
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

AN IB-LBM FOR FSI PROBLEMS INVOLVING VISCOELASTIC
FLUIDS AND COMPLEX GEOMETRIES

Jingtao MA1, Zhen Wang2, Yi Sui2, John Young1, Joseph C.S. Lai1 and Fang-Bao Tian1

1 School of Engineering and Information Technology, University of New South Wales, Canberra, ACT
2600, Australia

2 School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS,
UK

Key words: Immersed-boundary method, lattice Boltzmann method, fluid-structure interaction, vis-
coelastic fluids

Abstract. An immersed boundary-lattice Boltzmann method (IB-LBM) for fluid-structure interaction
(FSI) problems involving viscoelastic fluids and complex geometries with a few validation cases is pre-
sented in this paper. In this method, the lattice Boltzmann method is used to solve the fluid dynamics and
the constitutive equations of viscoelastic fluids. An artificial damping is introduced to enhance numeri-
cal stability in solving the constitutive equations. A hybrid of the finite difference method (2D and 3D
rigid particles) and the finite element method (3D capsule) is employed to solve the structural dynamics.
The interaction between the solid structure and the fluid is achieved by an immersed boundary method.
The present method and models are validated by several cases including 2D Oldroyd-B channel flow,
2D lid-driven cavity flow, 2D Oldroyd-B flow over a confined cylinder, a 2D rigid particle migration in
an Oldryod-B Couette flow, a spherical particle rotation in an Oldroyd-B shear flow, a spherical particle
settling in a Newtonian fluid, and the deformation of a spherical capsule in a long channel filled with a
Newtonian fluid.

1 Introduction

Non-Newtonian fluids can be involved in many industrial and biological systems, and typical examples of
non-Newtonian fluids are polymer solutions, shampoo, paints, food and mucus layer. In many scenarios,
the interaction between non-Newtonian fluids and solid structures can be found. For example, a free
swimmer (e.g., microorganism or sperm) may encounter complex fluids (non-Newotnian fluids, e.g.,
substrates or cervical fluid) [1, 2, 3, 4, 5]. Sometimes, it is difficult to conduct the experimental study on
fluid-structure interaction (FSI) problems due to the small scale of the structure (e.g., microorganisms in
the order of µm). In this case, the numerical method can be a suitable tool to investigate these problems.

Many previous numerical investigations on FSI problems involving non-Newtonian fluids have been
based on body-conformal grids, and methods of these investigations normally include the arbitrary La-
grangian Eulerian-finite element method (ALE-FEM) [6, 7] and the deforming-spatial-domain/stabilized
space-time (DSD/SST) method [8, 9, 10]. The disadvantage of these methods is obvious: the mesh needs
to be regenerated to ensure the quality of mesh when large deformation/displacement is involved [11, 12,
13]. In contrast, IB-LBM (based on the non-conformal mesh) provides a convenient alternative for
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FSI problems involving moving boundaries and large deformation/displacement. Recently, IB-LBM has
been used to study FSI problems involving viscoelastic fluids [14, 15, 16]. Specifically, a numerical
study on settling of rigid particles in viscoelastic fluids was conducted by Goyal and Derksen [14]. In
this research, the lattice Boltzmann method (LBM) was used to solve the flow of fluids, the finite volume
method (FVM) was utilized to solve the constitutive equations of viscoelastic fluids, and the immersed
boundary method (IBM) was utilized to achieve the interaction between fluids and rigid particles. In
addition, the accuracy of this method was confirmed by different validation cases (2D Oldroyd-B flow
over a cylinder, a 3D spherical particle rotation in an Oldroyd-B shear flow, and a 3D spherical particle
sedimentation in Newtonian fluid under gravity). More recently, LBM and IBM were combined to study
the motion of a massless flexible sheet in viscoelastic flows by Zhu [15, 17], where the LBM originally
proposed by Malaspinas et al. [18] was utilized to solve the viscoelastic flow, and the FSI was enforced
by IBM. In this study, it was reported that the motion of the sheet may be hindered with the inclusion of
the fluid viscoelasticity.

