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Abstract. JAXA scheduled a sample return mission to the Martian moon Phobos, which
is scheduled for launch in 2024. This mission features a small rover, jointly developed by
CNES and DLR, which will scout the landing site of the sampling spacecraft. One of
the main challenges the rover will have to face during the mission is the vastly unknown
regolith surface of Phobos. Previous exploration missions, like the Mars Exploration
Rover missions of NASA, showed, that a rover getting stuck in loose regolith poses a huge
threat to the success of planetary exploration missions. To prevent this, DEM simulations
are used to optimize the rover’s wheel geometry for Phobos’ surface.

The DLR framework for such simulations is partsival, a collision-based particle and
many-body simulation tool for GPUs. Since partsival was programmed with simulations
in Lunar, Martian, or Earth environments in mind, the framework has to be adapted for
milli-g environments. Without any adaptations, the simulation results show severe scat-
tering and physically unrealistic behavior. These issues can be traced back to numerical
problems related to the introduction of microgravity. The low gravity requires very slow
movement of the rover wheel, resulting in a very long simulation duration and therefore
the necessity to compute billions of time steps. Thus, computation errors are compound-
ing. Furthermore, while simulations in Earth or Lunar environments can be conducted
using single-precision, milli-g environments showed to require double-precision computa-
tions. This is due to the gravity influencing many (but not all) parameters of partsival ’s
physics model, resulting in changes by orders of magnitude and loss of significance errors.

partsival can be adapted to milli-g environments by adapting the macroscopic soil
stiffness to allow for larger time steps while at the same time increasing the numerical
precision. Thus, deterministic results can be computed while maintaining fast, efficient
computation.
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1 INTRODUCTION

After several successful manned and unmanned moon landings, one current focus of
space exploration is the Martian system. Along with the search for traces of life on Mars,
the exploration of the Martian system also promises deeper insight into the formation
processes of our solar system. Furthermore, smaller celestial bodies like asteroids or comets
were the object of several exploration missions of the last decade. Successful missions
like the Hayabusa 1 [28] and Hayabusa 2 missions of the Japan Aerospace Exploration
Agency (JAXA), the NEAR Shoemaker mission [27] of the National Aeronautics and
Space Administration (NASA) or the Rosetta mission [3] of the European Space Agency
(ESA) intensified the pretensions to explore such celestial bodies [25].

1.1 The MMX mission

The for 2024 scheduled Martian Moons eXploration (MMX) mission of JAXA combines
both, small celestial body exploration and the exploration of the Martian system. This
mission aims to study the Martian moons Phobos and Deimos. While Deimos will only
be observed remotely, the MMX spacecraft is supposed to land on Phobos to sample the
moon’s surface. Since MMX is a sample return mission, the spacecraft will leave Phobos
and return the regolith samples to earth [26]. In advance of the sampling spacecraft’s
landing, a rover will be deployed to the surface of Phobos. This rover is jointly developed
by the French National Centre for Space Studies (CNES) and the German Aerospace
Agency (DLR) . It assumes several tasks. Firstly, the rover allows for in situ studies of
the Phobos regolith. That’s why the rover features several scientific instruments like a
Raman spectrometer, a gravimeter, a radiometer, and several cameras [22, 24, 2]. Secondly,
the rover is supposed to secure the landing of the sample return spacecraft. After being
dropped at the planned landing site in advance of the spacecraft’s landing, the rover can
scout the surroundings. The rover will examine the Phobos regolith in order to determine
its properties. One of the greatest threats to the spacecraft landing on Phobos, namely
sinking into loose regolith or tipping over during the landing, can be assessed by thoroughly
scouting the landing site [22, 2, 19].

The MMX mission constitutes the first mission of its kind which involves the deployment
of a wheeled rover in milli-g environment. No wheeled rover has ever been deployed before
in a comparably low gravitational environment. In the course of rover missions to other
celestial bodies, the locomotion capabilities of rovers were often determined by experiment.
Since this is no longer appropriate in milli-g environments, DEM simulations will be used
to evaluate the rover’s tractive performance [4, 5].

