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Abstract. The basis of the finite point method for the fully meshless solution of struc-
tural mechanics problems is described. A new stabilization technique based on a finite
increment calculus procedure is used. The efficiency and accuracy of the stabilized finite
point method in the meshless analysis of simple structural problems is shown in two ex-
amples of applications.
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1 Advances in the finite point method for mesh free analysis in
fluid and solid mechanics

Mesh free techniques have become quite popular in computational mechanics. A family
of mesh free methods is based on smooth particle hydrodynamic procedures. [1,2]. These
techniques, also called free lagrangian methods, are typically used for problems involv-
ing large motions of solids and moving free surfaces in fluids. A second class of mesh free
methods derive from generalized finite difference (GFD) techniques [3,4]. Here the approx-
imation around each point is typically defined in terms of Taylor series expansions and
the discrete equations are found by using point collocation. Among a third class of mesh
free techniques we find the so called diffuse element (DE) method [5], the element free
Galerking (EFG) method [6,7] and the reproducing kernel particle (RKP) method [8,9].
These three methods use local interpolations for defining the approximate field around a
point in terms of values in adjacent points, whereas the discretized system of equations is
typically obtained by integrating the Galerkin variational form over a suitable background
grid.

The finite point method (FPM) proposed in [10-13] is a truly meshless procedure. The
approximation around each point is obtained by using standard moving least square tech-
niques similarly as in DE and EFG methods. The discrete system of equations is obtained
by sampling the governing differential equations at each point as in GFD methods.

The basis of the success of the FPM for solid and fluid mechanics applications is the
stabilization of the discrete differential equations. The stable form found by the finite
element calculus procedure presented in [14-17] corrects the errors introduced by the point
collocation procedure, mainly next to the boundary segments. In addition, it introduces
the necessary stabilization for treating high convection effects and it also allows equal
order velocity-pressure interpolations in fluid flow problems [17].

The content of the paper is structured as follows. In next section on the basis of the
FPM approximation is presented. The discretization of the equilibrium equations in solid
mechanics using a stabilized finite point method is described next. The efficiency of the
stabilized FPM is verified in two applications to simple solid mechanics problems.

1.1 Interpolation in the FPM

Let €; be the interpolation domain (cloud) of a function u(z) and let s; with j = 1,2,---,n
be a collection of n points with coordinates z; € ;. The unknown function u may be
approximated within €2; by

m
u(z) Zi(z) = Y p(a)u = pa) e (1)
=1
where @ = [a1,as, --an]T and vector p(z) contains typically monomials, hereafter

termed “base interpolating functions”, in the space coordinates ensuring that the basis is
complete. For a 2D problem we can specify
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p=[l,z,y]" for m=3 (2)

and

p=[l,z,v,2%zy,y* )T for m=6 etc. (3)

Function u(z) can now be sampled at the n points belonging to Q; giving

h N T
Uy Uy P1
h N T
Ugy Ug P2
w={ “r={ "3 ={{"7"Ya=Ca (4)
h - T
Uy Uy, P,

where u} = u(z;) are the unknown but sought for values of function u at point j, @; =

@(x;) are the approximate values, and p; = p(z;).

In the FE approximation the number of points is chosen so that m = n. In this case C is
a square matrix. The procedure leads to the standard shape functions in the FEM [18].

If n > m, C is no longer a square matrix and the approximation can not fit all the uf
values. This problem can be simply overcome by determining the @ values by minimizing
the sum of the square distances of the error at each point weighted with a function ¢(z)
as

n

T =3 0(@) (uf ~le)” = 3 elws) (uf - pe)’ (5)

j=1

with respect to the o parameters. Note that for ¢(z) = 1 the standard least square (LSQ)
method is reproduced.

Function ¢(z) is usually built in such a way that it takes a unit value in the vicinity of
the point 7 typically called “star node” where the function (or its derivatives) are to be
computed and vanishes outside a region 2; surrounding the point. The region ; can be
used to define the number of sampling points n in the interpolation region. A typical choice
for ¢(z) is the normalized Gaussian function and this has been chosen in the examples
shown in the paper. Of course n > m is always required in the sampling region and if
equality occurs no effect of weighting is present and the interpolation is the same as in
the LSQ scheme.

