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Abstract. In this paper we propose stabilized finite element methods for both Stokes’ and
Darcy’s problems that accommodate any interpolation of velocities and pressures. Apart from the
interest of this fact, the important issue is that we are able to deal with both problems at the same
time, in a completely unified manner, in spite of the fact that the functional setting is different.
Concerning the stabilization formulation, we discuss the effect of the choice of the length scale
appearing in the expression of the stabilization parameters, both in what refers to stability and to
accuracy. This choice is shown to be crucial in the case of Darcy’s problem. As an additional feature
of this work, we treat two types of stabilized formulations, showing that they have a very similar
behavior.
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1. Introduction. In this paper we present a unified finite element approxima-
tion of the Stokes and the Darcy problems, which allows the use of arbitrary conform-
ing velocity-pressure interpolations. The key ingredient in the unified treatment of
both problems is to consider a generalized Stokes problem with a source term that we
will call Stokes–Darcy problem (and which is also called the Brinkman model), and
define a functional setting that is well behaved both when the viscosity is zero (Darcy’s
problem) and when there is no source term (Stokes’ problem). This is possible not
only for the discrete finite element problem, but also at the space continuous level.
The analysis of the continuous case provides a valuable guide about the results to be
expected in the approximated problem. The graph norm for the diffusion-reaction op-
erator associated to the velocity allows us to construct a norm in the velocity-pressure
space that has the correct behavior in the limits ν → 0 (zero viscosity, that is to say,
Darcy’s problem) and σ → 0 (infinite permeability, that is to say, the classical Stokes
problem).

The Galerkin approximation of both the Stokes and the Darcy problems requires
the use of velocity-pressure interpolations that satisfy the adequate inf-sup conditions
(see, for example, [6, 19]). Different interpolation pairs are known to satisfy this
condition for each problem independently, but the key issue is to find interpolations
that satisfy both at the same time. The design of this kind of mixed velocity-pressure
interpolations, even in the nonconforming case for the Stokes problem, is a difficult
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1972 SANTIAGO BADIA AND RAMON CODINA

task (see [24, 1]). Furthermore, the resulting mixed interpolations are expensive and
in some cases restricted to specific typologies of meshes.

In order to alleviate this restriction, we choose here the use of stabilized finite
element methods. In fact, we will show that with the formulations we analyze, it is
possible to use any velocity-pressure pair, provided the discrete spaces are conforming.
The most important feature, however, is that the same formulation works for the
Stokes and the Darcy problems.

The framework of our stabilization techniques is the variational multiscale method,
proposed in the finite element context in [20, 21]. It is based on the decomposition
of the unknowns into their finite element component and a subscale, that is, the
component of the continuous unknown that cannot be captured by the finite element
mesh. However, we will not describe here neither the motivation of the formulations
nor the design of the stabilization parameters on which they depend. Our concern
is to analyze the convergence properties of the formulations and to show that they
are optimal in both the Stokes and the Darcy limits. We will see that the continuous
functional setting is reproduced by the stabilized finite element methods we analyze.
We consider two possibilities, namely, what we call an algebraic subgrid scale (ASGS)
approach and the orthogonal subscale stabilization (OSS) method.

An important aspect of the work presented is that we discuss the effect of the
choice of the length scale appearing in the expression of the stabilization parameters,
both in what refers to stability and to accuracy. This choice is shown to be crucial in
the case of Darcy’s problem. It is shown that depending on the order of the velocity
and pressure interpolations, one possibility might be more convenient than another.

The literature about stabilized finite element approximations for the Stokes and
the Darcy problems is vast, particularly for the former. For Darcy’s problem, one of
the stabilization techniques we will consider was proposed in [25] (and extended in
[26, 22]). It is what we will call ASGS formulation. The analysis, including the use
of discontinuous velocity interpolations, can be found in [7]. The second formulation,
the OSS method, is an extension to Darcy’s problem of the method proposed in [10].
The description of the ASGS approach and two other stabilization techniques (one
of them originally designed for the Stokes problem in [18]) can be found in [4]. An
alternative to the use of stabilization techniques for Darcy’s problem is to use least-
square formulations, which can also be used together with interpolations satisfying
the inf-sup condition (see, for example, [5]).

For both the ASGS and the OSS formulations, it is crucial to introduce pressure
jumps across interelement boundaries to allow the use of discontinuous pressure in-
terpolations. The motivation of our way to deal with these jumps can be found in
[15]. Similar ideas have been used in [14] applied to the three field formulation of the
Stokes problem.

Even though we will pay attention to the Darcy problem, our starting objective
is to deal with the Stokes–Darcy problem. The ASGS formulation allows us to do
that, and, in fact, a complete analysis was already undertaken in [11]. However, the
design of the stabilization parameters in that reference does not allow us to consider
ν = 0, that is, the pure Darcy problem. Several other attempts based on some sort of
stabilization can be found in the literature. For example, in [9] it is proposed to use a
continuous linear velocity and piecewise constant pressure interpolation, since a com-
mon stabilization procedure can be designed for the Stokes and the Darcy problems
using this element (even though these two problems are studied independently).

Another reason of interest for the analysis of the Stokes and the Darcy prob-
lems is the coupling of both through interfaces, possibly using domain decomposition
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strategies. A way to deal with this problem is succinctly explained in section 5, and a
numerical example is presented in section 6. As it is indicated in section 5, our unified
formulation for both problems naturally motivates a monolithic approach to this cou-
pled problem. For the time being, let us mention that the choice of the approximation
spaces in each subproblem is crucial in the domain decomposition algorithm (see, for
example, [17, 16, 23, 27]). The possibility of using the same interpolation for each
subproblem offered by our stabilized formulations clearly simplifies the enforcement
of the transmission conditions on the interfaces.

The paper is organized as follows. In section 2 we state the continuous problem
and prove and inf-sup condition, which clearly displays the functional setting of the
problem. This analysis is valid for all values of viscosity and inverse of permeability,
including the case when one of these two parameters is zero. The analysis of the sta-
bilized formulations we propose is presented in section 3. We describe the stabilized
methods we wish to consider and prove optimal stability and convergence results for
each. These formulations depend on algorithmic parameters, the so-called stabiliza-
tion parameters, which, in turn, depend on a length scale of the problem that needs
to be chosen a priori. Whereas this length scale is irrelevant when there is viscosity, it
plays a crucial role in the accuracy of the stabilized Darcy formulation. To highlight
this effect, in section 4 we obtain L2-error estimates for the velocity and the pressure
using duality arguments for the Darcy problem. Section 5 is devoted to explain how
the coupling of Stokes and Darcy problems through interfaces can be done. The rates
of convergence predicted by the theory are confirmed in the numerical tests carried
out in section 6. Some concluding remarks close the paper in section 7.

2. Continuous problem.

2.1. Problem statement. Let Ω ⊂ R
d, d = 2, 3, be a polyhedral domain (with

Lipschitz boundary) where we consider the Stokes–Darcy (or Brinkman) problem,
which consists in finding a velocity u : Ω −→ R

d and a pressure p : Ω −→ R such that

−νΔu + σu + ∇p = f ,(2.1)
∇ · u = g,(2.2)

where f and g are given data and the physical parameters are the viscosity ν and the
inverse of the permeability σ. For simplicity, as boundary conditions we will consider
u = 0 if ν > 0 and n ·u = 0 if ν = 0, n being the unit normal exterior to ∂Ω. In the
second case we could also consider the pressure prescribed on part of the boundary,
although this would not affect significantly the following developments. In all what
follows we will consider that either ν or σ may be zero, but obviously not both.

Let H1
0 (Ω)d be the space of vector-valued functions with components in H1(Ω)

with zero trace on ∂Ω, with dual H−1(Ω)d, and let H0(div,Ω) be the space of vector
fields in H(div,Ω), with zero normal trace on ∂Ω. If ν > 0, the problem is well posed
if the unknowns are taken as u ∈ H1

0 (Ω)d, p ∈ L2(Ω), and the data are such that
f ∈ H−1(Ω)d, g ∈ L2(Ω). If ν = 0, that is, for the Darcy problem, the problem can
be thought in two different ways:

1. The singular limit ν → 0. In this case it would be natural to require that

u ∈ H0(div,Ω), p ∈ L2(Ω)/R, f ∈ H0(div,Ω)′, g ∈ L2(Ω).(2.3)

The limit ν → 0 is singular in the sense that the regularity of the veloc-
ity drops from H1(Ω)d to H(div,Ω), but the regularity of the pressure is
maintained. The regularity required for the data is modified accordingly.
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1974 SANTIAGO BADIA AND RAMON CODINA

2. A mixed formulation of the Poisson problem. In this case, the functional
setting is

u ∈ L2(Ω)d, p ∈ H1(Ω)/R, f ∈ L2(Ω)d, g ∈ H−1(Ω).(2.4)

We may take f = 0. Otherwise, we may decompose f = ∇p0 + u0, with
∇·u0 = 0, and take as unknowns u−u0 and p−p0. Note that the boundary
condition n·u = 0 holds in H−1/2(∂Ω). In this case it would be convenient to
prescribe boundary conditions on the pressure, but, as it has been mentioned,
this is irrelevant for our discussion.

In fact, whichever the situation is, it will be determined by the data. In the next
subsection we will obtain an inf-sup condition that can be trivially translated into
velocity-pressure stability if the data are regular enough.

Let us denote by 〈f1, f2〉 the integral of two (generalized) functions f1 and f2
(either scalar or vector-valued) in Ω. The regularity of both is such that the integral
is well defined. For example, if f1 ∈ H1

0 (Ω), we may take f2 ∈ H−1(Ω). When both
f1, f2 ∈ L2(Ω), we will write their L2(Ω) inner product as 〈f1, f2〉 ≡ (f1, f2). The
associated norm will be denoted by ‖f1‖L2(Ω) ≡ ‖f1‖. We will use ‖ · ‖X to indicate
the norm in a Banach space X , with the abbreviation ‖ · ‖−1 when X = H−1(Ω).

Either in the situation (2.3) or in (2.4) the variational formulation of the problem
consists in finding a velocity-pressure pair [u, p] in the appropriate functional space
(to be specified in the following) such that

B([u, p], [v, q]) = L([v, q])(2.5)

for all test functions [v, q], where the bilinear form B and the linear form L are defined
by

B([u, p], [v, q]) = ν(∇u,∇v) + σ(u,v) − (p,∇ · v) + (q,∇ · u),(2.6)
L([v, q]) = 〈f ,v〉 + 〈g, q〉.(2.7)

The correct functional setting of the problem for all values of ν and σ is a consequence
of the inf-sup condition proved next.