1.2 Environmental challenges on Phobos

The vastly unknown regolith surface of Phobos poses a major challenge to the mission’s
success. Despite Phobos has been the aim of several exploration missions, in-situ exami-
nation of Phobos hasn’t been successful yet. The Soviet Fobos-Grunt mission [16] and
the Russian Phobos 1 and Phobos 2 missions [20], which also targeted Phobos, failed and
never managed to reach its surface. Some surface properties can be determined by remote
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sensing, though. Phobos is believed to have a several meters thick regolith layer [9] with
grains with a diameter ranging from 30 µm up to a few centimeters [1]. The friction angle
is expected to be around 20° and the Poisson ratio of the Phobos regolith is believed
to be around 0.15 [18]. Whether the soil is cohesive or not is not clear yet. The cohesive
strength of the Phobos regolith is believed to be between 100 Pa and 1000 Pa [21].

Also challenging for the rover as well as for the simulation framework is the gravitational
regime on Phobos. Roving on Phobos with its low gravity is likely an endeavor close
to the limits where wheeled rover locomotion still makes sense. If the rover drives too
fast, it might even lift off from Phobos’ surface [5]. The surface gravity of Phobos varies
strongly due to the irregular, elliptic form of the moon. The perceived gravity on Phobos is
furthermore composed of different forces. Due to Phobos’ proximity to Mars, the Martian
gravity also influences the gravitational regime by its tidal forces. Also, the centrifugal
force, resulting from Phobos’ rotation, affects the perceived Phobos gravity. Therefore, the
gravity regime on Phobos should rather be called effective gravity, which includes gravity,
tidal and centrifugal forces. The effective gravity on Phobos’ surface fluctuates roughly
between 3× 10−3 m s−2 to 6.8× 10−3 m s−2 [9, 23].

2 Simulation Framework

Since the experimental evaluation of the rover wheel’s traction is not possible, a
numerical simulation approach is chosen to assess the tractive performance. The software
used to perform the simulations is partsival, a collision-based Discrete Element Method
(DEM) and many-body simulation tool, developed by DLR. partsival is a GPU-based
simulation framework with an excellent computation performance, especially with huge
numbers of particles, by making use of thousands of GPU shaders in parallel [13, 14].

Figure 1: Soft particle contact (left) and contact model for normal and tangential contacts (right) [15]

partsival uses a rigid body contact model to reproduce the interactions of soil particles.
Since complex grains are discretized as simple spheres, partsival features an advanced
friction model which can depict positive locking and friction effects of real grains. The
interaction between two particles is modeled as a soft contact. This means, that two
particles contacting each other lead to an overlap ~δ between them. The contact is made as
soon as the distance between the particles is smaller than the sum of the particle radii r1

and r2 [15]. This relationship is shown in Figure 1.
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Normal contact forces ~FN between two particles n and m are calculated as Hertzian
contacts. The contact damping forces are implemented according to Lehr as mass-scaled
damping forces with the damping coefficient knmNmin. The contact in normal direction in
case of overlap evaluates therefore to:

~F nm
N =

(
2E

3(1− ν2)

√
rnmC |~δnm|3

)
~nn

c + knmNmin
~̇δnm; ∀~δnm 6= 0 (1)

with the mean radius rC between the two particles, the contact normal for each particle
~nn

c , the Young’s Modulus E, and the Poisson’s ratio v [15, 10].
The tangential contact model features stick-slip friction with a regularized Coulomb

friction model. The regularization is implemented to distinguish between stick and slip
friction and is performed by using a Kelvin element. The force ~F nm

cT of the Kelvin
element evaluates to:

~F nm
cT = cnmT · ~δnmT · sign

(
~δnmT · ~̇δnmT

)
+ knmT · ~̇δnmT (2)

with the tangential stiffness cnmT , the damping coefficient knmT and the displacement ~δnmT .
The total tangential force is evaluated depending on the Kelvin element’s force and yields:

~F nm
T =

~F nm
cT ; ∀ |~F nm

cT | ≤ |~F nm
N | · tan (φh) ∧ |~̇δnmT | ≤ vnmTmin

|~F nm
N | · tan (φg) ·

(
~̇δnmT

)
0

; ∀ |~F nm
cT | > |~F nm

N | · tan (φh) ∨ |~̇δnmT | > vnmTmin

(3)

whereby the tangential velocity ~̇δnmT and the Mohr-Coulomb yield criterion with the
sticking friction angle φh are used to differ between stick and slip friction. If the tangential
velocity is lower than vnmTmin and if the yield criterion is not met, the Kelvin element

defines the tangential force ~F nm
T . Otherwise, if either the Mohr-Coulomb yield criterion

is met or ~̇δnmT exceeds vnmTmin, slipping friction with the friction angle φg occurs [15, 10].
Based on partsival ’s contact model, Newton’s equations of motion and momentum

can be evaluated for each particle. Following the mechanical equilibrium, the sum of all
forces and moments,

∑n
j=0

~F ij
C and

∑n
j=0

~T ij
C respectively yields:

mi~̈x i =
n∑

j=0

~F ij
C (4)

~I i · ~̇ωi + ~ωi × ~I i · ~ωi =
n∑

j=0

~T ij
C (5)

where each particle i is evaluated depending on mass mi, inertia ~I i and angular velocity
~ω(t)i. ~x(t)i, ~̇x(t)i and ~̈x(t)i are the particle position, velocity and acceleration [13].

Subsequently, an integration scheme can be applied on Newton’s equations, which
allows the computation of future system states. partsival uses a semi-implicit integration
scheme, namely the Lichtenheldt-jolt-Beeman scheme, which is described in [12].
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This multi-step scheme allows the transition from system state x0 at the time t0 to x1 at
the time t1 over the intermediate steps κ1 to κ3. In contrast to purely implicit schemes,
the intermediate steps are evaluated using an explicit estimate where the particle jolt is
assumed to be zero. This yields:

d3~x

dt3
(t) =

~̈x

dt

∣∣∣∣t
(t−∆t)

= const (6)

The main advantage of this scheme is, that it is not necessary anymore to calculate the
right-hand evaluations of Newton’s equations for each step κ. Those evaluations are very
time-critical, especially because they usually require a reevaluation of neighborhood search
and contact forces. Thus, the Lichtenheldt-jolt-Beeman scheme enables a precise and
time-saving integration [12]. The remaining integration error O(h) is used to improve the
integration precision. partsival generally uses a variable time step size, defined by a minimal
and maximal time step size and by the integration error tolerance. If the integration
error O(h) exceeds the previously set tolerance value, a PID controller changes the time
step size accordingly, to keep the integration error within tolerable bounds. Regarding
numerics, partsival has so far usually used single-precision computation for rover wheel
simulations. Even though rather uncommon in scientific applications, single-precision has
proven to deliver results with sufficient precision [13].

Figure 2 shows the results of two identical single wheel experiments with the traveled
distance over time in the left plot and the wheel sinkage in the right plot respectively. The
simulation was performed in Earth gravity. Especially regarding the wheel sinkage, it can
be seen, that only minor result deviation occurs. Regarding the wheel’s traveled distance,
almost no deviation is visible. Therefore, the simulation results for wheel slip, velocity, and
travel distance can be seen as deterministic. If the wheel’s sinkage is evaluated as average
sinkage, the deviations almost completely cancel out. The average sinkage can therefore
also be considered as deterministic. We call this context macroscopic determinism. While
individual particle positions or even the wheel’s position at a certain point of time may
differ in repeated simulation runs, the quantities of interest, namely wheel travel distance,
slip, velocity, and average sinkage, are deterministic and match with experimental findings
[17]. The example furthermore demonstrates that single-precision computation can be
suitable for wheel-soil-interaction simulations.

Figure 2: Results of a wheel experiment, carried out twice under earth gravity and in single-precision
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3 NUMERICAL CHALLENGES

While partsival performs very well with gravitational forces ranging from Earth to Moon
gravity, it has not been tested before with extremely low gravitational forces like those
occurring on Phobos. Therefore, the simulation framework has to be tested regarding its
capabilities to simulate milli-g environments. The change in gravitational acceleration
leads to a change of magnitude of many (but not all) parameters of partsival ’s physics
model. By examining the Equations 1 to 3 we can deduce for example, that particle

overlap ~δ and overlapping velocity ~̇δ will shrink with lower gravitational acceleration. This
is because the forces acting on single particles and particles beneath the wheel will be by
magnitudes lower due to less gravitational acceleration and less weight force exerted by
the rover wheel. However, parameters like Young’s modulus E, Poisson’s ratio v or the
damping coefficient k don’t change with gravity.