Standard minimization of eq.(5) with respect to a gives
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Figure 1: Fixed weighing least square procedure.
n

A = p(z;)p(z;)p" (25)

J=1
B = [p(z1)p(z1), o(22)P(22), " - -, p(zn)P(zn)] (7)

The final approximation is obtained by substituting & from eq.(6) into (1) giving

n
i(z) = pTC'ul = NTu" = ZN;U? (8)

j=1

where the “shape functions” are

m
Nj(@) =) p(@)C;" = p"(2)C (9)
=1
It must be noted that accordingly to the least square character of the approximation

ule;) = dfe;) # o (10)

i.e. the local values of the approximating function do not fit the nodal unknown values
(Figure 1). Indeed 4 is the true approximation for which we shall seek the satisfaction
of the differential equation and the boundary conditions and u? are simply the unknown
parameters sought.

The weighted least square approximation described above depends on a great extend on
the shape and the way to apply the weighting function. The simplest way is to define a
fixed function ¢(z) for each of the €; interpolation domains [11,12].

Let ¢;(z) be a weighting functions satisfying
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pi(z;) = 1
wi(z) # 0 z €€ (11)
wi(r) = 0 z & Q;

Then the minimization square distance becomes

g = Z wi(xj)(u;-‘ —@(z;))®> minimum (12)

The expression of matrices A and B coincide with eq.(7) with ¢(z;) = p;i(z;)

Note that according to (1), the approximate function @(x) is defined in each interpolation
domain £2;. In fact, different interpolation domains can yield different shape functions N;
As a consequence a point belonging to two or more overlapping interpolation domains has
different values of the shape functions which means that NJ? 7 N]'L The interpolation is
now multivalued within §2; and, therefore for any useful approximation a decision must be
taken limiting the choice to a single value. Indeed, the approximate function %(z) will be
typically used to provide the value of the unknown function u(z) and its derivatives in only
specific regions within each interpolation domain. For instance by using point collocation
we may limit the validity of the interpolation to a single point ;. It is precisely in this
context where we have found this meshless method to be more useful for practical purposes
[10-13].

1.2 Discretization of governing equations

Let us assume a problem governed by the following set of differential equations

A(uj))=0 inQ (13a)

with boundary conditions
uj — 4 = on I’y (13b)
B(uj)=0 onT, ' (13¢)

In above A is a differential operator defining the governing differential equations to be
satisfied on the domain {2 with boundary I' = I'; U T'y, B is the differential operator
defining the boundary conditions at the Neumann boundary I';, u; are the unknown
variables with prescribed values u; at the boundary Iy, 7 = 1,2,---, N, where N, is the
number of variables. In solid mechanics application u; are the displacements and A and B
are the equilibrium equations to be satisfied in the domain 2 and the boundary I'; where
tractions are prescribed respectiveley.

The successful application of the FPM in fluid and solid mechanics requires the “stabi-
lization” of the discrete form. The reasons for this stabilization in fluid problems is due to
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the effect of convection terms and the need to satisfy the incompressibility requirements
are due to the need for improving the satisfaction of the equilibrium equations (13a) and
(13c) over a “cloud” when using a point collocation procedure.

A stabilized form of the differential equations [(13) can be found by using the finite
increment calculus (FIC) procedure described in [14-17]. The FIC method is based on
imposing the balance laws typical of solid and fluid mechanics over a domain of finite
size and retaining higher order terms in the standard Taylor series expansion used to
approximate the unknown field over the balance domain. The stabilized form of eqs. (13)
reads

1. 0A
— S = in
2h’8x]- ¢ n

uj—u; = 0  onT, (14)

A

1
B — §thJA = () on Ft

where n; are the components of the unit normal to the boundary T'; and h; are the
dimensions of the balance domain (also called characteristic length parameters). The un-
derlined terms in eq.(14) introduce the necessary stabilization in the governing equations
at discrete level. It can be shown that egs.(14) are the starting point for deriving many
well known stabilized numerical methods typically used in computational fluid dynamic
problems [14-17]. The stabilized equations (14) have also been found useful for enhanced
application of the FPM in fluid mechanics [12,13]. The efficiency of this stabilization pro-
cedure for the application of the FPM in solid mechanics will be shown in the examples
presented in next section.

The discretized system of equations in the FPM is found by substituting the approxi-
mation (8) into eqs.(14) and collocating the differential equations at each point in the
analysis domain. This gives

. 1. d .
[A(uj) = Ehja—asjA(uj)]k =0 k=12---N,
[4]s —@; =0 s=1,2---N;, (15)
. 1 .
l:B(UJ) = Eh]n]A(u])} =0 p= 1, 2. Nt
»

In above NV; is the number of points within the domain € and N, and N, are the points
located on the boundaries T',, and T, respectively.

