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Abstract. The productivity and scalability of verifying pipelined circuits can be
increased by exploiting the structural and behavioural characteristics that distin-
guish pipelines from other circuits. This paper presents a formal model of pipelines
that augments a state machine with information to describe the transfer of par-
cels between stages, and reading and writing state variables. Using our model, we
created a definition of correctness that is based on the well-established principles
of structural, control, and data hazards. We have proved that any pipeline that
satisfies our hazards-based definition of correctness is guaranteed to satisfy the
conventional correctness statement of Burch-Dill style flushing.

1 Introduction

In early verifications of pipelined circuits, the manual effort to discover abstraction fun-
ctions limited both the productivity and scalability of verification. Burch and Dill’s use
of flushing a pipeline to derive an abstraction function automatically [5] improved ve-
rification productivity and scalability by sheltering the user from the complexities of
the pipeline. Unfortunately, realistic circuits are beyond the scope of such push-button
verification. To scale verification to larger pipelines, researchers invented a variety of
decomposition strategies. Jones et al. used knowledge about pipeline behaviour to create
incremental flushing [8]]. Pnueli et al. [4] and Sawada and Hunt used pipeline beha-
viour as a guide for defining intermediate models. Hosabettu et al. developed completion
functions to decompose pipelines stage-by-stage [7]. McMillan used knowledge about
the behaviour of pipelines to guide assume-guarantee decomposition [10]].

We believe that a model of state machines that captures the distinguishing structure
and behaviour of pipelined circuits will improve verification productivity and scalability.
The structure of a pipeline is a network of stages through which parcels (instructions)
flow. The behaviour of a pipeline can be described using the principles of structural,
control, and data hazards. This paper presents a formal model and a correctness statement
for pipelines based on stages, parcels, and hazards. Our goals were: remain true to the
intuitive meaning of pipelines and hazards, separate orthogonal concerns into distinct
correctness obligations, and support cutting-edge optimizations.

Our model of pipelines augments a state machine with pipeline-specific functions
and predicates (Section 2)): transferring a parcel between stages, writing to a variable,

* This work was supported in part by the National Sciences and Engineering Research Council

of Canada and by the Semiconductor Research Corporation Contract RID 1030.001

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 66-80] 2003.
(© Springer-Verlag Berlin Heidelberg 2003



A Hazards-Based Correctness Statement for Pipelined Circuits 67

and reading from a variable. The model supports superscalar and out-of-order execution,
external kill signals, exceptions, external interrupts, bypass registers, and register rena-
ming [2]]. Our correctness statement, PipeOk, separates correctness obligations relating
to different hazards, datapath functionality and flushing (Section [3). We have proved
that any pipeline that satisfies PipeOk is guaranteed to satisfy the standard Burch-Dill
flushing correctness statement (Section [).

PipeOk contains thirteen correctness obligations that provide a natural decomposi-
tion strategy. Each obligation describes a single type of behaviour, for example, write-
after-write hazards. Because hazards are well understood by both verification and design
engineers, verification engineers will be able to more easily discuss test plans, verifica-
tion strategies, and counter examples with designers. Because each obligation focuses
on a single type of behaviour, verifying the obligations will be amenable to powerful
abstraction mechanisms. For example, the ordering of reads and writes can be verified
separately for each variable and need only reason about consecutive operations.

To prove that PipeOk implies Burch-Dill correctness, we prove that PipeOk implies
Flushpoint Equality (flushed states are externally equivalent to specification states) and
then use the previously proven result that Flushpoint Equality implies Burch-Dill cor-
rectness [3]]. We prove that PipeOk implies Flushpoint Equality by showing: read and
write operations happen in the correct order, the result of each write operation is correct,
and finally that flushing works correctly.

2 Modelling Pipelines

This section describes our formal model of pipelines. We begin with an informal descrip-
tion of the “parcel view” of a pipeline, which motivates our approach. The remainder of
the section presents the model, auxilliary functions to relate a pipeline to its specification,
and conditions to ensure that the auxilliary functions are consistent.

