes—Darcy problem.

3.1. Preliminaries. Let us introduce some notation. The finite element par-
tition will be denoted by P, = {K}, and summation over all the elements will be
indicated as ) . The collection of all interior edges (faces, for d = 3) will be
denoted by &, = {E}, and as for the elements, summation over all these edges
will be indicated as ) 5. Consistently with the notation introduced previously, the
symbol (f1, fo)p will be used to denote the integral of the product of functions f;
and fy over D, with D = K (an element), D = 0K (an element boundary), or
D = E (an edge). Likewise, ||f1]|2, := (f1, f1)p. Suppose now that elements K;
and Ky share an edge F, and let ny and ms be the normals to E exterior to K;
and Ky, respectively. For a scalar function f, possibly discontinuous across E, we
define its jump as [nf]; := niflox,ne + N2 flor,ne, and for a vector or tensor v,
[n-v]g ==n1-v|ok,nE + N2 V]ok.nE-

We will consider, for the sake of conciseness, quasi-uniform finite element parti-
tions (for the analysis of the stabilized formulation in the more general nondegenerate
case, see [13]). Therefore, we assume that there is a constant Ciyy, independent of
the mesh size h (the maximum of all the element diameters), such that

(3.1) IVorllk < Cinvh ™ Mlonllx,  [[Avk |l < Cinvh™ |V

for all finite element functions vy, defined on K € Pj. This inequality can be used for
scalars, vectors, or tensors. Similarly, the trace inequality

(3:2) i3k < Cor (R0l + RIIVYII%)

is assumed to hold for functions v € H'(K), K € Pj,. The last term can be dropped if
v is a polynomial on the element domain K. Thus, if ¢} is a piecewise discontinuous
polynomial (the pressure, in our case) and v}, a continuous one, it follows that

(3-3) D lnenlll <2Cwh™ > el
E K

| —

(3.4) S nl3 < 5Cuh ™ S nlk
E K

Given a function v, let 05, be an interpolant of v in the finite element space. Using
the trace inequality (3.2) we have that

Yo llnw =)l <2 llv—tall5k
E

K

<2Cy Y (h v = Ball + RlIVY = Vi)
K

so that we obtain the two expressions we will use:

(35) D lln—a)]E S (A w) + hef(v) S hY olt ), J = 1.2,
E

where £;(v) = [v—0n|gi(q), |- |mi (o) being the seminorm in H*(£2). The same estimate
holds for a continuous interpolation:

(3.6) Dol —an)lE S (W' (v) + hel(v)) .
E
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3.2. Stabilized finite element methods. In this subsection we describe the
two stabilized finite element methods we shall consider. As it has been mentioned,
both can be cast in the variational multiscale framework [20, 21]. However, we will
not present the motivation, which can be found in [2].

Let V}, and @}, be the finite element spaces to approximate the velocity and the
pressure, respectively. The two methods to be analyzed can be written as follows:
find [uh,ph] € Vi X Qp, such that

(3.7) Bs([wh, pnls [vns an]) = Ls([vn, qn])

Y [Vn, qn] € Vi, X Qp. The bilinear form B, and the linear form L, are modifications
of B and L (defined in (2.6) and (2.7), respectively) that depend on the stabilized
formulation being used.

3.2.1. ASGS method. In this case, the forms B and L are given by
Bs([wn, pul; [vn, an]) = B([un, pr], [vh, qn])
+sz (V-up, V-vp) g
K

+ Ty Z (—vAuy, + oup, + Vpp, vAvy, — ov + Van) i
K

(3.8) + 75> ([npn — voun ], [ngn + v0,vn]) 4,
E

Ls([vn, qn]) = L([vh, qn])
+ T;DZ <gvv 'vh>K
K

(3.9) +Tuz<f,VA’vh —ovn + Van) g,
K

where 7,, 7, and 7; are the so-called stabilization parameters that we compute as

(3.10) T = cv + ol
(3.11) Tu = (v + cgafi)_l h?,
(3.12) 7= (v + 05052)71 h,

with ¢, b, and ¢4 algorithmic constants. In these expressions we have introduced
the length scales ¢, and ¢,, which can be taken either as Lo, h or (Loh)l/g; these
two length scales cannot be chosen independently because they have to satisfy some
conditions that are required in the numerical analysis. Even though it is not our
purpose here to motivate the introduction of these length scales, let us briefly mention
which is their origin (see [2] for a more detailed description in the Darcy case). In
order to define a norm in the space of forcing terms (or, equivalently, in the space of
finite element residuals) it is necessary to introduce scaling coefficients y1,, and p,, such
that g, |f|* + pplg|® is dimensionally consistent. This scaling is necessary in order to
obtain approximations for the subscales on which the method is based, in the spirit
of [20, 12]. Using the approximate Fourier analysis proposed in [12], the stabilization
parameters (3.10)—(3.11) are found, now depending on g, and p,. In turn, these
scaling coefficients depend on a length scale of the problem that may be taken as L
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or h. The different choices lead to the different possibilities we will consider for £,
and /.