Furthermore, the by magnitudes lower forces acting on particles and wheel also directly
impact time integration. The change in magnitudes to the overall acting forces within
the simulation also influences the overall simulation error. Assuming that the relative
error remains unchanged by the change in gravity, the absolute error changes linearly
with gravity. Since the integration time step size h is derived from a tolerance, based
on the absolute error, the gravitational acceleration directly interferes with partsival ’s
time integration. In the specific case with Phobos gravity, the sum of all forces acting on
particles and wheel is of the same order of magnitude as the integrator’s tolerance.

In addition and due to the reduced gravity on Phobos, the rover will have to move on
Phobos slower than any other rover in higher gravity environments. The MMX rover will
explore Phobos with a maximum velocity of approx. 2.5 cm s−1 [4, 5]. When traveling
faster, the rover is at risk to lift off due to the low gravity on Phobos. Since DEM wheel
simulations need to settle in, the simulation of at least one to two wheel revolutions is
required. Thus, the low angular velocity of the rover wheel leads to a massive increase in
simulation time. While the experiment under earth gravity, pictured in Figure 2, requires
less than 10 s of simulation time, the wheel experiments for the MMX mission require
more than 60 s of simulation time. The increasing simulation time increases the number of
time steps and therefore favors the accumulation of rounding errors and integration errors.

As a result of the above-mentioned issues, when repeating the exact same simulation
run several times, the simulation results are massively scattered. The slip of a wheel
for example can vary between approx. 20 % and 80 %. Figure 3 shows the results of 20
identical simulations, that are heavily scattered and therefore proofs impressively the need
for adaptations to the simulation framework when changing the gravitational acceleration.

The figure shows traveled distance and wheel sinkage over time, recorded during a
simulation campaign. Wheel geometry, contact model, integrator settings, wheel angular
velocity, and initial particle positions have not been altered between simulation runs. It
can be seen, that the simulation results start to diverge after approx. 10 s and scatter
even further with increasing simulation time. Macroscopic determinism is clearly not
given anymore. In addition to the result deviation, the wheels also perform worse than
anticipated. We suspect this to be due to numerical errors within the determination of stick
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Figure 3: Result scattering after performing 20 identical simulations with partsival in single-precision

or slip friction (see Equations 2 and 3). If particles are oscillating with high frequencies
and low amplitudes, stick friction cannot occur. The relative velocity between particles n

and m, ~̇δnmT is therefore always higher than the reference velocity vnmTmin, leading to less
shear strength of the soil.

The simulation result deviation is a well-known issue that arises when making use of
massively parallelized computations in combination with floating-point arithmetics [8].
With said constellation, the commutative law of mathematics is not applicable anymore.
A floating-point number will be stored in memory as a combination of exponent and
mantissa. The number x is described by x = m× be, where m is the mantissa, b is the base
and e is the exponent [7]. This enables the efficient storage of very large and very small
numbers within a relatively small bit width. But on the other hand, it leads to rounding
errors, when overflow occurs, meaning that not all significant digits can be stored anymore.
Usually, this overflow occurs within the mantissa [8].

The result scattering, originating from massively parallelized computation in combina-
tion with IEEE floating-point algorithms, can be illustrated by an example. To simplify
the example, half precision computation will be applied. We’re summing 10, 0.003 and
0.001 in binary. By changing the order of the summands, the result changes as well. to
improve intelligibility, the left column of both equations shows the decimal equivalent of
the binary calculations on the right. For better legibility, sign bit, exponent, and mantissa
are separated from each other in this order by a dot. Both summation orders not only
yield false results but also yield different results. This is because rounding only occurs
once with the first summation order and twice with the second summation order. The
example also shows, that such errors always occur within the least significant bit:

0.003 + 0.001 + 10.00 = 0.00110.1000100101 + 0.00101.0000011001 + 0.10010.0100000000 =