2.1 The Parcel View of a Pipeline

A pipeline is a network of stages. Parcels, or instructions, flow through the stages and
read-from and write-to variables, or signals, in the pipeline. Figure [Tl shows the runs of
a sample program on an instruction set architecture specification, a four-stage pipelined
microprocessor, and a “parcel view” of the pipeline. Each run is annotated to show when
each parcel moves between stages and when each variable is read or written. The value
of a variable is denoted by the label of the instruction that writes to the variable.

Conventional verification strategies compare a snapshot of the pipeline state to a
specification state. Because a pipeline state contains the effects of multiple partially
executed parcels, it is difficult to relate the implementation to the specification. For
example, step 4 of the pipeline contains parcels A, B, C, and D, which represents portions
of steps 1, 2, 3, and 4 of the specification. A recent trend has been to examine the
implementation only when it is in a flushed state, such as steps 0 and 9 of the pipeline,
which are externally equivalent to steps 0 and 5 of the specification.

The parcel view shows slices of the pipeline state as perceived by each parcel.
Different variables in the same slice come from different points in time. The slice to
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Fig. 1. Specification, pipeline and parcel view of a sample program
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Table 1. Definition of a pipeline

Conventional state machine

state Set of states.
Nsr : state — state — bool — Next-state relation.
isInit : state — bool  Initial-state predicate.

Pipeline sets
stage Set of identifiers for stages in the pipeline, including 7op and Bot
addr;  Set of identifiers for data storage variables in the pipeline.
isExt :(a: addr;) — (q : state) — bool ~ Variable is externally visible.
isStore : (a : addr;) — (q : state) — bool ~ Variable is for data storage.
subPipes : (s : stage) — pipe  One pipe record for each stage

Probes
xfr : (q : state) — (s1 : stage) — (s2 : stage) — bool
In state g, a parcel transfers from s; to sz
Wr s (a:addr;) — (q : state) — (s : stage) — bool
A parcel in s writes to address a in state ¢
Rd s (a:addr;) — (q : state) — (s : stage) — bool

A parcel in s reads from address a in state ¢

the left (right) of each parcel shows the variables as read (written) by the parcel. Gray
backgrounds denote values that are with the specification. For example, in step 2 of
the parcel view, R1 is shown in gray, because R1 is I in the pipeline and A in the
specification. The parcel for B is able to execute correctly, because it reads its operand
from the bypass register, which corresponds to R1 at that time.

The parcel view of pipelines was inspired by two observations: first, for each parcel,
the only state variables that are relevant to its correctness are those that it reads or writes;
second, if every parcel is executed correctly, then the pipeline is correct. Our proof
that our correctness statement, PipeOk, implies Burch-Dill flushing relies on the parcel
view of the pipeline. We have proved that if the order of read and write operations with
respect to parcels in the pipeline is the same as the order with respect to states in the
specification, then data dependencies are obeyed.

2.2 Formal Model of Pipelines

Our formal model of pipelines (Table[l) augments a standard model of non-deterministic
state-machines with predicates to detect when parcels transfer between stages, read from
state variables, and write to state variables. We use these predicates to compute the parcel
view of a pipeline from the next-state relation.

The predicate xfr detects the transfer of a parcel between two stages. We have defined
instantiations of xfr for wide variety of protocols for transfering parcels [[I]]. Transfers
can often be detected using one or two signals, such as the valid bits for the stages. In
the set of stages, Top and Bot are virtual stages: they do not exist in the pipeline. For
input/output pipelines, such as systolic arrays or execution units in microprocessors, 7op
represents the module in the environment from which parcels enter the pipeline and Bot
represents the module to which parcels exit. For closed systems, such as microprocessors
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Table 2. Functions for comparing a pipeline and specification

Sets
addr s Set of identifiers for data storage variables in the specification.
datas Set of data values in the specification.

Structural-hazard correctness
Match 2 (o run) — (t1 : time) — (tn : time) — bool
The parcel that enters at time ¢; exits at time ¢,,.