The discretized system of equations (15) can be written in the standard matrix form

Ku" = f (16)
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h

from where the values of the nodal parameters u; can be found.

Details of the implementation of the boundary conditions on the Dirichlet boundary T,
are given in [11,12].

The computation of the characteristic length parameters h; follows the procedure ex-
plained in [13—17]: In the examples shown in the paper using quadratic base functions,
the value h; = d/™™ has been chosen where d/™' is the closest distance from a star node
in a cloud to its closest neighbour.

Further details on the FPM can be found in [10-13].

1.3 Example 1. Analysis of a simple supported beam under distributed loa-
ding

Figure 2 shows the geometry of the beam, the mechanical properties and the uniform dis-
tribution of 51 points. A uniform load acting on the upper edge is considered. A quadratic
interpolation (m = 6) for the displacement variables has been chosen. Numerical results
for the beam deflection and the horizontal stress distribution are shown. The same prob-
lem has been analyzed with the FEM using a structured mesh of 68 linear plane stress
triangles (CST element) based on the same point distribution. Nodal stresses have been
obtained by standard nodal averaging of element values. Comparison of the errors for the
control deflection and the maximum o, stress gives some advantage to the stabilized FPM
results (see Table 1).

Numerical results for grid of 51 points (68 CST finite elements)
Central deflection error Error in maximum o, stress
FPM+S FEM FPM+S FEM

19% 21% 19% 38%

Table 1: Simple supported beam. Numerical results for grid of 51 points (68 CST finite
elements)

The convergence of the maximum horizontal stress and the maximum deflection value
with the number of points is shown in the lower part of Figure 2, respectively. Results,
listed as FPM+S, correspond to those obtained with the stabilized FPM described in the
paper, whereas those listed as FPM were obtained neglecting the stabilization terms (i.e.
the terms involving the characteristic lenght parameters in eqs.(14) and (15)). Note the
benefitial effect of the stabilization terms leading to results which are more accurate than
those obtained by the standard FEM in all cases.
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Figure 2: Simple supported beam analyzed with FPM and CST finite elements. (a) Beam
geometry and loading. (b) Structured grid of 51 points. Convergence of maximum hori-
zontal stress (c) and the maximum deflection (d) with the number of degrees of freedom.
Exact solution refers to classical beam theory [19].



ECCM 99, Miinchen, Germany

1.4 Example 2. Square plate with circular hole under tension

Figure 3 shows the geometry of the plate and the loading. One quater of the plate is
analyzed only due to symmetry. The problem has been solved with the FPM using two
unstructured grids of 36 and 60 points. Contours of horizontal stress obtained with the
stabilized FPM are shown in Figures 3 and 4 for the two grids. Results for the maximum
horizontal stress at the upper tip of the hole obtained with the stabilized FPM are very
accurate. This compares very favourably with the error obtained with the FEM using an
unstructured mesh of CST elements. The distribution of the maximum horizontal stress
along the line x = 0 is also shown in Figure 3 for the two grids studied. Note the greater
accuracy of the stabilized FPM solution versus the standard FPM and FEM solutions
(see Table 2).

36 points - 50 CST Triangles | 60 points - 94 CST Triangles
FPM+S FEM FPM+S FEM
6% 38% 1,5% 21%

Table 2: Square plate with circular hole. Error in maximum horizontal stress obtained
with the stabilized finite point method (FPM+S) and the finite element method (FEM)

CONCLUSIONS

The stabilized FPM is a promising numerical method for the meshless solution of prob-
lems in solid mechanics. Results for the two problems analyzed with the stabilized FPM
yielded a higher accuracy than those obtained with standard FEM. The accuracy was re-
markably higher for the maximum stress values. The optimal selection of the stabilization
parameters and the validation of the stabilized FPM for problems involving heterogeneous
materials and 3D geometries are the main challenges in the extension and validation of
the new meshless procedure.