0.004 + 10.00 ≈ 10.01 0.00111.0000011001 + 0.10010.0100000000 ≈ 0.10010.0100000001 (7)

0.003 + 10.00 + 0.001 ≈ 0.00110.1000100101 + 0.10010.0100000000 + 0.00101.0000011001 ≈
10.00 + 0.001 ≈ 10.00 0.10010.0100000000 + 0.00101.0000011001 ≈ 0.10010.0100000000 (8)

partsival and comparable simulation frameworks are prone to such errors since there are
huge sums that have to be calculated. Since the soil simulation can consist of several
hundred thousand particles, the accumulation of forces acting on the wheel can consist
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of several thousand summands. Also, the Newtonian sum of forces and moments (see
Equations 4 and 5) can grow rather large. Based on this first minor result deviation that
might occur here, error propagation can lead to a massive increase of the deviation.

The emergence of errors in a simulation framework like partsival can be described
depending on the time step size h using Landau notation:

∆ = O(h) +O(ε/h) (9)

where the overall error ∆ is composed of the integration error O(h) and the numerical
rounding error O(ε/h). While a smaller time step size reduces the integration error, the
rounding errors increase [6]. This is because a smaller time step size also results in more
time steps that require computation, which favors error propagation of rounding errors.
This is clearly visible in Figure 3, where errors only emerge after a certain amount of
simulation time, proving that the simulation duration is a factor, which strongly affects
error propagation. In the specific example, noticeable result scattering starts to emerge at
about 20 s of simulation time and grows ever further. Following Equation 9, the overall
simulation error ∆ can be reduced by minimizing integration error and numerical errors.

4 SOLUTIONS

To regain macroscopic determinism for milli-g simulations, error propagation and
result scattering must be minimized. The means to do so and to reduce the overall
simulation error ∆ are given from the simulation error description following Landau.
Both, numerical rounding error and integration error depend on the time step size h. But
since both errors scale contrary with time step size, there must exist a time step size h,
where ∆ = O(h) +O(ε/h) = min. The influence of the time step size on the simulation
error ∆ is therefore rather limited [6]. To further reduce the simulation error, the numerical
errors and integration errors have to be targeted individually.

4.1 Minimizing O(ε/h)

The most straightforward way to minimize numerical errors and to reduce result
scattering is by increasing the numerical precision. As mentioned before, partsival delivers
exact results in higher gravity environments using single-precision computation. By raising
the precision to double-precision, the magnitude of numerical errors changes immensely.
Since the numerical errors discussed earlier only affect the least significant bits, the overall
error is decreased dramatically. By increasing the numerical precision from single to double,
the mantissa bit width more than doubles. The erroneous bit shifts therefore by 29 bits [7].
In decimal numbers, this corresponds to a shift of approx. 8 decimal digits and therefore
reduces simulation errors by a factor greater than 1× 107.

Of course, error propagation is still effective. But since errors appear in lower magnitude,
error propagation is also reduced. Figure 4 proves this. Here we can see - similarly to
Figure 3 - the simulation results of 20 identical wheel experiments. In contrast to the
single-precision simulation results, the double-precision results show almost no scatter.
Macroscopic determinism can therefore be regained by increasing the numerical precision.
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The simulation results also show that the differentiation between stick and slip friction
works again. Due to reduced numerical errors, particle oscillation can be prevented as well,
leading to a reasonable soil shear strength and therefore to realistic wheel sinkage.

Figure 4: Result scattering after performing 20 identical simulations with partsival in double-precision

4.2 Minimizing O(h)

After eliminating the main reasons for result scattering and numerical errors by in-
creasing numerical precision, an optimal time step size h can be defined to minimize the
integration error. Previous research showed that partsival requires a time step size of
1× 10−5 s when performing wheel experiments in Earth, Moon or Mars gravity [4]. By
reducing the gravitational acceleration acting on wheel and soil, the time step size can be
increased at the same time. We found, that the simulations are still stable and deliver
valid results with time step sizes as high as 5× 10−4 s.