2.2. Generalized stability estimate. Let us introduce the operator

Lu := −νΔu + σu

and the associated graph norm

‖u‖2
L := ν‖∇u‖2 + σ‖u‖2.(2.8)

Let VL be the Banach space obtained as the closure of C∞
0 (Ω)d with respect to this

norm. Its dual space V ′
L is endowed with the norm

‖u‖L′ := sup
v∈VL

〈u,v〉
‖v‖L .(2.9)

Obviously, VL = H1
0 (Ω)d, V ′

L = H−1(Ω)d if ν > 0, and VL = V ′
L = L2(Ω)d if ν = 0.

A key ingredient in the following discussion is the introduction of a characteristic
length scale of the problem that we denote by L0, which may be taken, for example,
as the diameter of the computational domain Ω. Whereas for the Stokes problem,

D
ow

nl
oa

de
d 

09
/0

3/
19

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FE FOR THE STOKES AND THE DARCY PROBLEMS 1975

its introduction is unnecessary, it will play a key role in the Darcy problem. The
ultimate reason to explain this fact is that in the Stokes case the seminorm ‖∇u‖
controls the whole norm in H1

0 (Ω)d because of the Poincaré–Friedrichs inequality, and
thus a stability estimate in this seminorm suffices. However, for the Darcy problem,
we need to control both u and ∇ · u to obtain stability in H(div,Ω), and the only
way to incorporate both norms in a single one is through the introduction of a length
scale. While this discussion might seem unnecessary to obtain theoretical stability
estimates (and thus to determine the functional framework of the problem), it will
lead to important consequences in the discrete finite element problem.

Let now V be the closure of C∞
0 (Ω)d, with respect to the norm ‖v‖L+

√
σL0‖∇·v‖

and Q the closure of C∞(Ω)/R, with respect to (ν+σL2
0)

−1/2‖q‖+‖∇q‖L′ . The pair
V ×Q reduces to H1

0 (Ω)d ×L2(Ω)/R when ν > 0 and to H0(div,Ω)×H1(Ω)/R when
ν = 0. On V ×Q we define

|||[v, q]|||2 := ‖v‖2
L + σL2

0‖∇ · v‖2 +
1

ν + σL2
0

‖q‖2 + ‖∇q‖2
L′ .(2.10)

Let us anticipate that this will be the finest norm in which stability can be proved
without using shift assumptions that involve the regularity of the domain (see Re-
mark 2.1 below).

In what follows, C denotes a positive constant, in our case independent of ν,
σ, and L0. When dealing with the finite element approximated problem, it will be
independent also of the mesh size h. The value of C may be different at different
occurrences. We will use the notation A � B and A � B to indicate that A ≥ CB
and A ≤ CB, respectively, where A and B are expressions depending on functions
that in the discrete case may depend on h as well.

Theorem 2.1 (stability of the continuous problem). There exists a constant C
such that for all [u, p] ∈ V ×Q there exists [v, q] ∈ VL × L2(Ω) for which

B([u, p], [v, q]) ≥ C|||[u, p]||| ‖[v, q]‖VL×L2(Ω),

where the bilinear form B is given in (2.6) and the norm |||·||| in (2.10).
Proof. Let [u, p] be given. For [v1, q1] = [u, p],

B([u, p], [v1, q1]) = ‖u‖2
L.(2.11)

Because the divergence operator is onto both from H1
0 (Ω)d and from H0(div,Ω) to

L2(Ω), we have the inf-sup conditions:

∀p ∈ L2(Ω) there exist vp ∈ H1
0 (Ω)d | − (p,∇ · vp) � ‖p‖‖∇vp‖,

∀p ∈ L2(Ω) there exist vp ∈ H0(div,Ω) | − (p,∇ · vp) � ‖p‖
(

1
L0

‖vp‖ + ‖∇ · vp‖
)
.

In the first case we have ‖∇vp‖ � ( 1
L0

‖vp‖ + ‖∇ · vp‖) (using Poincaré–Friedrichs’s
inequality), so that for the spaces V and Q we have defined, we have that for all
p ∈ Q, there exists vp ∈ V such that

−(p,∇ · vp) � ‖p‖ 1√
ν + σL2

0

(√
ν‖∇vp‖ +

√
σ‖vp‖ +

√
σL0‖∇ · vp‖

)
.

We may choose vp such that

√
ν‖∇vp‖ +

√
σ‖vp‖ +

√
σL0‖∇ · vp‖ =

1√
ν + σL2

0

‖p‖,
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which is dimensionally consistent. For [v2, q2] = [vp, 0],

B([u, p], [v2, q2]) � −ν‖∇u‖‖∇vp‖ − σ‖u‖‖vp‖ +
1

ν + σL2
0

‖p‖2

� −‖u‖L‖vp‖L +
1

ν + σL2
0

‖p‖2

� −‖u‖L 1√
ν + σL2

0

‖p‖ +
1

ν + σL2
0

‖p‖2

� −‖u‖2
L +

1
ν + σL2

0

‖p‖2.(2.12)

For u ∈ V , we have ∇ · u ∈ L2(Ω). Taking [v3, q3] = [0, σL2
0∇ · u] we have

B([u, p], [v3, q3]) = σL2
0‖∇ · u‖2.(2.13)

Let now vg ∈ VL be such that

‖∇p‖L′ =
〈∇p,vg〉
‖vg‖L .

We may choose vg such that ‖vg‖L = ‖∇p‖L′ . For [v4, q4] = [vg, 0],

B([u, p], [v4, q4]) ≥ −ν‖∇u‖‖∇vg‖ − σ‖u‖‖vg‖ + ‖∇p‖2
L′

� −‖u‖2
L + ‖∇p‖2

L′ .(2.14)

Let [v, q] =
∑4

i=1 αi[vi, qi] ∈ VL × L2(Ω), αi ∈ R. From (2.11)–(2.14) it is seen
that the coefficients αi can be chosen so that

B([u, p], [v, q]) � |||[u, p]|||2.

The theorem follows noting that for any combination of coefficients αi ∈ R, we have
‖[v, q]‖VL×L2(Ω) � |||[u, p]|||.

Remark 2.1.

1. The working norm is optimal. Observe that

|||[v, q]|||2 = ν‖∇u‖2 +
1
ν
‖p‖2 +

1
ν
‖∇p‖2

−1 when σ = 0,

|||[v, q]|||2 = σ‖u‖2 + σL2
0‖∇ · u‖2 +

1
σL2

0

‖p‖2 +
1
σ
‖∇p‖2 when ν = 0.

2. Stability in |||·||| for the solution of problem (2.5) will be obtained provided
the data are regular enough, that is, f ∈ V ′

L and g ∈ L2(Ω)′ = L2(Ω). If
the data are less regular, stability for [u, p] can be proved in norms weaker
than |||·|||, and therefore [u, p] will belong to larger functional spaces than
V × Q. In particular, for σ = 0, we may take f ∈ H−1(Ω)d but for ν = 0,
if f ∈ H0(div,Ω)′, control on 1

σ ‖∇p‖2 is lost, whereas if g ∈ H−1(Ω) (mixed
formulation of the Poisson problem) control on σL2

0‖∇·u‖2 is lost (u ∈ L2(Ω)d

only, we do not have u ∈ H0(div,Ω)). These facts are easily deduced from
the proof of Theorem 2.1.
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3. Analysis of stabilized finite element method for the generalized
Stokes–Darcy problem.

3.1. Preliminaries. Let us introduce some notation. The finite element par-
tition will be denoted by Ph = {K}, and summation over all the elements will be
indicated as

∑
K . The collection of all interior edges (faces, for d = 3) will be

denoted by Eh = {E}, and as for the elements, summation over all these edges
will be indicated as

∑
E . Consistently with the notation introduced previously, the

symbol 〈f1, f2〉D will be used to denote the integral of the product of functions f1
and f2 over D, with D = K (an element), D = ∂K (an element boundary), or
D = E (an edge). Likewise, ‖f1‖2

D := 〈f1, f1〉D. Suppose now that elements K1

and K2 share an edge E, and let n1 and n2 be the normals to E exterior to K1

and K2, respectively. For a scalar function f , possibly discontinuous across E, we
define its jump as [[ nf ]]E := n1f |∂K1∩E + n2f |∂K2∩E , and for a vector or tensor v,
[[ n · v ]]E := n1 · v|∂K1∩E + n2 · v|∂K2∩E .

We will consider, for the sake of conciseness, quasi-uniform finite element parti-
tions (for the analysis of the stabilized formulation in the more general nondegenerate
case, see [13]). Therefore, we assume that there is a constant Cinv, independent of
the mesh size h (the maximum of all the element diameters), such that

‖∇vh‖K ≤ Cinvh
−1‖vh‖K , ‖Δvh‖K ≤ Cinvh

−1‖∇vh‖K(3.1)

for all finite element functions vh defined on K ∈ Ph. This inequality can be used for
scalars, vectors, or tensors. Similarly, the trace inequality

‖v‖2
∂K ≤ Ctr

(
h−1‖v‖2

K + h‖∇v‖2
K

)
(3.2)

is assumed to hold for functions v ∈ H1(K), K ∈ Ph. The last term can be dropped if
v is a polynomial on the element domain K. Thus, if ϕh is a piecewise discontinuous
polynomial (the pressure, in our case) and ψh a continuous one, it follows that∑

E

‖ [[ nϕh ]]‖2
E ≤ 2Ctrh

−1
∑
K

‖ϕh‖2
K ,(3.3)

∑
E

‖ψh‖2
E ≤ 1

2
Ctrh

−1
∑
K

‖ψh‖2
K .(3.4)

Given a function v, let ṽh be an interpolant of v in the finite element space. Using
the trace inequality (3.2) we have that∑

E

‖ [[ n(v − ṽh) ]]‖2
E ≤ 2

∑
K

‖v − ṽh‖2
∂K

≤ 2Ctr

∑
K

(
h−1‖v − ṽh‖2

K + h‖∇v −∇ṽh‖2
K

)
,

so that we obtain the two expressions we will use:∑
E

‖ [[ n(v − ṽh) ]]‖2
E �

(
h−1ε20(v) + hε21(v)

)
� h2j−1|v|2Hj (Ω), j = 1, 2,(3.5)

where εi(v) = |v− ṽh|Hi(Ω), | · |Hi(Ω) being the seminorm in Hi(Ω). The same estimate
holds for a continuous interpolation:∑

E

‖(v − ṽh)‖2
E �

(
h−1ε20(v) + hε21(v)

)
.(3.6)
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1978 SANTIAGO BADIA AND RAMON CODINA

3.2. Stabilized finite element methods. In this subsection we describe the
two stabilized finite element methods we shall consider. As it has been mentioned,
both can be cast in the variational multiscale framework [20, 21]. However, we will
not present the motivation, which can be found in [2].