E. Onate, F. Perazzo and J. Miquel

Y Np=36
n>6
m=6
O=1
I
° ————
o ° °
o
q ———
4 o (o]
° o
5 o "
o
o
I (—
o o
L 4 o %
[ |
2,8223
2,4906
2,1588
1.8271
1.4954
1,1637
0,83195
©,50023
0,16851
-0,1631¢&
35
—O—FPM+S
5 — o FPM
—24—FEM (CST)
25 A
I
S -4
ot 2
[%2]
15
1 4
0,5 T T T T T
0 1 2 3 4 5 5]

Figure 3: Square plate with circular hole under tension analyzed with FPM and FEM
(CST elements) (E = 1000, » = 0.3). Plate geometry and loading. Unstructured grid of
36 points. Stress contours displayed over the deformed shape for the two grids studied.
Distribution of maximum horizontal stress along the line z = 0 for the two grids studied.
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Figure 4: Square plate with circular hole under tension analyzed with FPM and FEM
(CST elements) (E = 1000, v = 0.3). Plate geometry and loading. Unstructured grid of
60 points. Stress contours displayed over the deformed shape for the two grids studied.
Distribution of maximum horizontal stress along the line z = 0 for the two grids studied.
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1 Advances in the finite point method for mesh free analysis in
fluid and solid mechanics

Mesh free techniques have become quite popular in computational mechanics. A family
of mesh free methods is based on smooth particle hydrodynamic procedures. [1,2]. These
techniques, also called free lagrangian methods, are typically used for problems involv-
ing large motions of solids and moving free surfaces in fluids. A second class of mesh free
methods derive from generalized finite difference (GFD) techniques [3,4]. Here the approx-
imation around each point is typically defined in terms of Taylor series expansions and
the discrete equations are found by using point collocation. Among a third class of mesh
free techniques we find the so called diffuse element (DE) method [5], the element free
Galerking (EFG) method [6,7] and the reproducing kernel particle (RKP) method [8,9].
These three methods use local interpolations for defining the approximate field around a
point in terms of values in adjacent points, whereas the discretized system of equations is
typically obtained by integrating the Galerkin variational form over a suitable background
grid.

The finite point method (FPM) proposed in [10-13] is a truly meshless procedure. The
approximation around each point is obtained by using standard moving least square tech-
niques similarly as in DE and EFG methods. The discrete system of equations is obtained
by sampling the governing differential equations at each point as in GFD methods.

The basis of the success of the FPM for solid and fluid mechanics applications is the
stabilization of the discrete differential equations. The stable form found by the finite
element calculus procedure presented in [14-17] corrects the errors introduced by the point
collocation procedure, mainly next to the boundary segments. In addition, it introduces
the necessary stabilization for treating high convection effects and it also allows equal
order velocity-pressure interpolations in fluid flow problems [17].

The content of the paper is structured as follows. In next section on the basis of the
FPM approximation is presented. The discretization of the equilibrium equations in solid
mechanics using a stabilized finite point method is described next. The efficiency of the
stabilized FPM is verified in two applications to simple solid mechanics problems.

1.1 Interpolation in the FPM

Let £2; be the interpolation domain (cloud) of a function u(x) and let s; withj = 1,2,---,n
be a collection of n points with coordinates z; € €;. The unknown function u may be
approximated within €2; by

m
u(z) 2 d(z) = Y ple)a = p(z) e (1)
=1
where @ = [og, @9, ay|T and vector p(z) contains typically monomials, hereafter

termed “base interpolating functions”, in the space coordinates ensuring that the basis is
complete. For a 2D problem we can specify
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p=[l,z,y]" for m=3 (2)

and

p=[1l,z92%zy,y]" for m=6 etc. (3)

Function u(x) can now be sampled at the n points belonging to €); giving

1 N T
uy Uy Pi
h ~ T
Ug Ug P2
wh={ i " h=0"" ba=Ca (4)
h A T
U, Uy, P,

where ugl = u(zx;) are the unknown but sought for values of function u at point j, @; =

@(r;) are the approximate values, and p; = p(z;).
In the FE approximation the number of points is chosen so that m = n. In this case C is
a square matrix. The procedure leads to the standard shape functions in the FEM [18].

If n > m, C is no longer a square matrix and the approximation can not fit all the ug-‘
values. This problem can be simply overcome by determining the @ values by minimizing
the sum of the square distances of the error at each point weighted with a function ¢(z)
as

n n

T=3 (e (ut - ()" =Y wlay) (ut - pla)” (5)

with respect to the & parameters. Note that for ¢(z) = 1 the standard least square (LSQ)
method is reproduced.