Despite the studies mentioned above, more efforts are still necessary to extend IB-LBM to FSI problems
in viscoelastic flows involving large deformation and complex geometries. In this work, an IB-LBM
for FSI problems involving viscoelastic fluids and complex geometries is presented. The details of this
method were introduced in our recent work [16]. Here we are going to briefly introduce this method with
a few new validation cases. In this method, the LBM proposed by Malaspinas et al. [18] is used to solve
the Navier-Stokes equations and the constitutive equations of the viscoelastic model, the finite difference
method (FDM) and the finite element method (FEM) are employed for the dynamics of solid structure
(FDM for 2D and 3D rigid particles, and FEM for 3D capsule), and the FSI is accomplished with the
IBM.

2 Mathematical model and numerical method

The dynamics of an incompressible fluid are described by the continuity and Navier-Stokes equations,

∇ ·u = 0,
∂u
∂t

+(u ·∇)u =
1

ρ f
∇ · (−pI+2µsD+ τττppp), (1)

where ρ f is the fluid density, u is the fluid velocity, p is the pressure, µs is the solvent dynamic viscosity,
I is the identity tensor, D= 1

2(∇u+(∇u)T ) is the strain rate tensor, and τττppp is the viscoelastic stress tensor
which accounts for the effect of the polymers on the solvent. In this work, one of the most commonly
used model (Oldroyd-B model) is used to determine τττppp [14, 18, 19]. In this model, the viscoelastic stress
tensor τττppp can be described by the conformation tensor C (a statistical indicator of the orientation of the
polymer molecules) [14, 18],

τττppp =
µp

λ
(C− I) (Oldroyd−B), (2)

where µp and λ are respectively the dynamic viscosity and relaxation time of the polymer. The confor-
mation tensor C is determined by the following transport equations,

∂C
∂t

+(u ·∇)C =−1
λ
(C− I)+C ·∇u+(∇u)T ·C (Oldroyd−B). (3)
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The motion of the rigid particle is governed by the Newton’s second law,

mp
dVp

dt
= Fext , Ip

dΩΩΩp

dt
= Text , (4)

where mp and Ip respectively denote the mass and moment of inertia of the particle, Vp and Ωp are
respectively the translational and rotational velocity of the particle, and Fext and Text are respectively the
external force and moment exerted on the particle.

The membrane of the 3D capsule is treated as a zero-thickness elastic surface. Here, the 3D capsule
model is introduced from an energy point of view since it is very difficult to describe the dynamics of a
3D capsule in a Cartesian system. The deformation of the capsule may induce stretching and bending
energies. Here, we employ the Skalak’s law to compute the stretching force to be consistent with the
previous investigation [20, 21]. In this model, the strain energy function due to the stretching deformation
is given by

W S =
∫

A

[
Es

12
(
I2
1 +2I1 −2I2

)
+

Ea

12
I2
2

]
dA, (5)

where W S is the total strain energy density, Es is the surface elasticity modulus, and Ea is elastic modulus
for area dilation for surface-area conservation. The membrane bending resistance is described by the
Helfrich bending energy [22, 23],

W B =
Eb

2

∫
A
(2H− c0)

2dA, (6)

where WB is the capsule membrane bending energy, Eb is the bending rigidity, H is the mean curvature,
and c0 is the curvature of the capsule at the rest state.

Here, the lattice Boltzmann method is utilized to solve the Navier-Stokes equations and the constitutive
equations of the viscoelastic model [18, 19, 16, 15, 17]. It should be noted that a diffusion parameter κ