Let Vh and Qh be the finite element spaces to approximate the velocity and the
pressure, respectively. The two methods to be analyzed can be written as follows:
find [uh, ph] ∈ Vh ×Qh such that

Bs([uh, ph], [vh, qh]) = Ls([vh, qh])(3.7)

∀ [vh, qh] ∈ Vh ×Qh. The bilinear form Bs and the linear form Ls are modifications
of B and L (defined in (2.6) and (2.7), respectively) that depend on the stabilized
formulation being used.

3.2.1. ASGS method. In this case, the forms Bs and Ls are given by

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh])

+ τp
∑
K

〈∇ ·uh,∇·vh〉K

+ τu
∑
K

〈−νΔuh + σuh + ∇ph, νΔvh − σvh + ∇qh〉K

+ τf
∑
E

〈 [[ nph − ν∂nuh ]] , [[ nqh + ν∂nvh ]] 〉E ,(3.8)

Ls([vh, qh]) = L([vh, qh])

+ τp
∑
K

〈g,∇·vh〉K

+ τu
∑
K

〈f , νΔvh − σvh + ∇qh〉K ,(3.9)

where τp, τu, and τf are the so-called stabilization parameters that we compute as

τp = c1ν + cp2σ

2
p,(3.10)

τu =
(
c1ν + cu2σ


2
u

)−1
h2,(3.11)

τf =
(
c1ν + cu2σ


2
u

)−1
h,(3.12)

with c1, c
p
2, and cu2 algorithmic constants. In these expressions we have introduced

the length scales 
u and 
p, which can be taken either as L0, h or (L0h)1/2; these
two length scales cannot be chosen independently because they have to satisfy some
conditions that are required in the numerical analysis. Even though it is not our
purpose here to motivate the introduction of these length scales, let us briefly mention
which is their origin (see [2] for a more detailed description in the Darcy case). In
order to define a norm in the space of forcing terms (or, equivalently, in the space of
finite element residuals) it is necessary to introduce scaling coefficients μu and μp such
that μu|f |2 + μp|g|2 is dimensionally consistent. This scaling is necessary in order to
obtain approximations for the subscales on which the method is based, in the spirit
of [20, 12]. Using the approximate Fourier analysis proposed in [12], the stabilization
parameters (3.10)–(3.11) are found, now depending on μu and μp. In turn, these
scaling coefficients depend on a length scale of the problem that may be taken as L0
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FE FOR THE STOKES AND THE DARCY PROBLEMS 1979

or h. The different choices lead to the different possibilities we will consider for 
u
and 
p.

Concerning the design of (3.12) and, in fact, of the terms involving the jumps
across interelement edges in (3.8), their motivation can be found in [15]. Note, in
particular, the change in the sign of −ν∂nuh and ν∂nvh.

Let us also mention that we have considered the stabilization parameters constant
for the sake of simplicity. If the mesh is not quasi-uniform, they should be computed
elementwise (see [13]). In the case of variable viscosity or permeability, the approach
proposed could be extended evaluating these parameters pointwise, inside the element
integrals.

3.2.2. OSS method. Let us denote by P the projection onto the finite element
space of either velocities or pressures. Whether it is one case or the other will be
determined by whether P is applied to vectors (first case) or to scalars (second case).

The bilinear form Bs and the linear form Ls in the OSS method are given by

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh])

+ τp
∑
K

〈
P⊥(∇·uh),∇·vh

〉
K

+ τu
∑
K

〈
P⊥(∇ph),∇qh

〉
K

+ τf
∑
E

〈 [[ nph − ν∂nuh ]] , [[ nqh + ν∂nvh ]] 〉E ,(3.13)

Ls([vh, qh]) = L([vh, qh]).(3.14)

The stabilization parameters are the same as for the ASGS method, given by (3.10)–
(3.12). We will infer from the numerical analysis that 
p ≤ 
u will be required for
stability (see Theorem 3.3) and 
p ≥ 
u for accuracy (see Theorem 3.4), so that, in
fact, we will have to consider 
p = 
u.

3.2.3. Working norm and error function. Let us define the mesh dependent
norm

|||[vh, qh]|||2h = ‖vh‖2
L + σ
2p‖∇ · vh‖2 +

1
ν + σL2

0

‖qh‖2

+
h2

ν + σ
2u

∑
K

‖∇qh‖2
K +

h

ν + σ
2u

∑
E

‖ [[ nqh ]]‖2
E,(3.15)

where 
p and 
u are the length scales introduced in the stabilization parameters (3.10)–
(3.12). This is precisely the norm in which the numerical analysis will be performed,
that is to say, stability and convergence will be proved in this norm, both for the ASGS
and the OSS methods.

We define

E(h)2 =
(
ν + σ
2p

) (
h−2ε20(u) + ε21(u)

)
+ σε20(u) +

h2

ν + σ
2u

(
h−2ε20(p) + ε21(p)

)
.

(3.16)

It will be proved that this is precisely the error function of the method in the previous
norm (recall that εi(v) is the interpolation error of function v in the norm of Hi(Ω)).
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1980 SANTIAGO BADIA AND RAMON CODINA

3.2.4. Simplified methods for continuous pressures in the Darcy prob-
lem. Both the ASGS and the OSS methods can be simplified in the case of contin-
uous pressures and Darcy’s problem in the case τp = 0. Assuming f ∈ L2(Ω)d and
g ∈ L2(Ω), it is immediately checked that these methods reduce to the following:

ASGS method. In this case

σ(uh,vu) + (∇ph,vh) − (∇qh,uh) +
1
σcu2

(σuh + ∇ph,−σvh + ∇qh)

= (vh,f) +
1
σcu2

(−σvh + ∇qh,f) + (qh, g),(3.17)

from where (
1 − 1

cu2

)
B([uh, ph], [vh, qh]) +

1
σcu2

(∇qh,∇ph)

=
(

1 − 1
cu2

)
L([vh, qh]) +

1
σcu2

(∇qh,f) +
1
cu2

(qh, g),

which can be understood as the a combination

(1 − α)Galerkin equation + α
(
weak form of − 1

σΔph = − 1
σ∇ · f + g

)
,

with α = 1/cu2 . We obtain precisely the method called Galerkin stabilization in [4]
(with a different definition of the coefficient α). From this discussion we see that it
corresponds, in fact, to the ASGS formulation in the case of continuous pressures.
Note that the method is different from the Galerkin–least-squares method because of
the sign of −σvh in (3.17) (see [4]).

OSS method. In this case

σ(uh,vu) + (∇ph,vh) − (∇qh,uh) +
1
σcu2

(∇ph − P (∇ph),∇qh) = (vh,f) + (qh, g).

Taking qh = 0 it is seen that

σuh + P (∇ph) = P (f ) in Vh,

from where

σ(uh,vh) + (∇ph,vh) −
(

1 − 1
cu2

)
(∇qh,uh) +

1
σcu2

(∇qh,∇ph)

= (vh,f) +
(

1 − 1
cu2

)
(qh, g) +

1
σcu2

(∇qh, P (f)) +
1
cu2

(qh, g),

which can be understood as

first Galerkin equation + (1 − α) second Galerkin equation

+ α(weak form of − 1
σΔph = − 1

σ∇ · P (f ) + g),

with α = 1/cu2 and where the first Galerkin equation refers to that obtained with
qh = 0 and the second to the one obtained with vh = 0. If we redefine qh appropriately,
we see that the method coincides with (3.17) except for the projection P applied to
f , which is usually constant and belongs to the finite element space for Darcy flow.
Apart from this detail, when α = 1, the OSS method is equivalent to the standard
Galerkin approximation of the second order elliptic problem (only in terms of p) using
Qh and a postprocess of fluxes using an L2-projection of ∇ph onto Vh; for the ASGS
approximation, this choice leads to a singular problem.
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3.3. Analysis of the ASGS formulation. In this section we will state and
prove two main theorems, both for the ASGS and the OSS methods, one establishing
stability in the form of inf-sup condition and the other given convergence in the norm
(3.15). We start in this section with the ASGS method.

Theorem 3.1 (stability of the ASGS formulation). Suppose that the constants
c1 and cu2 in (3.10)–(3.11) are large enough (in particular, c1 > 2(C2

inv + Ctr) and
cu2 > 2, with Cinv and Ctr introduced in (3.1) and (3.2), respectively). Then, there
exists a constant C such that

∀[uh, ph] there exists [vh, qh] | Bs([uh, ph], [vh, qh]) ≥ C|||[uh, ph]|||h|||[vh, qh]|||h,(3.18)

where Bs is defined in (3.8).
Proof. Let us start taking the test function equal to the unknown, using the inverse

estimate (3.1), the trace inequality (3.3), and Schwartz and Young’s inequalities:

Bs([uh, ph], [uh, ph])

= ν‖∇uh‖2 + σ‖uh‖2 + τu
∑
K

(‖∇ph‖2
K − ‖ − νΔuh + σuh‖2

K

)
+ τp‖∇ · uh‖2 + τf

∑
E

‖ [[ nph ]]‖2
E − τfν

2
∑
E

‖ [[ ∂nuh ]]‖2
E

≥ ν

(
1 − 2τuν

C2
inv

h2
− 2τfν

Ctr

h

)
‖∇uh‖2 + σ(1 − 2τuσ)‖uh‖2 + τp‖∇ · uh‖2

+ τu
∑
K

‖∇ph‖2
K + τf

∑
E

‖ [[ nph ]]‖2
E .

(3.19)

The coefficients within parenthesis are positive for any choice of physical parameters,
provided (sufficient conditions)

c1 > 2
(
C2

inv + Ctr

)
, cu2 >

2h2


2u
.

The second condition reduces to cu2 > 2 for 
u = h. For the other choices of 
u, the
second condition always holds for a small enough h. Note that we have used that
τf = τu/h.

The only term missing in the right-hand side of (3.19) from |||·|||2h is the L2-norm
of the pressure. In order to introduce it, let us note that from the inf-sup condition
for the continuous problem, it turns out that for all ph ∈ Qh, there exists vp ∈ V such
that

− (ph,∇ · vp) � ‖ph‖ 1√
ν + σL2

0

(√
ν + σ
2u‖∇vp‖ +

√
σ‖vp‖ +

√
σL0‖∇ · vp‖

)
.

We may choose vp such that√
ν + σ
2u‖∇vp‖ +

√
σ‖vp‖ +

√
σL0‖∇ · vp‖ =

1√
ν + σL2

0

‖ph‖.