Function ¢(z) is usually built in such a way that it takes a unit value in the vicinity of
the point 7 typically called “star node” where the function (or its derivatives) are to be
computed and vanishes outside a region €2; surrounding the point. The region {2; can be
used to define the number of sampling points n in the interpolation region. A typical choice
for ¢(x) is the normalized Gaussian function and this has been chosen in the examples
shown in the paper. Of course n > m is always required in the sampling region and if
equality occurs no effect of weighting is present and the interpolation is the same as in
the LSQ scheme.

Standard minimization of eq.(5) with respect to o gives

a=C* |, C'=A"B (6)
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u, 9|
u(x)
%
Figure 1: Fixed weighing least square procedure.
A =) o(z)p;)p" (z5)
i=1
B = [p(z1)p(z1), p(2)P(22), -, 9(2n)P(2n)] (7)

The final approximation is obtained by substituting & from eq.(6) into (1) giving

n
a(r) = pTClu" = NTu" = ZN]’u;‘ (8)
j=1
where the “shape functions” are

m
Ni(@) =) m(z)Cj' = p"(z)C™! 9)
=1
It must be noted that accordingly to the least square character of the approximation

ule;) = dfay) # vl (10)

i.e. the local values of the approximating function do not fit the nodal unknown values
(Figure 1). Indeed @ is the true approximation for which we shall seek the satisfaction
of the differential equation and the boundary conditions and u;‘ are simply the unknown
parameters sought.

The weighted least square approximation described above depends on a great extend on
the shape and the way to apply the weighting function. The simplest way is to define a
fixed function ¢(x) for each of the 2; interpolation domains [11,12].

Let ¢;(z) be a weighting functions satisfying
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pi(zi) = 1
pi(z) # 0 ze (11)
pi(z) = 0  zg

Then the minimization square distance becomes

Ji = Z i(z;)(ul — @(z;))*> minimum (12)

i=1

The expression of matrices A and B coincide with eq.(7) with ¢(z;) = ¢;i(z;)

Note that according to (1), the approximate function %(x) is defined in each interpolation
domain €;. In fact, different interpolation domains can yield different shape functions N;
As a consequence a point belonging to two or more overlapping interpolation domains has
different values of the shape functions which means that N;f o N]" The interpolation is
now multivalued within €2; and, therefore for any useful approximation a decision must be
taken limiting the choice to a single value. Indeed, the approximate function 4 (z) will be
typically used to provide the value of the unknown function u(x) and its derivatives in only
specific regions within each interpolation domain. For instance by using point collocation
we may limit the validity of the interpolation to a single point z;. It is precisely in this
context where we have found this meshless method to be more useful for practical purposes
[10-13].

1.2 Discretization of governing equations

Let us assume a problem governed by the following set of differential equations

A(u;)=0  inQ (13a)

with boundary conditions
u;j— ;=0 on I’y (13b)
B(u;) =0 on T (13¢)

In above A is a differential operator defining the governing differential equations to be
satisfied on the domain  with boundary I' = I', U Ty, B is the differential operator
defining the boundary conditions at the Neumann boundary T';, u; are the unknown
variables with prescribed values @; at the boundary I'y, j = 1,2,---, N,, where N, is the
number of variables. In solid mechanics application u; are the displacements and A and B
are the equilibrium equations to be satisfied in the domain €2 and the boundary T'; where
tractions are prescribed respectiveley.

The successful application of the FPM in fluid and solid mechanics requires the “stabi-
lization” of the discrete form. The reasons for this stabilization in fluid problems is due to
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the effect of convection terms and the need to satisfy the incompressibility requirements
are due to the need for improving the satisfaction of the equilibrium equations (13a) and
(13c) over a “cloud” when using a point collocation procedure.

A stabilized form of the differential equations [(13) can be found by using the finite
increment calculus (FIC) procedure described in [14-17]. The FIC method is based on
imposing the balance laws typical of solid and fluid mechanics over a domain of finite
size and retaining higher order terms in the standard Taylor series expansion used to
approximate the unknown field over the balance domain. The stabilized form of egs. (13)
reads

A — lh]% = 0 in Q
2 azvj
Uj — 'L_L] = 0 on Fu (14)

1
B — §hjnjA =0 on Ft

where n; are the components of the unit normal to the boundary T'; and h; are the
dimensions of the balance domain (also called characteristic length parameters). The un-
derlined terms in eq.(14) introduce the necessary stabilization in the governing equations
at discrete level. It can be shown that eqs.(14) are the starting point for deriving many
well known stabilized numerical methods typically used in computational fluid dynamic
problems [14-17]. The stabilized equations (14) have also been found useful for enhanced
application of the FPM in fluid mechanics [12,13]. The efficiency of this stabilization pro-
cedure for the application of the FPM in solid mechanics will be shown in the examples
presented in next section.