Control-hazard correctness
ShouldExit : (o : run) — (t : time) — bool
The parcel that enters should eventually exit

Data-hazard and datapath correctness
addrmap : (a : addr;) — (q : state) — addr
Maps addresses of implementation to addresses in the specification
datamap  : (a : addr) — (q : state) — datas
Maps the data in g.a to corresponding specification data value

Flushing correctness
Flush : state — state  Flushes a state
IsFlushed : state — bool A state is flushed

with built-in memory, transfering from/to Top and Bot is defined in terms of operations in
the pipeline, such as fetching an instruction. Pipelines may contain atomic stages, which
hold at most one parcel, and hierarchical stages, which may themselves be pipelines.
We support this with the subPipes field.

State machines commonly distinguish internal and external variables (isExt for “is
external””). We refine this by dividing variables into data-storage and pipeline variables
(isStore for “is storage”). Data-storage variables are used to represent variables in the
specification, and can be either internal (e.g., bypass registers) or external (e.g., register
files). Pipeline variables are the registers that hold parcels in stages. They are internal
and have no corresponding variables in the specification. Read and write predicates need
only monitor storage variables.

2.3 Relating Implementations and Specifications

To verify a pipeline against a specification, we need to compare the behaviours of the
pipeline and specification. Typically, this is done with a function to say how many
instructions are fetched and an external-equivalence relation. Table2lshows the analagous
objects for our model.

We use Match to identify the entrance and exit time of each parcel. Match supports
superscalar pipelines by instantiating the type time with a pair of a clock cycle and a
port [1]]. When working with hierarchical pipelines, we want to treat the stages as black
boxes. The Match relation allows us to match parcels entering and exiting stages while
hiding the internal structure of the stage. We have found five common instantiations for
Match: degenerate, constant latency, in-order, unique tags, and tagged in-order [].
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Table 3. Consistency Conditions on Pipelines and Specifications

Specification conditions
1 The specification is deterministic. This is required for flushpoint-equality correctness to imply
Burch-Dill correctness. Implementations may be non-deterministic.

Traversal conditions
2 If ShouldEXxit is true, then a parcel entered the pipeline.
3 Parcels cannot transfer from the pipeline to the “Top” stage.
4 Parcels cannot transfer from the “Bot” stage to the pipeline.
5 Time increases monotonically as parcels traverse through the pipeline.

6 IsFlushed cannot be true while a parcel is traversing through the pipeline.

7 A storage operation can happen in a stage only if a parcel is in the stage.

Storage Conditions
8 If an address map changed, then a write must have happened in Impl.

9 If a data map changed, then a write must have happened in Impl.

10 If a Spec variable changed, then a write must have happened in Spec.

11 When a pipeline is flushed, external equality and storage equality are identical.

Flushing conditions
12 Flush is idempotent on flushed pipelines.
13 All reachable states are reachable from a flushed state.
14 From any state, a flushed state can be reached eventually.

The predicate ShouldExit says whether a parcel that enters the pipeline should be exe-
cuted. We have identified instantations for ShouldExit that include external kill signals,
branch prediction, internal exceptions, and external interrupts [2]].

We separate external equivalence into two functions: addrmap, which defines a map-
ping between variables in the pipeline and specification, and datamap, which maps data
in the pipeline to the specification. Address maps may be dependent on the current state:
the identity of the specification variable that a bypass register represents is dependent
upon the contents the bypass register. When an implementation variable does not re-
present any specification variable (e.g., a bypass register when it contains a bubble),
addrmap returns L, as shown in steps 0-2 for the pipeline in Figure[]l

To relate PipeOk to flushpoint equality and Burch-Dill flushing, we require that each
pipeline defines a function Flush and a predicate isFlushed.

2.4 Consistency Conditions

Table refconds summarizes the conditions required for the predicates and functions in
the pipeline model to be consistent with the behaviour of the state machine in the model.
The complete mathematical definitions appear in a technical report [2]).