Concerning the design of (3.12) and, in fact, of the terms involving the jumps
across interelement edges in (3.8), their motivation can be found in [15]. Note, in
particular, the change in the sign of —v0,u;, and vO,vy.

Let us also mention that we have considered the stabilization parameters constant
for the sake of simplicity. If the mesh is not quasi-uniform, they should be computed
elementwise (see [13]). In the case of variable viscosity or permeability, the approach
proposed could be extended evaluating these parameters pointwise, inside the element
integrals.

3.2.2. OSS method. Let us denote by P the projection onto the finite element
space of either velocities or pressures. Whether it is one case or the other will be
determined by whether P is applied to vectors (first case) or to scalars (second case).

The bilinear form B, and the linear form Ly in the OSS method are given by

Bs([wn, pul; [vn, an]) = B([un, pr], [vn, qn])

+TPZ<PL(V~U}1),V-’U}I>K
K

+ Ty Z <PL(Vph), th>K

K

(3.13) +75 > ([npn — vOuwn ]|, [ngn + vOuvn]) g,
E

(3.14) Ls([vn, qn]) = L([vn, qn])-

The stabilization parameters are the same as for the ASGS method, given by (3.10)—
(3.12). We will infer from the numerical analysis that ¢, < ¢, will be required for
stability (see Theorem 3.3) and ¢, > ¢, for accuracy (see Theorem 3.4), so that, in
fact, we will have to consider £, = £,,.

3.2.3. Working norm and error function. Let us define the mesh dependent
norm

1

2 2 2 2 2
v = ||v +olZ||V v + —

|||[ hﬂqh””h || h”ﬁ pH hH v l(Q)thH

h? h
15 2 L 2
(3.15) +V+U%;|\thnf<+yw% EE:H[[nqhﬂnE,

where ¢, and /,, are the length scales introduced in the stabilization parameters (3.10)—
(3.12). This is precisely the norm in which the numerical analysis will be performed,
that is to say, stability and convergence will be proved in this norm, both for the ASGS
and the OSS methods.

We define
(3.16)
E(h)* = (v+ 0612)) (R %eg(u) +e1(u)) + oe(u) + 1/ —:Loﬁ (R %e5(p) +3(p)) -

It will be proved that this is precisely the error function of the method in the previous
norm (recall that €;(v) is the interpolation error of function v in the norm of H*(2)).
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3.2.4. Simplified methods for continuous pressures in the Darcy prob-
lem. Both the ASGS and the OSS methods can be simplified in the case of contin-
uous pressures and Darcy’s problem in the case 7, = 0. Assuming f € L2(2)? and
g € L*(Q), it is immediately checked that these methods reduce to the following:

ASGS method. In this case

1
o(un,vy) + (Vpn,vn) — (Van, un) + E(UUh + Vpn, —ov, + Vap)
2

(3.17) = (vp, f) + %(—U’vh-l-th,f)—‘r(qh,g),
ocy

from where

1 1
(1 - _u) B(lwn, pnl; [V, an]) + — (Van, Vin)
€2 oc

= (1 - ciu) L([vn, qn]) + lu(th,f) + 2 (qn 9),

z ocy s
which can be understood as the a combination
(1 — a) Galerkin equation + a (weak form of —2Ap, = =1V . f+g),

with o = 1/c4. We obtain precisely the method called Galerkin stabilization in [4]
(with a different definition of the coefficient «). From this discussion we see that it
corresponds, in fact, to the ASGS formulation in the case of continuous pressures.
Note that the method is different from the Galerkin—least-squares method because of
the sign of —owy, in (3.17) (see [4]).
0SS method. In this case
1
o(un,vu) + (Vpr,vn) — (Van, un) + F(Vph = P(Vpn), Van) = (vn, f) + (qn, 9)-
2