is normally involved in this method (in the transport equations of the conformation tensor C) to improve
the stability of simulations, and more details can be found in Refs. [18, 16]. The structure dynamics
including 3D capsule and 2D and 3D rigid particles are solved by the finite difference method (2D and
3D rigid particles) and the finite element method (3D capsule) [16]. Here, the finite difference method
is employed for rigid particles due to its convenience and simplicity, and the finite element method is
used for 3D capsule due to its more straight forward computation of the stretching and bending forces
on 3D deformable structures. The interaction between the fluid and the solid structure is achieved by
using the immersed boundary method [16, 11, 24]. The immersed boundary-lattice Boltzmann method
used here has been extensively validated in different flows in our previous work [16], and details of this
method and validation cases as well as its applications can be found in our previous studies [16, 11, 25,
26, 27, 28]. Here, this method is further validated by several cases: 2D Oldroyd-B channel flow, 2D
lid-driven Oldroyd-B cavity flow, 2D Oldroyd-B flow over a confined cylinder, a 2D neutrally buoyant
particle migration in an Oldroyd-B Couette flow, a 3D neutrally buoyant spherical particle rotation in an
Oldroyd-B shear flow, a spherical particle settling under gravity in a Newtonian fluid, and a 3D spherical
capsule deformation in a channel with a the square cross-section.

3



Jingtao MA, Zhen Wang, Yi Sui, John Young, Joseph C.S. Lai and Fang-Bao Tian

(a) (b)

HH

L

y

x

y/H

C
1
1

0 0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

numerical

analytical

Figure 1: 2D Oldroyd-B channel flow: (a) The schematic diagram for the 2D Oldroyd-B flow in a long channel.
(b) Comparison of analytical and numerical solutions for the C11 component of the conformation tension at the
outflow boundary.

3 Validation

3.1 2D Oldroyd-B channel flow

Here, the 2D flow of an Oldroyd-B fluid in a long channel is conducted to validate the solver of the
viscoelastic fluid. The computational domain is [0,L]× [0,H] with L = 8H (as shown in Fig. 1(a)).
The velocity profile predicted by the fully developed Newtonian channel flow ux = 4Ucy(H −y)/H2 and
uy = 0 is applied at the inlet of the channel (left boundary). The upper and lower walls are assumed to be
stationary walls, and Newmann boundary conditions (∂ux/∂x= 0 and ∂uy/∂x= 0) are given at the outflow
boundary. The non-dimensional parameters governing this problem are: the Reynolds number Re =
ρ fUcH/µ0, the Weissenberg number Wi = λUc/H, the viscosity ratio β = µs/µ0, and the Prandtl number
Pr = κ/(γ̇H2), where µ0 ≡ µs + µp is the zero-shear viscosity of the fluid, µs and µp are respectively
the viscosities of the solvent and the polymer, and γ̇ = 2Uc/H is wall the shear rate. Here, Re = 0.05,
Wi = 0.1, β = 0.59, and Pr = 5×10−4.

The grid spacing used in the simulations is h = ∆x = ∆y = 0.025H. Fig. 1(b) shows that the numerical
solution for C11 component of the conformation tension C of the fully developed state at the outflow
boundary, and the numerical solution agrees well with the analytical solution (C11 = 2λ2 (∂ux/∂y)2).

3.2 2D lid-driven Oldroyd-B cavity flow

The 2D lid-driven Oldroyd-B cavity flow is performed to further validate the solver of the viscoelastic
fluid. The definition of the computational domain, the associated coordinate system and the bound-
ary conditions are shown in Fig. 2. The length of the edge of the cavity is L. A velocity of U(x) =
8Uc(

x
L)

2(1− x
L)

2(1+tanh(8t−4)) [29] is applied to the upper boundary of the cavity. The non-dimensional
parameters of this problem are: the Reynolds number Re = ρ fUcL/µ0, the Weissenberg number Wi =
λUc/H, the viscosity ratio β = µs/µ0, and the Prandtl number Pr = κ/(γ̇L2) with γ̇ = Uc/L. Here,
Re = 1.0, Wi = 1.0, β = 0.5, and Pr = 1×10−4.

Two different grid spacings h = ∆x = ∆y = 0.005L and 0.0025L are used here to verify the mesh size
independence of the solver. Fig. 3 shows the profiles of ux along the vertical centerline and uy along
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Figure 2: The schematic diagram for the 2D lid-driven Oldroyd-B cavity flow.
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Figure 3: 2D lid-driven Oldroyd-B cavity flow: The profiles of (a) ux along the vertical centerline and (b) uy along
line y/L = 0.75.

the line y/L = 0.75 for different mesh sizes. It is observed that the profiles are mesh independent. In
addition, the results agree with those obtained by Dalal et al. [29] based on the finite difference method
(FDM) which normally requires stabilization strategies for high Weissenberg number problems.