3 Correctness Obligations

We begin with a summary of our notation. We present our correctness obligations ac-
cording to the different types of hazards, datapath functionality, and flushing
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3.1 Notation

When working with theorems relating a run of a specification to a run of an implemen-
tation, we often find it useful to draw “box” or commuting diagrams (Figure 2a). In
Figure[2al x and y refer to the states shown as circles. Properties associated with states
and edges are listed in Figure 2Bl We denote the ™ element of a run o as: ot. We use
run m o to mean that o is a run of the state-machine m, as defined by: V t. m ot o'*1.
As a syntactic shorthand, we write m ¢ ¢’ rather than m.Nsr q ¢’, and we drop the name
of the pipeline when refering to parameters other than Nsr.

[ 0 The initial (“07"") state
P Q (Pz) A (Qy) R A read is performed
e o W A write is performed
P tQ (Pz)N(Qy) A (fzy) %;he stz_ltte .is ﬂusfhed |
o write is performe
P Q (P2) A(Qu) A (z <) :
*—=Oo
PtQ P)AN(Qy)= (fzy Fig. 2b. State and step properties
(Px) A (Qy) (fzy) g p prop
P Q (Pr) AN (Qy) = (z <vy) a /S%tdfress
q State
P Q (Pz)=—3y.Qy s Stage
P iQ (Pz)=3y.(Qy) A (fry) ¢ Time
o—O o Run of a state machine
P f QILLEGAL: (Pz) A (fzy) = (Fy. Qx)
o—O

. . ) Fig. 2c. Variable identifiers
Fig. 2a. Graphical notation

Fig. 2. Notation and conventions

3.2 Top-Level Correctness Statements

Our top-level correctness statement, Definition I, PipeOk, is the conjunction of thir-
teen correctness obligations. Each correctness obligation guarantees that a particular
type of behaviour is implemented correctly. Section[33ldescribes structural-hazard cor-
rectness; Section [34] describes data-hazard correctness; Section 3.3 describes datapath
functionality correctness; Section 3.6l describes additional correctness obligations nee-
ded to ensure that flushed states are externally equivalent to specification states. There
are no correctness obligations that address only control hazards. Instead, control hazards
permeate both structural hazard correctness and data hazard correctness. For structural
hazards, we make sure that correctly speculated parcels are executed and incorrectly spe-
culated parcels do not exit the pipeline. For data hazards, we make sure that incorrectly
speculated parcels do not leave behind data results that are read by correctly speculated
parcels.
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Definition 1 Correctness of pipelines
PipeOk Impl Spec =
[ Struct-hazard correctness
[ EnterTotFun Impl

ExitTotFun Impl A
B MatchlffTrav Impl [ Datapath correctness
A [0l DatapathOk Impl Spec
[ Data-hazard correctness | A
Bl WawHazOk Impl Spec [ Flushing correctness
B RawHazOk Impl Spec [ ImpIWrFlush Impl Spec
[0l WarHazOk Impl Spec A [21SpecWrFlush Impl Spec
[SpecRdTotFun Impl Spec | | [3BlImplinvalidateFlush Impl Spec

BISpecWrTotFun Impl Spec
| BlimplWrTotFun Impl Spec |

3.3 Structural-Hazard Correctness Obligations

Structural hazard correctness is concerned with contention between parcels for resour-
ces in the pipeline. Typical bugs associated with structural hazards are loss of parcels,
duplication of parcels, generation of bogus parcels inside the pipeline, deadlock, and
livelock. A pipeline handles its structural hazards correctly if there is a one-to-one map-
ping between parcels that enter the pipeline and should exit and those parcels that do
exit, and if the parcels that exit do so in the correct order.