Let ṽp,h be a H1-continuous finite element interpolant of vp, e.g., defined by the
Scott–Zhang or the Clément operator (see [19]). Because of the continuity of this
interpolant,√

ν + σ
2u‖∇ṽp,h‖ +
√
σ‖ṽp,h‖ +

√
σL0‖∇ · ṽp,h‖ � 1√

ν + σL2
0

‖ph‖.
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1982 SANTIAGO BADIA AND RAMON CODINA

For [v2, q2] = [ṽp,h, 0], we have

Bs([uh, ph], [v2, q2])
≥ −ν‖∇uh‖‖∇ṽp,h‖ − σ‖uh‖‖ṽp,h‖ − τp‖∇ · uh‖‖∇ · ṽp,h‖

+ τu
∑
K

〈−νΔuh + σuh + ∇ph, νΔṽp,h − σṽp,h〉K

+ τf
∑
E

〈 [[ nph − ν∂nuh ]] , ν [[ ∂nṽp,h ]] 〉E

− (ph,∇ · vp) − (ph,∇ · (ṽp,h − vp)).(3.20)

The term that provides pressure stability is

−(ph,∇ · vp) � 1
ν + σL2

0

‖ph‖2,(3.21)

by virtue of the choice of the norm of vp. Let us bound the different terms appearing
in (3.20). Using Young’s inequality we will have that

− ν‖∇uh‖‖∇ṽp,h‖ − σ‖uh‖‖ṽp,h‖ − τp‖∇ · uh‖‖∇ · ṽp,h‖
� −β1

(
ν‖∇uh‖2 + σ‖uh‖2 + τp‖∇ · uh‖2

)
− 1
β1

(
ν‖∇ṽp,h‖2 + σ‖ṽp,h‖2 + τp‖∇ · ṽp,h‖2

)
� −β1

(
ν‖∇uh‖2 + σ‖uh‖2 + τp‖∇ · uh‖2

)− 1
β1

1
ν + σL2

0

‖ph‖2(3.22)

for any constant β1 > 0. In the following we will denote by βi, i = 1, 2, 3, 4, constants
appearing from the application of Young’s inequality that, at the end, will be chosen
to be sufficiently large.

The next term to bound in (3.20) is

τu
∑
K

〈−νΔuh + σuh + ∇ph, νΔṽp,h − σṽp,h〉K

� −β2τu
∑
K

(
ν2C

2
inv

h2
‖∇uh‖2

K + σ2‖uh‖2
K + ‖∇ph‖2

K

)

− 1
β2
τu
∑
K

(
ν2C

2
inv

h2
‖∇ṽp,h‖2

K + σ2‖ṽp,h‖2
K

)

� −β2

(
ν‖∇uh‖2 + σ‖uh‖2 + τu

∑
K

‖∇ph‖2
K

)
− 1
β2

1
ν + σL2

0

‖ph‖2,(3.23)

where we have used the fact that c1τuν < h2 and cu2τuσ < 1. We can also bound

τf
∑
E

〈 [[ nph − ν∂nuh ]] , ν [[ ∂nṽp,h ]] 〉E

� −β3τf
∑
E

‖ [[ nph ]]‖2
E − β3τfν

2
∑
E

‖ [[ ∂nuh ]]‖2
E − 1

β3
τfν

2
∑
E

‖ [[ ∂nṽp,h ]]‖2
E

� −β3τf
∑
E

‖ [[ nph ]]‖2
E − β3ν‖∇uh‖2 − 1

β3

1
ν + σL2

0

‖ph‖2,

(3.24)
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FE FOR THE STOKES AND THE DARCY PROBLEMS 1983

where we have made use of (3.3). Finally,

− (ph,∇ · (ṽp,h − vp)) =
∑
K

〈∇ph, ṽp,h − vp〉K −
∑
K

〈nph, ṽp,h − vp〉∂K

≥ −
∑
K

‖∇ph‖K‖ṽp,h − vp‖K −
∑
E

‖ [[ nph ]]‖E‖ṽp,h − vp‖E

� − β4h
2

ν + σ
2u

∑
K

‖∇ph‖2
K − β4h

ν + σ
2u

∑
E

‖ [[ nph ]]‖2
E − 1

β4
(ν + σ
2u)‖∇vp‖2

� − β4h
2

ν + σ
2u

∑
K

‖∇ph‖2
K − β4h

ν + σ
2u

∑
E

‖ [[ nph ]]‖2
E − 1

β4

1
ν + σL2

0

‖ph‖2,(3.25)

where we have used Young’s inequality, the first inverse estimate in (3.1), and the
trace inequality in (3.2). The theorem follows taking the constants βi, i = 1, 2, 3, 4,
sufficiently large, combining (3.21)–(3.25) in (3.20) and the result with (3.19).

Remark 3.1. Let us compare the working norms of the continuous and the discrete
problems, for simplicity in the case of continuous pressure interpolations:

|||[v, q]|||2 = ‖v‖2
L + σL2

0‖∇ · v‖2 +
1

ν + σL2
0

‖q‖2 + ‖∇q‖2
L′ ,

|||[vh, qh]|||2h = ‖vh‖2
L + σ
2p‖∇ · vh‖2 +

1
ν + σL2

0

‖qh‖2 +
h2

ν + σ
2u
‖∇qh‖2.

We have the following options:
• 
p = L0 and 
u = h. The discrete norm would reproduce the continuous

norm, provided the discrete counterpart of ‖∇q‖2
L′ is considered to be (ν/h2+

σ)−1‖∇qh‖2. This is obviously the case when ν = 0. When ν > 0, the
H−1(Ω)-norm of ∇q has to be replaced by h2‖∇qh‖2.

• 
p = L0 and 
u = L0. We loose pressure stability in H1(Ω) when ν = 0, but
the rest of terms are optimal.

• 
p = h and 
u = L0. We loose pressure stability in H1(Ω) and velocity
stability in H(div,Ω) when ν = 0. We will see that this case is not allowed
by the convergence analysis.

• 
p = h and 
u = h. We loose velocity stability in H(div,Ω) when ν = 0, but
the rest of terms are optimal.

Even if it is difficult to motivate the choice from the stability analysis, we will see in
section 4 that from the accuracy point of view the optimal choice is 
p = 
u = (L0h)1/2

when equal velocity-pressure interpolation is used.
Theorem 3.2 (convergence of the ASGS formulation). Let [u, p] be the solution

of the continuous problem (2.5) and [uh, ph] the solution of (3.7) with Bs and Ls

given in (3.8) and (3.9), respectively. Suppose that 
p ≥ 
u and the assumptions of
Theorem 3.1 hold. Then

|||[u − uh, p− ph]|||h � E(h),(3.26)

where the error function E(h) is given in (3.16).
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1984 SANTIAGO BADIA AND RAMON CODINA

Proof. Let [ũh, p̃h] be the interpolant of [u, p]. By definition of E(h) and |||·|||h
and the fact that 
u ≤ L0,

|||[u − ũh, p− p̃h]|||h � E(h),(3.27)

where we have used (3.5). This is, in fact, the inequality that determines the form of
the error function E(h).

On the other hand, there exists [vh, qh] such that

|||[uh − ũh, ph − p̃h]|||h|||[vh, qh]|||h
� Bs([uh − ũh, ph − p̃h], [vh, qh])
= Bs([u − ũh, p− p̃h], [vh, qh])

� νε1(u)‖∇vh‖ + σε0(u)‖vh‖ + σ
2pε0(∇ · u)‖∇ · vh‖

+
h2

ν + σ
2u

(
ν
ε1(u)
h

+ σε0(u) + ε1(p)
)(

ν
Cinv

h
‖∇vh‖ + σ‖vh‖ +

∑
K

‖∇qh‖K

)

− (p− p̃h,∇ · vh) + (qh,∇ · (u − ũh)

+ τf
∑
E

〈 [[ n(p− p̃h) − ν∂n(u − ũh) ]] , [[ nqh + ν∂nvh ]] 〉E

� E(h)|||[vh, qh]|||h − (p− p̃h,∇ · vh) + (qh,∇ · (u − ũh)

+ τf
∑
E

〈 [[ n(p− p̃h) − ν∂n(u − ũh) ]] , [[ nqh + ν∂nvh ]] 〉E .
(3.28)

The terms that remain to be expressed in terms of E(h) and |||[vh, qh]|||h can be
bounded as follows:

−(p− p̃h,∇ · vh) ≤ (ν + σ
2p
)1/2 ‖∇ · vh‖

(
ν + σ
2u

)−1/2
hε1(p)

≤ E(h)|||[vh, qh]|||h,(3.29)

where we have assumed that 
p ≥ 
u. Likewise,

(qh,∇ · (u − ũh)) = −
∑
K

〈∇qh,u − ũh〉K +
∑
E

〈 [[ nqh ]] ,u − ũh〉E

≤
∑
K

(
ν + σ
2u

)−1/2
h‖∇qh‖K

(
ν + σ
2p

)1/2
h−1‖u − ũh‖K

+
∑
E

(
ν + σ
2u

)−1/2
h1/2‖ [[ nqh ]]‖E

(
ν + σ
2p

)1/2
h−1/2‖u − ũh‖E

� E(h)|||[vh, qh]|||h.(3.30)

Finally,

τf
∑
E

〈 [[ n(p− p̃h) − ν∂n(u − ũh) ]] , [[ nqh + ν∂nvh ]] 〉E � Ê(h)N̂([vh, qh]),(3.31)
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FE FOR THE STOKES AND THE DARCY PROBLEMS 1985

where

Ê(h)2 := τf
∑
E

(‖ [[ n(p− p̃h) ]]‖2
E + ν2‖ [[ ∂n(u − ũh) ]]‖2

E

)
� τfhε

2
1(p) + τfν

2h−1ε21(u)

� E(h)2,

N̂([vh, qh)])2 := τf
∑
E

(‖ [[ nqh ]]‖2
E + ν2‖ [[ ∂nvh ]]‖2

E

)

� τf
∑
E

‖ [[ nqh ]]‖2
E + τfν

2h−1‖∇vh‖2

� |||[vh, qh]|||2h.

From (3.28)–(3.31) it follows that |||[uh − ũh, ph − p̃h]|||h � E(h). This, (3.27), and
the triangle inequality imply the result.