3.3 2D Oldroyd-B flow over a confined cylinder

Here, the 2D flow of an Oldoryd-B fluid over a confined cylinder is performed. The schematic diagram
for this problem is shown in Fig. 4(a). The computational domain used is [0,L]× [0,H] with L = 30R
and H = 4R (R is the radius of the cylinder). The center of the particle is initially placed at (10R, 0).
The velocity profile predicted by the fully developed Newtonian channel flow ux = 6Ucy(H −y)/H2 and
uy = 0 is applied at the inlet of the channel (left boundary). The upper and lower walls are assumed to
be stationary walls, and Newmann boundary conditions (∂ux/∂x = 0 and ∂uy/∂x = 0) are given at the
outflow boundary. The non-dimensional parameters governing this problem are: the Reynolds number
Re = ρ fUcR/µ0, the Weissenberg number Wi = λUc/R, the viscosity ratio β = µs/µ0, and the Prandtl

5



Jingtao MA, Zhen Wang, Yi Sui, John Young, Joseph C.S. Lai and Fang-Bao Tian

(a) (b)

Wi

C
d

0 0.2 0.4 0.6 0.8 1

120

125

130

135

present

Krishnan et al. 

Alves et al. 
Goyal and Derksen 

Figure 4: 2D Oldroyd-B flow over a confined cylinder: (a) The schematic diagram for the 2D Oldroyd-B flow
over a confined cylinder. (b) The drag coefficient (Cd) as a function of Weissenberg number (Wi).

number Pr = κ/(γ̇R2), where γ̇ = 3Uc/H is the shear rate. Here, Re = 0.05, β = 0.59, Pr = 6.67×10−3,
and Wi = 0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0.

The grid spacing used in the simulations is h = ∆x = ∆y = 0.02R. Fig. 4(b) shows the drag coefficient
(Cd = Fd

µ0Uc
where Fd is the drag force exerted on the cylinder by the ambient fluid) as a function of the

Weissenberg number Wi, and the present results agree well with the results in Refs. [30, 31, 14].

3.4 A 2D neutrally buoyant particle migration in an Oldroyd-B Couette flow

The dynamics of a 2D neutrally buoyant particle migration in an Oldroyd-B fluid Couette flow is con-
sidered here to validate the 2D FSI procedure. The definition of the physical problem and the associated
coordinate system is shown in Fig. 5(a). The radius of the circular particle is R, and the computational
domain spans from (-5R, 0) to (5R, 8R), respectively. Periodic boundary condition is applied at the
inlet and outlet. Constant velocity Uc is imposed at the bottom boundary, while −Uc is applied at the
top boundary. The dimensionless parameters which determine the motion of the solid particle are: the
Reynolds number Re = ρ fUcR/µ0, the Weissenberg number Wi = Ucλ/R, the viscosity ratio β = µs/µ0
and the Prandtl number Pr = κ/γ̇(2R)2. Here Re = 5, Wi = 1.0, and β = 1/8.

The grid spacing is h = ∆x = ∆y = 0.025R. To determine the suitable value of the diffusive constant κ

used in this problem, four different values of Pr are used in the simulations: 1.25× 10−4, 1.25× 10−3,
1.25× 10−2 and 5× 10−2. Fig. 5(b) shows the time history of the particle center in y direction for
initial position of y0 = 0.25W and different values of Pr. From Fig. 5(b), it is found that the velocity of
lateral migration of the particle decreases with the increase of Pr. In addition, the particle migration is
significantly affected by the artificial viscosity introduced when Pr is in the order of 10−2. Therefore,
in order to avoid the effect of the artificial viscosity, the Prandtl number Pr should be less than 1×10−2

(preferable order is 10−4). The comparison between present results and the previous results obtained by
employing arbitrary Lagrangian-Eulerian finite element method (ALE-FEM) from Huang et al. [32] and
Lv et al. [33] in Fig. 5(b) shows good agreement. The ALE-FEM used by previous studies [32, 33]
normally requires the regeneration of the mesh when large deformation is involved (as stated in Section
1), which the present method does not require, hence reducing the computational cost.
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Figure 5: A 2D neutrally buoyant particle migration in an Oldroyd-B Couette flow: (a) Schematic illustration of
a 2D buoyant particle migration in an Oldroyd-B Couette flow. (b) The lateral migration of the particle at initial
position y0 = 0.25W and different values of the Prandtl number Pr.