Taking g, = 0 it is seen that

oup + P(Vpr) = P(f) in Vj,

from where

1 1
o(un,vn) + (Vpn,vn) — (1 - —u) (Van, un) + —(Van, Vpn)
ch ocy

— o)+ (1= %) @) + (0, PD) + e (anvo),

u
2 2 C2
which can be understood as

first Galerkin equation + (1 — «) second Galerkin equation
+ a(weak form of —2Ap, = =1V P(f) + g),

with o = 1/¢4 and where the first Galerkin equation refers to that obtained with
qrn = 0 and the second to the one obtained with v;, = 0. If we redefine ¢;, appropriately,
we see that the method coincides with (3.17) except for the projection P applied to
f, which is usually constant and belongs to the finite element space for Darcy flow.
Apart from this detail, when o = 1, the OSS method is equivalent to the standard
Galerkin approximation of the second order elliptic problem (only in terms of p) using
Q. and a postprocess of fluxes using an L2-projection of Vp;, onto V},; for the ASGS
approximation, this choice leads to a singular problem.
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3.3. Analysis of the ASGS formulation. In this section we will state and
prove two main theorems, both for the ASGS and the OSS methods, one establishing
stability in the form of inf-sup condition and the other given convergence in the norm
(3.15). We start in this section with the ASGS method.

THEOREM 3.1 (stability of the ASGS formulation). Suppose that the constants
c1 and ¢4 in (3.10)~(3.11) are large enough (in particular, c; > 2(CZ, + Cy) and
cy > 2, with Ciyy and Cyy introduced in (3.1) and (3.2), respectively). Then, there
exists a constant C' such that

(3.18)  V[un,pn| there exists [vn,qn] | Bs([wn, pal, [Vn;qn]) = Clllwn, pulllnllvn, anllln,

where By is defined in (3.8).
Proof. Let us start taking the test function equal to the unknown, using the inverse
estimate (3.1), the trace inequality (3.3), and Schwartz and Young’s inequalities:

Bs([un, pr], [wn, pn])

= v||Vaun|® + ollun)® + 7> (IVpallk — | — vAus + oun| %)
K

1V wn® e D s 1% — 0 Y 1T Onun I
E E

C? Cir
>y <1 — 2 v Zsz/—t> ||Vuh||2 +o(l— ZTHU)HuhHZ + 7|V - uh||2
(3.19) h

h2

+7u ) IIVenllic + 75 Y I lnen ]l %
K E

The coefficients within parenthesis are positive for any choice of physical parameters,
provided (sufficient conditions)

2h?
02
The second condition reduces to c¢§ > 2 for ¢,, = h. For the other choices of ¢,, the
second condition always holds for a small enough h. Note that we have used that
Tf =Ty /h.

The only term missing in the right-hand side of (3.19) from ||-||3 is the L?-norm
of the pressure. In order to introduce it, let us note that from the inf-sup condition

for the continuous problem, it turns out that for all p;, € @)y, there exists v, € V such
that

1
- h,V'U Z h 7(
(p p) 2P Hm

We may choose v,, such that

Vv + 02|V, || + Vollvll + Vo LoV - v, =

c > 2 (CiQm, + Ctr) s C; >

VGBIVl + Valvy | + VLl - vl

Lol
—F——=||Phll|-
Vv+oL3

Let ¥, be a H!-continuous finite element interpolant of v,, e.g., defined by the
Scott—Zhang or the Clément operator (see [19]). Because of the continuity of this
interpolant,

- - - 1
Vv + 0G| Vopnll + Vol [Opnll + VoLolV - tpul § ——=Ipall-
Vv +oLg
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For [v2, g2] = [0p,n, 0], we have

By([un, prl, [v2, ¢2])
> —v||Vup|[[VO, ull = ollunlll|Opnll = IV - wnl[|V - 0yl

+ Tu Z (—vAup + oup + Vpn, VA, ) — 0Up4) g

K
5 {lmpn — v0uun ] v[ Oy ])
E
(3.20) - (pn, V- 'Up) - (pn, V- (f’p,h - 'Up))-

The term that provides pressure stability is

1
21 - vy) > ———|pnl?
(3 ) (phav 'Up) ~ V+O'Lg ||ph|| )

by virtue of the choice of the norm of v,. Let us bound the different terms appearing
in (3.20). Using Young’s inequality we will have that

— v[Vunl[[[Vopull = ollunllpnll = 7ollV - unll[|V - 0p,nll
2 =B (VIIVur | + ollun]? + 7|V - wn|?)