Remark 3.2. Consider for simplicity continuous pressure interpolation, and let
us write the error estimate obtained as

ν‖∇eu‖2 + σ‖eu‖2 + σ
2p‖∇ · eu‖2 +
1

ν + σL2
0

‖ep‖2 +
h2

ν + σ
2u
‖∇ep‖2

�
(
ν + σ
2p

)
h2k‖u‖2

k+1 + σh2k+2‖u‖2
k+1 +

1
ν + σ
2u

h2l+2‖p‖2
l+1,

where eu = u−uh and ep = p− ph, k is the order of the velocity interpolation, l the
order of the pressure interpolation, and we have used the abbreviation ‖v‖i ≡ ‖v‖Hi(Ω)

for v either u or p. It is seen that if ν > 0, the estimate is optimal. The error is driven
by the error in the viscous term. It is also observed that optimal balance of errors is
found when k = l + 1. It would be reasonable to try to keep this optimal balance in
the limit ν → 0, although this is by no means necessary, and as we shall see, what can
be considered the best method for Darcy’s problem does not satisfy this requirement.
This issue is discussed in section 4.

3.4. Analysis of the OSS method. We analyze now problem (3.7) with Bs

and Ls given by (3.13) and (3.14), respectively. As we shall see, we recover essentially
the same results as for the ASGS formulation.

Theorem 3.3 (stability of the OSS method). Suppose that 
p ≤ 
u and that
c1 > 2Ctr in the definition (3.10)–(3.12) of the stabilization parameters. Then, the
stability condition (3.18) holds for the OSS method.

Proof. Taking [vh, qh] = [uh, ph] we have

Bs([uh, ph], [uh, ph]) = ν‖∇uh‖2 + σ‖uh‖2

+ τp
∑
K

∥∥P⊥(∇ · uh)
∥∥2

K
+ τu

∑
K

∥∥P⊥(∇ph)
∥∥2

K

+ τf
∑
E

‖ [[ nph ]]‖2
E − τfν

2
∑
E

‖ [[ ∂nuh ]]‖2
E .(3.32)
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1986 SANTIAGO BADIA AND RAMON CODINA

Since τfν2
∑

E ‖ [[ ∂nuh ]]‖2
E ≤ 2τfν Ctr

h ν‖∇uh‖2, the last term in (3.32) can be ab-
sorbed by the first using condition c1 > 2Ctr.

Consider now v1 = τuP (∇ph), q1 = τpP (∇ · uh). We have

Bs([uh, ph], [v1, q1])

≥ −ν‖∇uh‖Cinv

h
τu‖P (∇ph)‖

− σ‖uh‖τu‖P (∇ph)‖

− τp
∑
K

∥∥P⊥(∇ · uh)
∥∥

K

Cinv

h
τu‖P (∇ph)‖K

− τu
∑
K

∥∥P⊥(∇ph)
∥∥

K

Cinv

h
τp‖P (∇ · uh)‖K

+ τu
∑
K

‖P (∇ph)‖2
K + τp

∑
K

‖P (∇ · uh)‖2
K

+ τf
∑
E

〈 [[ nph − ν∂nuh ]] , [[ τpnP (∇ · uh) + τuν∂nP (∇ph) ]] 〉E ,

where we have used the inverse estimate (3.1).
Similarly to the proof of Theorem 3.1, using repeatedly Young’s inequality we

obtain

Bs([uh, ph], [v1, q1])

≥ τu

[
1 − τu

(
ν
C2

inv

β1h2
+

σ

β2
+
C2

inv

β3h2
τp

)]
‖P (∇ph)‖2

+ τp

[
1 − τp

C2
inv

β4h2
τu

]∑
K

‖P (∇ · uh)‖2
K

− C(βi)

(
ν‖∇uh‖2 + σ‖uh‖2 + τu

∑
K

∥∥P⊥(∇ph)
∥∥2

K
+ τp

∑
K

∥∥P⊥(∇ · uh)
∥∥2

K

)

+ τf
∑
E

〈 [[ nph − ν∂nuh ]] , [[ τpnP (∇ · uh) + τuν∂nP (∇ph) ]] 〉E ,
(3.33)

where C(βi) is a positive constant that depends on βi, i = 1, 2, 3, 4. It remains to
bound the term involving the interior boundaries, which can be done as follows:

τf
∑
E

〈 [[ nph − ν∂nuh ]] , [[ τpnP (∇ · uh) + τuν∂nP (∇ph) ]] 〉E

� −N1/2
1 (uh, ph)N1/2

2 (uh, ph),(3.34)
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FE FOR THE STOKES AND THE DARCY PROBLEMS 1987

where

N1(uh, ph) := τf
∑
E

‖ [[ nph ]]‖2
E + τf

∑
E

‖ [[ ν∂nuh ]]‖2
E

≤ τf
∑
E

‖ [[ nph ]]‖2
E + τf2ν2Ctrh

−1
∑
K

‖∇uh‖2
K

� τf
∑
E

‖ [[ nph ]]‖2
E + ν‖∇uh‖2,

N2(uh, ph) := τf
∑
E

‖ [[ nτpP (∇ · uh) ]]‖2
E + τf

∑
E

‖ [[ ντu∂nP (∇ph) ]]‖2
E

≤ 2Ctrh
−1τfτ

2
p

∑
K

‖P (∇ · uh)‖2
K

+ 2Ctrh
−1C2

invh
−2ν2τfτ

2
u

∑
K

‖P (∇ph)‖2
K

� τp
∑
K

‖P (∇ · uh)‖2
K + τu

∑
K

‖P (∇ph)‖2
K .

We have used that τfτp � h. From (3.34) we have

τf
∑
E

〈 [[ nph − ν∂nuh ]] , [[ τpnP (∇ · uh) + τuν∂nP (∇ph) ]] 〉E

� −τf
∑
E

‖ [[ nph ]]‖2
E − ν‖∇uh‖2

− 1
β4

(
τp
∑
K

‖P (∇ · uh)‖2
K + τu

∑
K

‖P (∇ph)‖2
K

)
.

It is seen from (3.33) that for βi, i = 1, 2, 3, 4, sufficiently large everything works
provided τuτp � h2, which follows from condition 
p ≤ 
u (in terms of h).

The only term missing from |||·|||2h is the L2-norm of the pressure. It can be included
as for the ASGS method.

For simplicity, convergence will be proved when f and g are finite element func-
tions, although the extension to the general case is easy.

Theorem 3.4 (convergence of the OSS method). Under the same conditions
as in Theorem 3.3, assume also that f and g are finite element functions and that

u = 
p. Then the error estimate (3.26) holds for the OSS method.

Proof. The proof is almost the same as that of Theorem 3.2. Let us start noting
that

|||[uh − ũh, ph − p̃h]|||h|||[vh, qh]|||h ≤ Bs([uh − ũh, ph − p̃h], [vh, qh])
= Bs([u − ũh, p− p̃h], [vh, qh]) +Bs([uh − u, ph − p], [vh, qh]).(3.35)

The first term in (3.35) has a slightly simpler expression than in Theorem 3.2:

Bs([u − ũh, p− p̃h], [vh, qh]) � νε1(u)‖∇vh‖ + σε0(u)‖vh‖ + σ
2pε0(∇ · u)‖∇ · vh‖

+
h2

ν + σ
2u
ε1(p)‖∇qh‖ − (p− p̃h,∇ · vh) + (qh,∇ · (u − ũh))

+ τf
∑
E

〈 [[ n(p− p̃h) − ν∂n(u − ũh) ]] , [[ nqh + ν∂nvh ]] 〉E ,
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1988 SANTIAGO BADIA AND RAMON CODINA

that can be bounded as (3.28). We may continue as in the proof of Theorem 3.2,
except that now we have a consistency error given by the second term in (3.35) that
can be bounded as follows:

Bs([u − uh, p− ph], [vh, qh]) = τu
∑
K

〈
P⊥(σu + ∇p),∇qh

〉
K

= τu
∑
K

〈
P⊥(νΔu),∇qh

〉
K

� √
τu
∑
K

√
νh‖Δu − P (Δu)‖K‖∇qh‖K

�
√
νε1(u)

√
τu
∑
K

‖∇qh‖K

� E(h)|||[vh, qh]|||h,
where we have used the best approximation property of P and the fact that P⊥(∇ph)
can be replaced by P⊥(σuh + ∇ph) in the definition of Bs without changing the
method.

4. Duality arguments and convergence estimates for Darcy’s problem.
So far we have considered the Stokes–Darcy problem. Apart from the unified treat-
ment we have introduced, the stabilized formulations we propose are nonstandard in
the case ν = 0 because of the effect of the length scales 
p and 
u introduced in the
stabilization parameters (3.10) and (3.11). Therefore, in this section we consider in
detail the Darcy problem and, moreover, derive improved error estimates by using
duality arguments.

The error estimate obtained in Theorems 3.2 and 3.4 in the case ν = 0 can be
written as

σ‖eu‖2 + σ
2p‖∇ · eu‖2 +
1
σL2

0

‖ep‖2 +
h2

σ
2u

∑
K

‖∇ep‖2
K +

h

σ
2u

∑
E

‖ [[ nep ]]‖2
E

� σ
2pε
2
1(u) + σε20(u) +

1
σ
2u

ε20(p)

� σ
2ph
2k‖u‖2

k+1 + σh2k+2‖u‖2
k+1 +

1
σ
2u

h2l+2‖p‖2
l+1.(4.1)

In order to obtain improved error estimates in L2(Ω) for eu and ep we need to
assume that the adjoint problem

w −∇ξ = f in Ω,
−∇ · w = g in Ω,

n · w = 0 on ∂Ω,

satisfies the elliptic regularity assumption

‖ξ‖2 � ‖g‖ + ‖∇ · f‖ in all cases,(4.2)
‖w‖1 � ‖g‖ if f = 0,(4.3)

together with the obvious general stability estimate

‖w‖ ≤ ‖f‖ if g = 0.(4.4)

It is known that (4.2)–(4.3) hold if Ω is convex and polyhedral or with twice differen-
tiable boundary.
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FE FOR THE STOKES AND THE DARCY PROBLEMS 1989

4.1. Duality argument for the ASGS method. To simplify the notation,
we will disregard in what follows the algorithmic constants cu2 and cp2. Only in the
last step of the proof of the following theorem will we need to assume cu2 large enough.
The bilinear form of the problem using the ASGS formulation can then be written as

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh]) + σ
2p
∑
K

〈∇ ·uh,∇·vh〉K

+
h2

σ
2u

∑
K

〈σuh + ∇ph,−σvh + ∇qh〉K +
h

σ
2u

∑
E

〈 [[ nph ]] , [[ nqh ]] 〉E ,

where now B([u, p], [v, q]) = σ(u,v) − (p,∇ · v) + (q,∇ · u).
Theorem 4.1. Assume the same conditions as in Theorem 3.2, now with ν = 0

and, moreover, assume (4.2)–(4.3) to hold. Furthermore, for 
u = h and piecewise
constant pressures (l = 0), we also require the constant cu2 in (3.11)–(3.12) to be large
enough. Under these assumptions, there holds