3.5 A 3D neutrally buoyant spherical particle rotation in an Oldroyd-B shear flow

Here, we consider the rotation of a neutrally buoyant spherical particle in an Oldroyd-B shear flow
to further validate the present method. As shown in Fig. 6, the simulation is conducted in a cuboid
domain of [−8R,8R]× [−4R,4R]× [−4R,4R] and the center of the particle is initially placed at (0,0,0).
A simple shear flow is applied to the computational domain by moving the plates at z =−4R and z = 4R
in opposite directions in the x-direction but with the same speed Uc. Periodic boundary conditions are
applied at the other four boundaries. The non-dimensional parameters are defined as: the Reynolds
number Re= ρ f γ̇(2R)2/µ0, the Weissenberg number Wi= λγ̇, the ratio of the solvent to the total viscosity
β = µs/µ0, and the Prandtl number Pr = κ/γ̇(2R)2.

The grid spacing in the simulations is h = ∆x = ∆y = ∆z = R/6 as used in Ref. [14]. Fig. 6 shows
the steady particle rotation angular velocities at different Wi and Pr for Re = 0.025 and β = 0.5. It is
found that the steady angular velocity of the spherical particle decreases monotonically with increasing
Wi which means the viscoelasticity of the fluid hinders the rotation of the particle in the Oldroyd-B shear
flow. The angular velocities of the particle here show good agreement with previous numerical results by
Snijkers et al. [34] using FEM-ALE and Goyal and Derksen [14] using an the immersed boundary-lattice
Boltzmann-finite volume method (IB-LBM-FVM) demonstrating the accuracy of the present method to
simulate 3D particle motion in viscoelastic fluids. It is also found that when PrWi ≤ 0.001, decreasing
PrWi does not have a significant influence on the angular velocity of the particle. This means the damping
effects on the simulations are insignificant compared with the relaxation effects when the product PrWi
is in the order of O(10−3) or less.

3.6 A spherical particle settling under gravity in a Newtonian fluid

A spherical particle with diameter d settling under gravity in a square channel filled with a Newtonian
fluid is presented in this section to further validate the 3D rigid particle model. Miyamura et al. [35]
experimentally investigated the effects of the wall on the the spherical particle settling in square cylinders,
and suggested that the terminal settling velocity of the particle is significantly influenced by the wall. Fig.
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Figure 6: A spherical particle rotation in an Oldroyd-B shear flow: The effect of Wi on the particle steady rotation
angular velocity. Inset: schematic illustration of a spherical particle rotation in an Oldroyd-B shear flow.

7(a) shows the physical problem and the coordinate definition of the present simulation. The computation
domain is [0,L]× [0,L]× [0,H], and the gravity is applied in the negative z direction. The particle is
initially released at the center of the cross-section of the channel and z = 0.8H (H = 5L) with zero
velocity. The non-dimensional parameters are defined as: the Reynolds number Re = ρ f Ut d

µ = 0.36, the
density ratio ρp

ρ f
= 2.5 and the blockage ratio Br = d

L , where µ is the fluid dynamic viscosity, and Ut is
the unconfined terminal settling velocity of the particle. In the simulations, the value of the characteristic
velocity Ut is prescribed, and the gravity acceleration g is computed from the balance of gravity force,
drag force and buoyancy force as

3πdµUt =
4
3

π

(
d
2

)3

(ρp −ρ f )g. (7)

The wall effect is quantified by the non-dimensional terminal velocity ζ=U0/Ut , where U0 is the particle
terminal settling velocity with the nearby boundary walls. Fig. 7(b) shows the wall effects on the particle
terminal settling velocity at different spatial resolutions and characteristic velocities, and the comparison
of results from present simulations with the best curve fit to experimental data of Miyamura et al. [35]
and numerical results from Aidun et al. [36]. It is observed that the non-dimensional terminal settling
velocities of the particle U0/Ut declines with the decrease of the characteristic velocity for a specific
blockage ratio, and reaches a convergency at Ut = 0.0005 (in LBM unit). Here Ut is used to test the
effects of the dimensionless ∆t and τ on the results. In addition, with the increase of the spatial resolution,
the non-dimensional particle terminal settling velocity approaches the experimental results, and present
results show good agreement with the results from previous experimental and numerical investigations.