Definition [2] tracks a parcel as it traverses from stage to stage in a pipeline. The
expression (t1,51) ~ (t, ,) means that in the run o, a parcel enters the stage s at t;,
traverses from s to s,,, and exits the stage s,, att,,. In the base case s1 and s,, are the same
stage. In the inductive case, there is an intermediate stage so such that the parcel transfers
from s; to s, and then traverses from ss to s,,. To detect when the parcel exits s;, we use
the matching relation provided by s;, according to our hierarchical model of pipelines.
Definition ] supports pipelines with loops, because Match separately identifies each
iteration. We use ~» to define Trav, which means a parcel traverses through the pipeline
from 7op to Bot.

Definition 2 Traversing between stages in a pipeline (~)
(tl, 31) '\0’) (tTu Sn) =

E' tQ, S9.
S1 = Sn y s1.Match o tq to
s1.Match o t1 t, xfr o'? 51 sy

(t27 52) ’g’> (tny Sn)

Obligation[l] EnterTotFun, says that for each time (¢1 ) that a parcel enters the pipeline
and should exit, there exists exactly one time (Z2) such that the parcels exits at 5 (total
and functional). Obligation @] ExitTotFun, says that each parcel that exits the pipeline
(XfrOut) comes from exactly one parcel that entered the pipeline and should have exited
(surjective and injective). Together, Obligations[I] and 2] guarantee that the relationship
between entering and exiting parcels is bijective.
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Obligation 1 Each entrance results in exactly one exit
EnterTotFun Impl =
v i, tl .
run Impl o;
isFlushed o = Alty. Trav Impl o; t1 to
ShouldExit o; t1

Obligation 2 Each exit comes from exactly one entrance
ExitTotFun Impl =

N i, t2.
run Impl o; 3l ty.
IsFlushed 0? - Trav Impl o; t1 to
XfrOut aiz ShouldExit o; t1

Obligation 3, MatchlffTrav, says that parcels that exit the pipeline do so in the
correct order, as defined by the pipeline-specific matching relation (Match). MatchlffTrav
allows pipelines to be treated as black boxes in hierarchical verification, by relating
the traversal of parcels inside the pipeline, Trav, to the entrance and exit of parcels.

Obligation 3 Match correctly identifies when a parcel traverses the pipeline
MatchlffTrav Impl =
Vo,t1,ta.  [Match Impl oty t3] <= [Trav Impl o t; t9]

3.4 Data-Hazard Correctness Obligations

A data-depenency exists between a producing (writing) instruction and a consuming
(reading) instruction if the producing instruction writes to an address that the consu-
ming instruction reads from and no instruction between the producer and the consumer
writes to that address. A pipeline implements data dependencies correctly if every data
dependency in the specification is obeyed in the implementation.

Data hazards are categorized as: read-after-write, write-after-read, and write-after-
write. If a pipeline handles all three types of data hazards correctly, then it implements
data dependencies correctly. In Figure [3] the gray lines represent orderings between
specification and implementation operations that will violate the dependency between
W; and R;. Read-after-write (Raw) hazard correctness guarantees that R; occurs after
Wi;. Together, write-after-write and write-after-read hazard correctness guarantee that no
write will occur to this address between W; and R;. Write-after-write (Waw) correctness
guarantees that no programmatically earlier write happens after W;. Write-after-read
(War) correctness guarantess that no programmatically later write will occur before R;.
Figure[3 has many simplifications that are violated by optimizations such as bypass re-
gisters, register renaming, and out-of-order execution. Our formalization supports these
optimizations using dynamic address maps, multiple writes, and out-of-order writes [2].

The data hazard obligations ensure that reads and writes in the implementation occur
in the correct order. We use the symbols wi<Rrd, rRa<wr, and w<w to denote consecutive
write and read operations in a run. DefinitionBldescribes a read following a write to the
address a in the run o. To the right of the text is an illustration of the definition using the
graphical notation presented in Figure 2al The definitions for a write following a read
and a write following a write are similar.
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Fig. 3. Data-dependencies and the three types of data hazards
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Obligation @, RawHazOk, says that if there is a data-dependency in the spe-
cification and a corresponding read in the implementation (a;,%,;,s,), then there
must exist a corresponding write (a;,t.i, S,) that happens before the read.