‖eu‖2 �
(
h2 +


4p
L2

0

+ h2

4p

4u

)
‖∇ · eu‖2 +

1
σ2

(
h4


4u
+
h2

L2
0

)∑
K

‖∇ep‖2
K ,(4.5)

‖ep‖2 � σ2
4p‖∇ · eu‖2 + h2
∑
K

‖∇ep‖2
K .(4.6)

Proof. Consider the adjoint problem

σw −∇ξ = σêu,(4.7)

−∇ · w =
1
σL2

0

êp.(4.8)

We have

σ(êu, eu) +
1
σL2

0

(êp, ep)

= −(ep,∇ · w) + σ(w, eu) − (∇ξ, eu)
= σ(eu,w) − (ep,∇ · w) + (ξ,∇ · eu)
= B([eu, ep], [w, ξ])

= B([eu, ep], [w, ξ]) + σ
2p(∇ · eu,∇ · w) +

2p
L2

0

(∇ · eu, êp)

+
h2

σ
2u

∑
K

〈σeu + ∇ep,−σw + ∇ξ + σêu〉K

+
h

σ
2u

∑
E

〈 [[ nep ]] , [[ nξ ]] 〉E

= Bs([eu, ep], [w, ξ]) +

2p
L2

0

(∇ · eu, êp) +
h2

σ
2u

∑
K

〈σeu + ∇ep, σêu〉K

= Bs([eu, ep], [w − w̃h, ξ − ξ̃h])

+

2p
L2

0

(∇ · eu, êp) +
h2

σ
2u

∑
K

〈σeu + ∇ep, σêu〉K ,(4.9)
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1990 SANTIAGO BADIA AND RAMON CODINA

where w̃h and ξ̃h are finite element functions to be defined. For ξ̃h, we need to
distinguish two different situations. First, we consider piecewise constant pressures
(l = 0) and take ξ̃h ∈ Qh. Secondly, we consider the case l > 0 and pick ξ̃h ∈
Qh ∩H1(Ω). Let us bound the first term:

Bs

(
[eu, ep],

[
w − w̃h, ξ − ξ̃h

])
� σ‖eu‖‖w − w̃h‖ − (ep,∇ · (w − w̃h))

+ h‖ξ‖2‖eu‖ + σ
2p‖∇ · (w − w̃h)‖‖∇ · eu‖

+
h2

σ
2u
h‖ξ‖2

∑
K

‖∇ep‖K + β
h

σ
2u
h−1/2h3/2‖ξ‖2‖ep‖,(4.10)

where we have used (3.3) and (3.5) in order to obtain the last term when l = 0; in
this case β = 1. For l > 0, we may consider ξ̃h ∈ H1(Ω), and the previous inequality
is true for β = 0.

Suppose that êu = 0, êp = ep. In this case we take as w̃h an optimal interpolation
of w in the finite element space. Using the shift assumptions (4.2)–(4.3) we get

‖ξ‖2 � 1
L2

0

‖ep‖,

‖w − w̃h‖ ≤ h‖w‖1 ≤ h

σL2
0

‖ep‖,

−(ep,∇ · (w − w̃h)) =
∑
K

〈∇ep,w − w̃h〉K ≤
∑
K

‖∇ep‖K
h

σL2
0

‖ep‖K ,

σ
2p‖∇ · (w − w̃h)‖‖∇ · eu‖ ≤ σ
2p
1
σL2

0

‖ep‖‖∇ · eu‖.

Using these bounds in (4.10) and the result in (4.9), together with Schwartz’s inequal-
ity in the second term in the right-hand side of (4.9), we obtain, after using repeatedly
Young’s inequality and considering the appropriate constants in the stabilization pa-
rameters,

1
σL2

0

‖ep‖2 � σ
h2

L2
0

‖eu‖2 +
h2

σL2
0

∑
K

‖∇ep‖2
K +

σ
4p
L2

0

‖∇ · eu‖2.(4.11)

Note that the last term in (4.10) yields a term of the form βCh2

cu
2 σ�2uL2

0
‖ep‖2 when constants

are accounted for. When 
u = h and l = 0, this term can be absorbed by the one in
the left-hand side when cu2 is large enough.

Suppose now that êu = eu, êp = 0. Let ξ̃h be an optimal finite element interpolant
of ξ. Special care needs to be taken for the selection of w̃h. By taking as unknown
−ξ and changing the sign of (4.8), it is clear that (4.7)–(4.8) is a standard Darcy
problem which we may approximate using the ASGS method with 
p = L0. If w̃h is
the solution to this problem, it will satisfy

‖∇ · w̃h‖ � 1
L0

‖eu‖,(4.12)

‖w − w̃h‖ ≤ ϕ(h)‖w‖ � ϕ(h)‖eu‖,(4.13)

where ϕ(h) → 0 as h → 0 and (4.4) has been used in (4.13). Property (4.12) is a
consequence of the stability result proved in Theorem 3.1, whereas (4.13) also follows
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FE FOR THE STOKES AND THE DARCY PROBLEMS 1991

from the a priori estimate resulting from Theorem 3.1 (since the solution to the ASGS
formulation is bounded in the norm (3.15), there must be a weakly convergent sub-
sequence that, using classical arguments, must converge in norm to [w, ξ]). Observe
that it is crucial to use 
p = L0. In any case, the important point is the existence in
the finite element space of a function w̃h satisfying (4.12)–(4.13).

Using the shift assumption (4.2) and (4.12) we get

‖ξ‖2 � σ‖∇ · eu‖,
−(ep,∇ · (w − w̃h)) ≤ ‖ep‖‖∇ · w̃h‖ � ‖ep‖ 1

L0
‖eu‖,

σ
2p‖∇ · (w − w̃h)‖‖∇ · eu‖ � σ
2p
1
L0

‖eu‖‖∇ · eu‖.

Once again, using these bounds in (4.10) and the result in (4.9), taking h sufficiently
small in (4.13), and applying Young’s inequality we obtain

σ‖eu‖2 � 1
σ

(
1
L2

0

+
h2


4u

)
‖ep‖2 + σ

(
h2 +


4p
L2

0

)
‖∇ · eu‖2 +

h4

σ
4u

∑
K

‖∇ep‖2
K .(4.14)

The theorem follows combining (4.11) and (4.14). When 
u = h and l = 0, we also
need to assume that the constant cu2 is sufficiently large.

4.2. Duality argument for the OSS method. Now the bilinear form of the
stabilized problem is given by

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh]) + σ
2
∑
K

〈∇ · vh, P
⊥(∇ · uh)

〉
K

+
h2

σ
2

∑
K

〈∇qh, P⊥(∇ph)
〉

K
+

h

σ
2

∑
E

〈 [[ nph ]] , [[ nqh ]] 〉E ,

where 
u = 
p = 
 has been assumed, which is the assumption of Theorem 3.4.
Theorem 4.2. Assume the same conditions as in Theorem 3.4, now with ν = 0

and, moreover, assume (4.2)–(4.3) to hold. The same estimates (4.5)–(4.6) hold for
the OSS method.

Proof. We proceed in a way similar to Theorem 4.1. Consider again problem
(4.7)–(4.8). We have

σ(êu, eu) +
1
σL2

0

(êp, ep)

= B([eu, ep], [w, ξ]) +
h

σ
2u

∑
E

〈 [[ nep ]] , [[ nξ ]] 〉E

= Bs([eu, ep], [w, ξ]) − σ
2
(∇ · w, P⊥(∇ · eu)

)− h2

σ
2
(∇ξ, P⊥(∇ep)

)
= Bs

(
[eu, ep],

[
w − w̃h, ξ − ξ̃h

])
− σ
2

∑
K

〈∇ · w − P (∇ · w), P⊥(∇ · eu)
〉

K

− h2

σ
2

∑
K

〈∇ξ − P (∇ξ), P⊥(∇ep)
〉

K
.
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For the first term in the right-hand side, the same bound (4.10) as for the ASGS
method can be obtained. The second term can be bounded as

σ
2
∑
K

〈∇ · w − P (∇ · w), P⊥(∇ · eu)
〉

K
� σ
2h

∑
K

‖∇∇ · w‖K‖∇ · eu‖K

� 
2

L2
0

h
∑
K

‖∇êp‖K‖∇ · eu‖K .(4.15)

Finally,

h2

σ
2

∑
K

〈∇ξ − P (∇ξ), P⊥(∇ep)
〉

K
� h2

σ
2
h‖ξ‖2

∑
K

‖∇ep‖K .(4.16)

From (4.15) and (4.16) we can proceed exactly as in the proof of Theorem 4.1 (in fact,
with less terms to bound).

4.3. Accuracy of the stabilized formulations for Darcy’s problem. When
ν > 0, the accuracy of the stabilized formulations we have introduced has been dis-
cussed in Remark 3.2. The results obtained are optimal, as expected. However, the
situation is more interesting when ν = 0. The general error estimate is (4.1), and
the improved L2-error estimates are given in (4.5)–(4.6). Depending on the expres-
sion of the length scales 
u and 
p, we may obtain different convergence rates. From
the inspection of the convergence estimates it follows that the cases that need to be
taken into account are 
u, 
p = h, L0, (hL0)1/2. The rates of convergence obtained,
as dictated by (4.1) and (4.5)–(4.6), have been collected in Table 4.1. Constants (de-
pending on the continuous unknowns) multiplying h have been omitted, in order to
highlight the order of convergence. We have marked with an asterisk those conditional
convergence results that hold only for cu2 sufficiently large when piecewise constant
pressures are considered. The contribution to the error due to the velocity and the
pressure interpolations has been explicitly displayed. The errors termed “original”
are those resulting from (4.1), whereas those referred to as “via duality” are obtained
from (4.5)–(4.6).

Several remarks need to be made from the observation of Table 4.1:
1. The term “optimal” or “suboptimal” qualifying each result refers to the case
k = l, that is to say, when equal velocity-pressure interpolation is used.

2. Some suboptimal error estimates can be made optimal with the duality ar-
guments of Theorems 4.1 and 4.2, which apply for all k and l. It is worth
noting that no improvement is obtained if 
p = L0.

3. Suboptimal estimates can be made optimal with the choice of k and l indi-
cated in the last row.

4. 
p = 
u = h (method A) is the “classical” stabilized method. Its behavior is
the expected one if Darcy’s problem is understood as a mixed formulation of
Poisson’s problem.