The discretized system of equations in the FPM is found by substituting the approxi-
mation (8) into eqs.(14) and collocating the differential equations at each point in the
analysis domain. This gives

1. 0
A(G;) — =h;—A(U; = e =1,2--- N,
[ (“J) 9 ]axj (UJ)L 0 k ) t
[G;]s —@; =0 s=1,2---N; (15)

[B(ﬁj) = %hj”jA(@j)] =0 p=12---N
P

In above N, is the number of points within the domain © and N, and N, are the points
located on the boundaries I', and T';, respectively.

The discretized system of equations (15) can be written in the standard matrix form

Ku" = f (16)
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h

from where the values of the nodal parameters u; can be found.

Details of the implementation of the boundary conditions on the Dirichlet boundary T’
are given in [11,12].

The computation of the characteristic length parameters h; follows the procedure ex-
plained in [13—17]: In the examples shown in the paper using quadratic base functions,
the value h; = d™™ has been chosen where di™" is the closest distance from a star node
in a cloud to its closest neighbour.

Further details on the FPM can be found in [10-13].

1.3 Example 1. Analysis of a simple supported beam under distributed loa-
ding

Figure 2 shows the geometry of the beam, the mechanical properties and the uniform dis-
tribution of 51 points. A uniform load acting on the upper edge is considered. A quadratic
interpolation (m = 6) for the displacement variables has been chosen. Numerical results
for the beam deflection and the horizontal stress distribution are shown. The same prob-
lem has been analyzed with the FEM using a structured mesh of 68 linear plane stress
triangles (CST element) based on the same point distribution. Nodal stresses have been
obtained by standard nodal averaging of element values. Comparison of the errors for the
control deflection and the maximum o, stress gives some advantage to the stabilized FPM
results (see Table 1).

Numerical results for grid of 51 points (68 CST finite elements)
Central deflection error Error in maximum o, stress
FPM+S FEM FPM+S FEM

19% 21% 19% 38%

Table 1: Simple supported beam. Numerical results for grid of 51 points (68 CST finite
elements)

The convergence of the maximum horizontal stress and the maximum deflection value
with the number of points is shown in the lower part of Figure 2, respectively. Results,
listed as FPM+S, correspond to those obtained with the stabilized FPM described in the
paper, whereas those listed as FPM were obtained neglecting the stabilization terms (i.e.
the terms involving the characteristic lenght parameters in eqs.(14) and (15)). Note the
benefitial effect of the stabilization terms leading to results which are more accurate than
those obtained by the standard FEM in all cases.
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1.4 Example 2. Square plate with circular hole under tension

Figure 3 shows the geometry of the plate and the loading. One quater of the plate is
analyzed only due to symmetry. The problem has been solved with the FPM using two
unstructured grids of 36 and 60 points. Contours of horizontal stress obtained with the
stabilized FPM are shown in Figures 3 and 4 for the two grids. Results for the maximum
horizontal stress at the upper tip of the hole obtained with the stabilized FPM are very
accurate. This compares very favourably with the error obtained with the FEM using an
unstructured mesh of CST elements. The distribution of the maximum horizontal stress
along the line x = 0 is also shown in Figure 3 for the two grids studied. Note the greater
accuracy of the stabilized FPM solution versus the standard FPM and FEM solutions
(see Table 2).

36 points - 50 CST Triangles | 60 points - 94 CST Triangles
FPM+S FEM FPM+S FEM
6% 38% 1,6% 21%

Table 2: Square plate with circular hole. Error in maximum horizontal stress obtained
with the stabilized finite point method (FPM+S) and the finite element method (FEM)

CONCLUSIONS

The stabilized FPM is a promising numerical method for the meshless solution of prob-
lems in solid mechanics. Results for the two problems analyzed with the stabilized FPM
yielded a higher accuracy than those obtained with standard FEM. The accuracy was re-
markably higher for the maximum stress values. The optimal selection of the stabilization
parameters and the validation of the stabilized FPM for problems involving heterogeneous
materials and 3D geometries are the main challenges in the extension and validation of
the new meshless procedure.
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