Obligation 4 Correctness of read-after-write data hazards
RawHazOk Impl Spec =

VO‘S,O'Z‘, asaﬁwsatrs; aiatriasr-

ag

s 04
A Spec RUN Impl 3 twiv Sw- tws W trs
Os Os 04
A tws Wra<SRd trs — A (asv tws) W (ai7 towis Sw)
twi < tri

twi tri

((157 trs) (%? (aia tri, Sr)
o

RawHazOk contains the first appearance of the relation Spec WZ Impl (“run cor-

respondence”) which says that: o is a run of Spec, o; is a run of Impl from a flushed
state, and the initial states of o, and o; are externally equivalent.

We formalize an operation in a run of an implementation corresponding to an ope-
ration in the specification by tracking a parcel as it traverses the pipeline. The n'”* parcel
that enters the pipeline and should exit corresponds to the n'" step of the specification.
The expression ¢ UT[E (tin, Sn) means that at time ¢;,,, the tgh parcel that entered the
pipeline and shoultf exit is either inside the stage s,, or is just exiting s,,.

Read and write correspondences are defined in terms of parcel correspondence
(ar)- The expression (as, tws) %= (a;, twi, s) means: the specification instruction
at time t,,s writes to address as, the instruction corresponds to the parcel in stage s at
time t,,;, the parcel writes to a;, and the address map of a; at time ¢,,; points to as.

Write-after-write and write-after-read hazards are dealt with by Obligations 5| and
both of which have a case for in-order writes and a case for out-of-order writes.
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The in-order cases are simpler, because they deal only with consecutive operations, as
denoted by W. The out-of-order cases require looking beyond consecutive operations,
because we do not know how far out-of-order the operations will be. We use “wi&wr”
and “rg&wy” for the transitive ordering of write and read operations.

Obligation 5 Correctness of write-after-write data hazards
WawHazOk Impl Spec =

V05,04, Qs twst, Qiy twils Swls twiz, Sw2-

o5 04

Spec — Impl
AN
os O
((157 twsl) W (aia t’u}il, swl)
—
[ Viwso- 1
r o tws1 {y tws2
tws1 Wra<Wr tws2
A : = twil < twiz
(a t )‘757‘” (aA t 0.8 )
y | sy bws2 Wr iy bwi2, Sw2 twil  twio

v twsZa t'rsQ; twi27 Sw2), triZu Sr2-

Os

A twsl W|<<Wr tws2
as
ou tws1  tws2y trs2

A Lws2 Wra<Hd trs2
: = triz < twin

A (a5, tus2) JVT? (@3 twiz; Sw2) twiz  ti2 it
(a57 trs2) <7;';771 (ai7 tri27 87“2)

Obligation 6 Correctness of write-after-read data hazards
WarHazOk Impl Spec =
v 05,04, Os, trslv Qi trila Srl-
Ogs 04
. Spec o Impl
Os 04

(a37 trsl) ﬁ (aia trilv Srl)

—
[ v tw82~
r oy trs1 Py tws2
rs1 Rda<Wr Lws2

: . = tri1 < twi2

v (a57 tst) U\j\l:r (aia twi27 $w2) tri1 twi2

v Lws2;s twil, Swi-
- o
trs1 R wr tws2
N e _ = twiz < twil
[ex3
(twits Sw1) Wr§Rd (trit, sr1) twiz  twit W trit

trs1 tws2

The out-of-order case for Obligation Bl requires that ¢,,;; does not corrupt data by
occurring between another implementation write (t,,;2) and its dependent read (%,;2).
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The out-of-order case of Obligation[6, WarHazOk, is simpler than that of Obligation[3]
WawHazOk, because we do not need to mention the specification write that corresponds
to ty41. The purpose of the out-of-order case is to allow t,,2 to happen before ¢,;1
while ensuring that ¢,,;2 does not corrupt the data intended for ¢,.;;. If £,,;2 corrupts the
data, then t,,;o will be the producer for ¢,;1, which causes the right-hand-side of the
implication to be t,,;5 < 2, Which is clearly false.