5. 
p = L0, 
u = h (method B) has the best stability (the same as the continuous
problem; see Remark 3.1). Remember, however, that our analysis does not
apply in this case when the OSS method is used (method B applies only
for the ASGS formulation). In any case, method C below exhibits better
convergence rates for any choice of k and l.

6. 
p = 
u = (L0h)1/2 (method C) is the most accurate when equal velocity-
pressure interpolation is used. In spite of the apparently ad hoc choice of the
length scales, let us recall that it can be motivated by scaling the original
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Table 4.1

Convergence rates according to the choice of the length scale in the stabilization parameters
when ν = 0.

Method A (OSS, ASGS) B (ASGS) C (OSS, ASGS) D (OSS, ASGS)

�p, �u = h, h L0, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ hk+1 + hl hk + hl hk+1/2 + hl+1/2 hk + hl+1

Original Suboptimal Suboptimal Quasi-optimal Suboptimal

‖eu‖ hk+1 + hl hk + hl hk+1 + hl+1 hk + hl+1

Via duality Suboptimal Suboptimal Optimal Suboptimal

‖ep‖ hk+1 + hl hk + hl hk+1/2 + hl+1/2 hk + hl+1

Original Suboptimal Suboptimal Quasi-optimal Suboptimal

‖ep‖ hk+2 + hl+1 hk + hl hk+1 + hl+1 hk + hl+1

Via duality Optimal * Suboptimal Optimal Suboptimal

‖∇ · eu‖ hk + hl−1 hk + hl hk + hl hk + hl+1

Suboptimal Optimal Optimal Optimal

‖∇ep‖ hk+1 + hl hk + hl hk + hl hk−1 + hl

Optimal Optimal Optimal Suboptimal

k, l Optimal k + 1 = l k = l k = l k = l + 1

equations (2.1)–(2.2) so as to define a dimensionally consistent norm of the
forcing terms (see [2]).

7. 
p = 
u = L0 (method D) seems interesting if Darcy’s problem is solved
as the limit when ν → 0 of the Stokes problem. In particular, method D
and method C are the only methods that allow l = 0 (obviously, considering
discontinuous pressures), the former with optimal order of convergence.

From these remarks it is even possible to draw a recommendation. First, it is clear
that if equal interpolation is used, method C is the optimal choice. If the Stokes–Darcy
problem is used with k = l + 1, method D should be chosen.

In [25] the authors consider the case 
u = h and 
p = 0, and they just mention in
passing the possibility 
p = h. The results obtained are essentially those of method A
in Table 4.1 (excluding optimality obtained through duality), although numerical
experiments showed an unexpected superconvergence behavior. In [22] the method is
extended to the discontinuous Galerkin approach, that is to say, with nonconforming
velocity spaces (no comment is made about the possibility 
p = h). Once more, the
results obtained are those of the first column in Table 4.1, now in accordance with the
numerical experiments. In [11], we consider the general problem, including viscosity
(and other terms) corresponding to 
u = h and 
p = h. The choice of the constants
in the stabilization parameters allows us to overcome boundary layers due to large
quotients σL2

0/ν, but does not allow us to take ν = 0. However, in light of the results
of Table 4.1, method A is superseded by method C when equal velocity-pressure
interpolation is used, which was the situation targeted in the cited references. Only
if k + 1 = l should method A be preferred.

5. The Stokes–Darcy coupling through interfaces. In this section, we
briefly describe the application of the stabilized methods introduced previously to
a heterogeneous problem coupling free flow with filtration flow through a porous
medium. Let us consider a partition of the domain Ω into ΩS , filled by a fluid gov-
erned by the Stokes problem, and ΩD, covering the porous medium. The continuity
conditions on the Stokes–Darcy interface Σ are not obvious due to the different reg-
ularity of the velocities in both sides of Σ. The three boundary conditions that must
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be enforced on Σ are

uS · n = uD · n,(5.1)

−pS + ν∂nuS · n = −pD,(5.2)

ν∂nuS · t = − α√
σ

uS · t,(5.3)

where uS and uD denote the Stokes and Darcy velocities, pS and pD denote the Stokes
and Darcy pressures, n is the outer unit normal to ΩS , and t is a unit vector tangent
to Σ. The parameter α is the slip rate coefficient. The transmission condition (5.1)
enforces the continuity of normal velocities, (5.2) enforces the continuity of normal
stresses, and (5.3) is the so-called Beavers–Joseph–Saffman condition (see [3, 28]). The
last transmission condition is phenomenological and relates the tangential component
of the normal stress (for the Stokes problem) with its tangential velocity on the
interface; this is a Robin-type interface condition that allows the Stokes fluid to slip
in contact with the porous medium.

For the Stokes subproblem, we introduce V S×QS that consists of pairs [vS , qS ] ∈
H1(ΩS)d×L2(ΩS) such that vS vanishes on ∂ΩS \Σ. Analogously, V D×QD is the set
of functions [vD, qD] ∈ H(div,ΩD)d × L2(ΩD) such that vD ·n vanishes on ∂ΩS \ Σ.
We use BS

s to denote the stabilized bilinear form in ΩS for the Stokes subproblem
(with σ = 0) and BD

s to indicate the one for the Darcy subproblem (with ν = 0).
Let V S

h × QS
h and V D

h × QD
h be appropriate finite element spaces to approximate

V S × QS and V D × QD, respectively. Using the previous formulation, the discrete
Stokes subproblem consists of finding [uS

h , p
S
h ] ∈ V S

h ×QS
h such that

BS
s

([
uS

h , p
S
h

]
,
[
vS

h , q
S
h

])
= LS

([
vS

h , q
S
h

])
+
∫

∂Ω\Σ

(
ν∂nuS

h − pS
hn
) · vS

hdΣ

for any [vS
h , q

S
h ] ∈ V S

h ×QS
h . In ΩD we seek [uD

h , p
D
h ] ∈ V D

h ×QD
h such that

BD
s

([
uD

h , p
D
h

]
,
[
vD

h , q
D
h

])
= LD

([
vD

h , q
D
h

])− ∫
∂Ω\Σ

(
pD

h n
) · vD

h dΣ

for any [vD
h , q

D
h ] ∈ V D

h × QD
h . In order to have a well-posed problem, these two

subproblems have to be supplemented with the transmission conditions (5.1)–(5.3).
Let us consider a weak evaluation of interface stresses in (5.2)–(5.3); the strong

evaluation of stresses has been proved to spoil stability and accuracy (see [8]). It is
easily seen that the coupled problem supplemented with the transmission conditions
on the interface reads as follows: find [uS

h , p
S
h ] ∈ V S

h ×QS
h and [uD

h , p
D
h ] ∈ V D

h ×QD
h

satisfying uS
h · n = uD

h · n on Σ and such that

BS
s

([
uS

h , p
S
h

]
,
[
vS

h , q
S
h

])
+BD

s

([
uD

h , p
D
h

]
,
[
vD

h , q
D
h

])
+

α√
σ

(
uS

h · t,vS
h · t)

Σ
= LS

([
vS

h , q
S
h

])
+ LD

([
vD

h , q
D
h

])
(5.4)

for any [vS
h , q

S
h ] ∈ V S

h ×QS
h and [vD

h , q
D
h ] ∈ V D

h ×QD
h satisfying vS

h ·n = vD
h ·n on Σ.

The continuity of stresses has been imposed in a weak way using a particular choice of
the test functions and the continuity of normal velocities enforced by the trial space.
The interface term comes from (5.3).

At this point, the stability and convergence results obtained above can be ex-
tended to this case, with small modifications. In particular, inequality (3.2) has to
be used in order to bound the new interpolation error related to the interface term in
(5.4).
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Table 6.1

Experimental convergence rates for the ASGS method according to the choice of the length scale
in the stabilization parameters when ν = 0. The P1/P1 pair.

Method A B C D

�p, �u = h, h L0, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ 1.92 (1) 1.95 (1) 2.05 (2) 1.97 (1)

‖ep‖ 1.93 (2) 1.85 (1) 2.20 (2) 2.04 (1)

‖∇ · eu‖ 1.30 (-) 1.94 (1) 1.43 (1) 1.43 (1)

‖∇ep‖ 1.99 (1) 1.91 (1) 1.70 (1) 0.58 (-)

6. Numerical testing. In this section we carry out some numerical experiments
in order to check the theoretical convergence rates proved in sections 3 and 4. We con-
sider three kinds of problems: Darcy flow, Stokes flow, and a heterogeneous problem
coupling Stokes and Darcy systems through interfaces. With regard to the numerical
schemes, we have considered both the ASGS and the OSS techniques with all the
possible choices of the stabilization parameters that have been analyzed previously.

We have used two finite element velocity-pressure interpolations. First, both ve-
locity and pressure have been approximated using continuous piecewise linear finite
element spaces, i.e., the P1/P1 pair. Then, we have replaced the continuous interpo-
lation for the pressure by a discontinuous piecewise constant interpolation.

All test problems are defined in the domain Ω ≡ (0, 1)×(0, 1). We have considered
structured and regular meshes. The family of finite element partitions used in the
convergence analysis consist of 3200, 7200, and 12800 linear triangle elements.

The definition of the stabilization parameters in (3.10)–(3.12) include the algo-
rithmic constants c1, c

p
2, c

u
2 , and a characteristic length L0. Let us define cu2 = c2 and

cp2 = γc2. We have used c1 = 1, c2 = 2, and L0 = 0.1 d
√

meas(Ω) in all cases. Based
on numerical experimentation, we have taken γ = 1 for methods A and C and γ = 0.1
for methods B and D.

In order to evaluate the error introduced by the numerical approximations, we
have solved test problems with analytical solutions, obtained with the appropriate
choices of f , g, and boundary conditions.

6.1. Darcy flow. Let us start the numerical experimentation for the limit case
when ν = 0, i.e., the Darcy problem. We consider the following analytical solution:

u = (−2π cos(2πx) sin(2πy),−2π sin(2πx) cos(2πy)) , p = sin(2πx) sin(2πy).

This test has been extracted from [25]. The analytical solution is obtained for f = 0;
in Darcy flow applications f is usually constant. On the other hand, only the normal
component of the velocity is enforced on the boundary.

For the P1/P1 finite element pair, we show the numerical order of convergence
obtained using the ASGS method in Table 6.1 and using the OSS method in Table 6.2.
The theoretical order of convergence is indicated in parenthesis and (-) is used when
no convergence is expected. For this test, superconvergent results are obtained for
‖eu‖ when using methods A and D. Method D exhibits superconvergence for ‖ep‖.
Method A approximates ‖∇·eu‖ poorly, and method D has a low order of convergence
for ‖∇ep‖; in fact, no order of convergence was expected from the numerical analysis
in both cases. As commented above, method C is the best choice for k = l (the
case under consideration), but method B (thanks to superconvergence) is also very
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Table 6.2

Experimental convergence rates for the OSS method according to the choice of the length scale
in the stabilization parameters when ν = 0. The P1/P1 pair.