1 - - -
- E (’/Hv'vp,th + UH”;DJL”Q + 7|V ”p,th)

1 1

2 2 2
(3.22) 2 b1 (WVun|® + ollunl® + 7|V - unl?) — Bt oLl

[lpn1?
for any constant 7 > 0. In the following we will denote by (;, i = 1,2, 3, 4, constants
appearing from the application of Young’s inequality that, at the end, will be chosen
to be sufficiently large.

The next term to bound in (3.20) is

Tu Z <—uAuh + oup + Vpn, VA'ﬁp.,h - Uﬁp,h>}(

K
> QOiznv 2 2 2 2
2 —Boru > _ (VP2 | Va5 + o unllk + [ Vpall%
IR h
1 Ci2nV bk n
——TuZ(v2 ; ||va7h||%<+cr?||vp,h|%()
Byt h
(3.23) >~ (vIVunll® + ol + 7 S 1VoRI% ) — ——— ol
< — Bov+oL?

where we have used the fact that ¢;7,v < h? and cyT,0 < 1. We can also bound

7Y ([npn — vouun ], v[0u0p0])

E

1 i
2 =05 Y mpn]l% — Bo7v® Y [ Onun ][ — 5—Tfl/2 Y l0wpn ]l
(3.24) B B N

1 1
2 =7 3 Ml % = Bvl VunlP = 5=
E
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where we have made use of (3.3). Finally,

= (Pn, V- (Opp —vp)) = Z (Vpn, Up,n — 'Up>K - Z {(npn, Op,n — 'Up>aK
K K

> = IVoullxlpn = vpllx =Y eIzl 8pn — vplle
K E

64}1‘2 2 ﬂ4h ) 2
Z—Haﬁ ZIIVthK— Znn npn]|3 - <u+ae )|V, |

Bah
(325)  z-t WZHVMHK s+ o 2 Nren Il - 5 — L2|\ph|\2

where we have used Young’s inequality, the first inverse estimate in (3.1), and the
trace inequality in (3.2). The theorem follows taking the constants §;, i = 1,2,3,4,
sufficiently large, combining (3.21)—(3.25) in (3.20) and the result with (3.19). O

Remark 3.1. Let us compare the working norms of the continuous and the discrete
problems, for simplicity in the case of continuous pressure interpolations:

1
I[v,qllI> = o)z + o L3IV - v||* + ——=lalI* + [ VallZ/,
v+olL3

2

[Vanl?.

1
2 2 2 2 2
lwn, anllln = llvnllz + oIV - vnll” + m”%” + vt o2

We have the following options:

e !/, = Lo and ¢, = h. The discrete norm would reproduce the continuous
norm, provided the discrete counterpart of || Vq||%, is considered to be (v/h?+
o)~ Y|Vaqn]|?. This is obviously the case when v = 0. When v > 0, the
H~1(Q)-norm of Vq has to be replaced by h?||Vqxl|?.

e (, = Lo and ¢, = Ly. We loose pressure stability in H'({2) when v = 0, but
the rest of terms are optimal.

e /[, = h and ¢, = Lo. We loose pressure stability in H'(Q2) and velocity
stability in H(div, Q) when v = 0. We will see that this case is not allowed
by the convergence analysis.

e (, =h and ¢, = h. We loose velocity stability in H(div, ) when v = 0, but
the rest of terms are optimal.

Even if it is difficult to motivate the choice from the stability analysis, we will see in
section 4 that from the accuracy point of view the optimal choice is £, = ¢, = (Loh)'/?
when equal velocity-pressure interpolation is used.

THEOREM 3.2 (convergence of the ASGS formulation). Let [u,p] be the solution
of the continuous problem (2.5) and [up,py] the solution of (3.7) with Bs and Ly
given in (3.8) and (3.9), respectively. Suppose that £, > {,, and the assumptions of
Theorem 3.1 hold. Then

(3.26) Illw —wn,p = pullln < E(h),

where the error function E(h) is given in (3.16).
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Proof. Let [uy, pr] be the interpolant of [u,p]. By definition of E(h) and |||»
and the fact that £, < Ly,

(3.27) Illw —@n,p = pullln < E(h),

where we have used (3.5). This is, in fact, the inequality that determines the form of
the error function E(h).
On the other hand, there exists [vp,