Obligations guarantee that, if read and write operations occur in the implemen-
tation, then they will occur in the correct order. These obligations do not guarantee
that the operations actually do occur in the implementation. Obligations [7H0] ensure
that reads and writes in the specification will also occur in the implementation and
that writes that occur in the implementation correspond to writes in the specification.
For brevity, we omit the mathematical definitions, which can be found elsewhere [2].

Obligation 7 SpecRdTotFun Impl Spec = Each read operation in Spec corresponds
to exactly one read operation in Impl
We allow multiple writes in the implementation to correspond to a single write
in the specification, so long as the writes are to different variables (Obligation [§]
SpecWrTotFun). This feature is required to support simple optimizations, such as by-
pass registers, as well as complex optimizations, such as retirement register files.

Obligation 8 SpecWrTotFun Impl Spec = Each write in Spec has at least one
corresponding write in Impl. If two writes in Impl correspond to the same write
in Spec, then the Impl writes must be to different addresses in Impl.

We allow implementations to perform writes that do not correspond to writes in
the specification, so long as these writes are not read (Obligation O] ImplWrTotFun).
This freedom provides a uniform mechanism for implementations to invalidate data,
(remapping a register in register renaming) as well as modify the contents of variables
that are not needed (bubbles changing the value of a bypass register as they propagate
through it). A variable is invalid if its address map is changed so that it no longer points
to an address in the specification. As shown in Figure[Tl when a bypass register contains
abubble, we say that its address map returns L. Obligations[TTHI3]in Section[3-6]ensure
that these writes do not corrupt data before a flushed state.

Obligation 9 ImplWrTotFun Impl Spec = Each write in Impl that is the last write
before a read from the same address must have a corresponding write in Spec.

3.5 Datapath Correctness Obligation

Definition @] describes when two storage variables are equivalent: their address
maps point to the same address and their data maps return the same data value.

Definition 4 Equality of storage variables
(a1,q1) == (a2,q2) =
[ay = addrmap as q2] A [q1.a1 = datamap as o]

The datapath of a pipeline is correct if, assuming every read operation that a parcel
performs will consume the correct data, then every write that parcel performs must
produce the correct data (Obligation[I0} DatapathOk). The clause dealing with reads is
nested within the antecedent to provide a uniform way of dealing with both parcels that
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performs reads and those whose results are independent of the contents of the pipeline
storage variables.

Obligation 10 Correctness of datapath (DatapathOk)
DatapathOk Impl Spec =
v 05,04, Qs, t87 Qi twia Sw-

Og O;
ec = Impl
N Sp RUN P
Y Grs, Qris triy Spe
Ogs 04
(ar57 ts) _a (ariv tria sr) to41 twi+1
Rd = (awSa 0.;-&- ) STORE (awiv g, )

=
(arw Ués) STORE (ari’ 0'?1.)
Os 04

aws;ts) W (awiatwia Sw)

o

3.6 Flushing Correctness Obligations

Using Obligations [THIOl we have proved that every parcel that enters the pipeline and
should exit, will produce the correct result (WriteOk in Figure []). It may seem that
this is a sufficient definition of correctness, however it allows externally visible state
variables that are written but never read to contain incorrect data. We solve this problem
with Obligations[TTHI3l (mathematical definitions appear elsewhere [2]). Obligation[IT}
ImplWrFlush, is analogous to Obligation[Q, ImpIWrTotFun, except that it is concerned
with writes before flushed states, rather than writes before reads. Obligation[I2}, Spec Wr-
Flush, ensures that in a flushed implementation state, the last writes that happened in the
specification have corresponding writes in the implementation. Finally, Obligation [13]
ImplInvalidateFlush, ensures that for each specification variable, there is at least one
corresponding implementation variable. This is done by preventing the invalidation of
the last corresponding implementation variable.

Obligation 11 ImpIWrFlush Impl Spec = Last visible writes in impl before flushed
states correspond to writes in spec.