Method A C D

�p, �u = h, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ 1.85 (1) 2.20 (2) 1.99 (1)

‖ep‖ 1.90 (2) 2.23 (2) 2.04 (1)

‖∇ · eu‖ 0.78 (-) 1.68 (1) 1.43 (1)

‖∇ep‖ 1.60 (1) 1.48 (1) 0.53 (-)

Table 6.3

Experimental value of the error norms for the mesh with 3200 linear triangle elements using
the ASGS method according to the choice of the length scale in the stabilization parameters when
ν = 0. The P1/P1 pair.

Method A B C D

�p, �u = h, h L0, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ 0.0205 0.0181 0.0112 0.0107

‖ep‖ 0.0206 0.0222 0.0207 0.0091

‖∇ · eu‖ 0.6607 0.1758 0.0778 0.0371

‖∇ep‖ 0.0254 0.0288 0.0250 0.2630

Table 6.4

Experimental convergence rates for the ASGS method according to the choice of the length scale
in the stabilization parameters when ν = 0. Piecewise constant pressures.

Method A B C D

�p, �u = h, h L0, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ -0.03 (-) -0.01 (-) 0.86 (1) 1.90 (1)

‖ep‖ -0.04 (1) -0.03 (-) 0.96 (1) 1.84 (1)

‖∇ · eu‖ -0.42 (-) -0.03 (-) 0.55 (-) 1.56 (1)

effective for this particular test. Using the OSS method we get similar results to
those obtained for the ASGS method; let us remind that method B cannot be used
in this case. From these results we can easily see that method C is the best choice.
In Table 6.3 we have also included the norm of the different errors for the coarser
mesh, using ASGS. For this mesh, method C is the most accurate for ‖∇ep‖, whereas
method D is the most accurate for ‖eu‖, ‖ep‖, and ‖∇ · eu‖. In any case, method C
is superior for finer meshes, because it exhibits a higher order of convergence.

We have carried out the same numerical experiments for discontinuous piecewise
constant pressures. These results are included in Table 6.4 for the ASGS method and
in Table 6.5 for the OSS method. In this case k = l+1 = 1. As expected, methods A
and B (for the ASGS method) do not converge to the exact solution as the mesh size
is reduced. From Theorems 4.1 and 4.2 we know that the improved error estimates
obtained via duality for methods A and B (those with 
u = h) are only true for cu2
large enough. In our numerical experiments those orders of convergence are not fully
observed, because the choice of cu2 does not satisfy this requirement. On the other
hand, the results proved via duality for method C do not involve any assumption over
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Table 6.5

Experimental convergence rates for the OSS method according to the choice of the length scale
in the stabilization parameters when ν = 0. Piecewise constant pressures.

Method A C D

�p, �u = h, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ -0.03 (-) 0.87 (1) 1.87 (1)

‖ep‖ -0.05 (1) 0.79 (1) 1.81 (1)

‖∇ · eu‖ -0.40 (-) 0.54 (-) 1.55 (1)

Table 6.6

Experimental convergence rates for the OSS and ASGS methods when σ = 0. The P1/P1 pair.

Method ASGS OSS

‖eu‖ 1.91 (2) 2.00 (2)

‖ep‖ 1.67 (1) 1.99 (1)

‖∇ · eu‖ 1.63 (1) 1.48 (1)

‖∇ep‖ 0.55 (-) 0.58 (-)

Table 6.7

Experimental convergence rates for the OSS and ASGS methods when σ = 0. Piecewise constant
pressures.

Method ASGS OSS

‖eu‖ 1.98 (2) 1.98 (2)

‖ep‖ 1.45 (1) 1.42 (1)

‖∇ · eu‖ 1.43 (1) 1.31 (1)

this algorithmic constant, and the optimal orders of convergence have been reproduced
by our numerical experiments. Method C converges to the good solution, but method
D proves to be the right choice in this case. As inferred from the numerical analysis,
method D is optimal for k = l + 1.

6.2. Stokes flow. The second test deals with the limit case when σ = 0, i.e.,
the Stokes problem. We consider the problem with exact solution:

u = (2π sin(2πx) cos(2πy),−2π cos(2πx) cos(2πy)) , p = cos(2πx) cos(2πy) − 1.

We can easily check that the velocity is solenoidal, i.e., g = 0. The regularity proper-
ties of the solution allow us to enforce the whole velocity on the boundary.

For the Stokes problem, all methods are equivalent because 
u and 
p are mul-
tiplied by σ (equal to zero for Stokes flow) in the stabilization parameter. The ex-
perimental order of convergence using the ASGS and the OSS methods is shown in
Table 6.6 for the P1/P1 interpolation spaces and in Table 6.7 when using discontin-
uous piecewise constant pressures. Both methods exhibit optimal convergence rates
and superconvergence in some cases, like ‖ep‖ for the OSS method.

6.3. Stokes and Darcy flow coupled through interfaces. As a final nu-
merical example, we consider a heterogeneous problem coupling Stokes and Darcy
systems through an interface, as explained in section 5. We consider the problem
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Table 6.8

Experimental convergence rates for the ASGS method according to the choice of the length scale
in the stabilization parameters for a heterogeneous domain coupling Stokes and Darcy subproblems.
The P1/P1 pair.

Method A B C D

�p, �u = h, h L0, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ 1.88 (1) 1.89 (1) 1.89 (2) 1.89 (1)

‖ep‖ 1.68 (1) 1.68 (1) 1.68 (1) 1.68 (1)

‖∇ · eu‖ 1.56 (-) 1.70 (1) 1.55 (1) 1.48 (1)

‖∇ep‖ 0.66 (-) 0.66 (-) 0.66 (-) 0.66 (-)

Table 6.9

Experimental convergence rates for the OSS method according to the choice of the length scale
in the stabilization parameters for a heterogeneous domain coupling Stokes and Darcy subproblems.
The P1/P1 pair.

Method A C D

�p, �u = h, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ 1.95 (1) 2.17 (2) 2.05 (1)

‖ep‖ 1.77 (1) 1.77 (1) 1.77 (1)

‖∇ · eu‖ 0.99 (-) 2.15 (1) 2.36 (1)

‖∇ep‖ 0.58 (-) 0.58 (-) 0.58 (-)

with exact solution:

u = (2π sin(2πx) cos(2πy),−2π cos(2πx) cos(2πy)) , p = cos(2πx) cos(2πy) − 1,

where u is equal to uS on ΩS and equal to uD on ΩD. For this test, the tangential
component of the normal stress for the Stokes problem vanishes on the interface; the
Beavers–Joseph–Saffman condition (5.3) is reduced to a no-slip boundary condition.
The whole velocity is enforced on ∂ΩS \ Σ, whereas only its normal component is
constrained on ∂ΩD \ Σ. We use the formulation introduced in section 5, and the
coupled linear system is solved in a monolithic fashion (see (5.4)).

In Tables 6.8 and 6.9 we show the order of convergence for the P1/P1 finite
element pair using the ASGS and the OSS methods, respectively. It is clear from the
experiments that the numerical error is driven by the Stokes problem in both cases.
As a consequence, all methods exhibit a very similar behavior. The only exception
is ∇ · eu for the OSS method that exhibits better convergence for methods C and
D. Method C is particularly interesting for k = l because it does not spoil the order
of accuracy for the Stokes problem. Methods A, B, and D exhibit superconvergent
behavior and do not spoil the accuracy of the Stokes problem for this particular
case. However, these methods are not appealing in general, because the orders of
convergence for Darcy flow are lower than those for Stokes flow.

The results for discontinuous pressures are provided in Tables 6.10 and 6.11. In
this case, for methods A and B, the convergence for the Stokes problem is spoiled by
the nonconvergence for the Darcy problem. As indicated for the pure Darcy problem,
method D is optimal. Method C also converges to the exact solution, but more slowly.
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Table 6.10

Experimental convergence rates for the ASGS method according to the choice of the length scale
in the stabilization parameters for a heterogeneous domain coupling Stokes and Darcy subproblems.
Piecewise constant pressures.

Method A B C D

�p, �u = h, h L0, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ -0.03 (-) -0.02 (-) 0.86 (1) 1.94 (1)

‖ep‖ 0.26 (1) 0.29 (-) 1.48 (1) 1.70 (1)

‖∇ · eu‖ -0.46 (-) -0.02 (-) 0.67 (-) 1.72 (1)

Table 6.11

Experimental convergence rates for the OSS method according to the choice of the length scale
in the stabilization parameters for a heterogeneous domain coupling Stokes and Darcy subproblems.
Piecewise constant pressures.

Method A C D

�p, �u = h, h L0
1/2h1/2, L0

1/2h1/2 L0, L0

‖eu‖ -0.02 (-) 0.90 (1) 1.95 (1)

‖ep‖ 0.84 (1) 1.64 (1) 1.68 (1)

‖∇ · eu‖ -0.17 (-) 0.68 (-) 1.72 (1)

7. Conclusions. Two stabilized finite element formulations have been proposed
in this paper to deal with the Stokes–Darcy problem, namely, the ASGS formulation
and the OSS method. A major contribution of this work is to provide a unified analysis
encompassing the cases ν = 0 (Darcy’s problem) and σ = 0 (Stokes’ problem). To
this end, the key point is to work with a norm that contains all the terms for which
stability can be proved (provided the data are regular enough).

For the finite element problems, it has been shown that the convergence properties
of the method in the Darcy limit (ν = 0) are very much influenced by the choice of the
length scales that appear in the stabilization parameters. From the practical point of
view, it is often claimed that equal velocity-pressure interpolation is the most effective
choice to implement. In this case, our analysis reveals that the length scales have to
be chosen as (L0h)1/2, where L0 is a characteristic length of the domain and h the
mesh size of the finite element discretization.

With regard to the Darcy problem, the choice of the method does depend on the
order of approximation of velocities and pressures. Depending on that, we have drawn
some recommendations. It is important to note that we have developed the first
stabilized method for Darcy flow that accommodates piecewise constant pressures,
taking the length scale as L0.

Numerical experiments have confirmed the theoretical rates of convergence, in-
cluding those obtained through duality arguments. Optimal convergence rates have
been found for the Stokes–Darcy problem, for the Darcy problem, and for the Stokes
and the Darcy problems solved in different subdomains and coupled through a com-
mon interface.
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