3.6.1 A 3D spherical capsule deformation in a channel with a the square cross-section

The deformation of a 3D spherical capsule in a channel (filled with a Newtonian fluid) with a square
cross-section is considered here to validate the 3D capsule model. The simulation is conducted in a
cuboid box as shown in Fig. 8(a). The computational domain is [0,L]× [0,H]× [0,H] with L = 10H.
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Figure 7: A spherical particle settling under gravity in a Newtonian fluid: (a) Schematic illustration of a spherical
capsule settling in a square channel filled with Newtonian fluid. (b) The particle terminal settling velocity under
different blockage ratios.

The capsule has a radius of R, and the elastic force of the capsule is governed by the SK model with C = 1
[16]. The fully developed Poiseuille flow is applied to the inlet of the channel (i.e., the left boundary),
and the axis velocity distribution uuu = u(y,z)eeex is given by [37]

u(y,z) =
πUc ∑

[
1
n3 − coshnπy/H

n3 coshnπ/2

]
sinnπ(z/H +1/2)

2
[

π4

96 −∑
tanhnπ/2

n5π/2

] n = 1,3, . . . , (8)

where Uc is the characteristic velocity. The Newmann boundary condition (∂u/∂x = 0) is given at the
outflow boundary (right boundary), and the other four boundaries are assumed to be stationary walls.
The non-dimensional parameters are defined as: the Reynolds number Re = ρ fUcH/µs, the Capillary
number Ca = µsUc/Es, and the non-dimensional bending modulus eb = Eb/(R2Es).

Following the study by Wang et al. [20], the grid spacing is h = ∆x = ∆y = ∆z = 0.02H, Re = 0.25,
eb = 0, 2R = 0.85H and Ca = 0.3. As shown in Fig. 8(b), the equilibrium profiles of the capsule when
discretized into 5120 and 20480 elements are in very good agreement with the numerical results of Wang
et al. [20] (32768 elements), but they are slightly different from the results by Hu et al. [21]. This is
because the Reynolds number used in the simulations by Wang et al. [20]. The Reynolds number used
in the present study and Wang et al. [20] is 0.25, but very small (approximately 0) in Hu et al. [21].

4 CONCLUSIONS

A numerical method for FSI problems involving viscoelastic fluids and complex geometry is presented
in this work. In this method, the lattice Boltzmann method is used to solve the fluid dynamics and the
constitutive equations of viscoelastic fluids. The interaction between the solid structure and the fluid
is achieved by employing the immersed boundary method. The finite difference method (for 2D and
3D rigid particles) and the finite element method (for 3D capsule) are utilized to solve the dynamics of
solid structures. The present method and structure models are validated by several cases: 2D Oldroyd-
B channel flow, 2D lid-driven cavity flow, 2D Oldroyd-B flow over a confined cylinder, a 2D rigid
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Figure 8: A 3D spherical capsule deformation in a channel with the square cross-section: (a) The Schematic
figure for a 3D spherical capsule deformation in a Newtonian channel flow. (b) Steady profiles of an initially
spherical capsule with an SK membrane (C = 1) flowing in a square section channel for 2R = 0.85H, Re = 0.25,
and Ca = 0.3.

particle migration in an Oldroyd-B Couette flow, a spherical particle rotation in an Oldroyd-B shear
flow, a spherical particle settling in a Newtonian fluid, the deformation of a spherical capsule in a long
channel filled with a Newtonian fluid. The numerical results are successfully validated against previous
experimental and numerical results, and the accuracy of the present method is confirmed.
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