Obligation 12 SpecWrFlush Impl Spec = Last visible writes in spec occur in impl

Obligation 13 ImplinvalidateFlush Impl Spec = If the address map of a variable (a;)
changes, then in the next clock cycle there must be another implementation variable
(a2) such that the address map of as points to the same specification address as aq
used to point to.

4 Proof That Hazard-Correctness Implies Burch-Dill Correctness

The proof that PipeOk implies Burch-Dill flushing (Theorem [I) contains four major
steps that are linked by transitivity (Figure[d)). In the first step, we used the correctness
obligations for structural, control, and data hazards (Obligations [[HO) to prove that
the read and write operations in the implementation obey data dependencies in the
specification. That is, the operations exist and occur in the correct order (DataDepOk). In
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the second step, we combined the ordering of data-storage operations with the correctness
of the datapath (Obligation [[0) to prove that every write operation writes the correct data
(WriteOk). In the third step, we combined the correctness of write operations with the
correctness obligations for flushing (Obligations [TTHI3) to prove that when a pipeline
is in flushed state, it will correspond to the specification (FlushedEq). The definition of
FlushedEq comes from the Microbox work of Aagaard er al [3]], where it is identified by
the acronym iFEND for “informed-flushpoint with equality between a non-deterministic
implementation and a deterministic specification”.

Definition 5 Burch-Dill correctness
BurchDillOk Impl Spec =

VG, qs, q;-
J— /

Flush q; /E? s Jq.. / /

Impl q; ¢, = A Flush q; == q

DoesFetch q; ¢, Spec qs ¢,
Theorem 1 Pipeline correctness implies Burch-Dill correctness

PipeOklmpBurchDillOk =
Y Impl, Spec.

PipeOk Impl Spec = BurchDillOk Impl Spec

PipeOk = BurchDillOk

PipeOk = DataDepOk
DataDepOk = WriteOk

WriteOk = FlushedEq

FlushedEq = BurchDillOk

Fig. 4. Proof sketch that PipeOk implies Burch-Dill flushing

5 Conclusions

Some related work has been on correctness for pipelined circuits. Tahar and Kumar de-
fined correctness statements for the different types of hazards in a single-scalar, in-order
microprocessor [[13]. Manolios has used bisimulation and retiming to relate the run of a
pipeline to a specification using state-based abstraction functions, such as flushing [9].
Mishra et al defined correctness for pipelined microprocessors with the restriction that
instructions proceed from stage to stage in a lockstep order [1T]].

Some of the lemmas and decomposition strategies used by others are similar to
correctness obligations in our work. McMillan’s inductive proof to show that each in-
struction that reads correct data will write correct results [10] is similar to our obligation
for datapath correctness. Sawada’s MAETT annotates implementation states with history
and prophecy variables to facilitate separating the effects of individual instructions [[12].
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This is similar in flavour to our use of read and write operations to identify the relevant
state variables for each instruction. Ho’s token networks [6] are a verification strategy
that might yield useful abstractions to verify our structural hazard obligations.

The goal of the work presented here was to establish a formal foundation for pipelined
circuits that would increase verification capacity and productivity, be intuitive to both
verification engineers and design engineers, and handle cutting-edge optimizations in
pipelines. We have defined a formal model and correctness statement (PipeOk) based
upon conventional notions of stages, parcels, and hazards. We have proved that the
correctness statement guarantees Burch-Dill flushing correctness. PipeOk is comprised
of thirteen correctness obligations: three for structural hazards, six for data hazards, one
for the datapath, and three for flushing. Control hazards are integrated into structural
and data hazard correctness. The correctness obligations each deal with a specific type
of behaviour, which should make them amenable to powerful abstraction and problem
reduction techniques. We have begun several case studies to evaluate the effectiveness
of PipeOk using a combination of model checking and theorem proving. After the case
studies indicate that our model and correctness statement are effective, we will mechanize
the proof that PipeOk implies Flushpoint Equality.
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