Tests with time step sizes varying between 1× 10−5 s and 1× 10−6 s also showed no
noticeable improvements regarding result scattering, compared to the highest stable time
step sizes [4]. When applying even higher time step sizes, numerical stability is not given
anymore. This leads to a violation of the principle of conservation of energy and ultimately
to an ”explosion” of the simulation, where particles accelerate randomly. Unlike the result
scattering, this kind of error can be witnessed in any gravitational environment and is not
linked to simulated gravity [4].

Also in contrary to the result scattering, such numerical instabilities are easy to recognize
and easy to avoid. In the given case, we increased the time step size incrementally, until
numerical instabilities occurred. The highest stable time step size has proven to be
optimal in terms of simulation time and numerical errors. To completely avoid numerical
instabilities, we applied a safety margin to the maximal time step size.

5 NUMERICAL STABILITY

After applying changes to the computation framework of partsival by increasing its
numerical precision and after determining an adequate time step size, where the overall
simulation error ∆ is minimal, we apply a further method to increase the numerical
stability of the simulations.
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As introduced before in the Equations 1 - 3, partsival uses a soft contact model to
determine contact forces between particles. The contact model’s particle stiffness is
however not based on the granular material’s microscopic stiffness. It is rather defined as a
macroscopic stiffness, describing the behavior of grain agglomerates, when force is exerted
on them. Since the rover’s weight on Phobos depends on surface gravity, the forces exerted
on Phobos’ soil are orders of magnitude smaller, compared to the forces that would be
exerted when simulating higher gravity environments, such as Earth or Mars.

Therefore, the macroscopic contact stiffness can be adapted to Phobos’ low gravity
environment. To do so, we apply an equation developed by Lichtenheldt in [11]:

EmP ≥ zh
|3~p+ zh · ρp · ~g|

3|~u| · r
(10)

where the macroscopic particle contact stiffness EmP is derived from the soil height zh of
the simulation environment, the pressure ~p exerted on the ground by the rover wheels, the
overlapping factor ~u, the particle radius r and the deadweight force of the soil, calculated
by its height zh, the particle density ρp and gravity ~g.

Based on this equation, we can significantly reduce macroscopic contact stiffness. This
enables a suitable overlap between two contacting particles and increases numerical stability
of the simulation without the results deviating from reality [4]. Also, the adapted damping
reduces particle oscillation further, thus avoiding erroneous computations of stick/slip
friction, which ultimately allows for even larger time step sizes in the range of 2× 10−4 s.

6 CONCLUSIONS AND OUTLOOK

The initial problem, simulation result scattering and result deviation can be resolved
by applying several adaptations to the simulation framework. After proving that the
numerical issues were caused by the massive reduction of the gravitational acceleration,
we were able to track down where exactly the low gravity environment interferes with
the simulation framework. Based on those findings, we were able to develop methods to
reduce result deviation and scatter.

The by far most straightforward way to reduce result scatter and deviation proved to be
an increased numerical precision. Unfortunately, computation duration increased due to
the higher numerical precision. Therefore we plan to implement a mixed-precision option,
where only those computations that are vulnerable to numerical errors will be computed
using double-precision. Whenever single-precision is sufficient, we plan to stick with it.

After having dealt with result scattering, we turned towards the integration scheme.
The gravitational environment on Phobos proved to be otherwise numerically good-natured.
Due to the low forces exerted on wheel and soil and due to the slow movement of the
rover’s wheel, the integration time step could be raised significantly. Even though the
required simulation time for our experiments was more than six times the simulation
time of comparable experiments under Earth or Mars gravity, we achieved comparable
computation times. We were able to perform wheel simulations with > 200.000 particles
and over 60 s simulation in time in less than 24 h, using Nvidia Tesla GPUs. Finally, the
simulation stability was greatly improved by lowering the macroscopic particle stiffness for
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soft normal contacts, which allowed for even larger time steps and thus further reducing
computation time.

Summarized, we managed to adapt partsival, a DEM framework that was never developed
with milli-g environments in mind to the extremely low gravitational regime of Phobos. By
doing so, we managed to maintain partsival ’s macroscopic determinism while at the same
time achieving relatively low computation times. Thus, the optimization campaign could
be conducted as planned. Rover wheel traction in milli-g on Phobos could be assessed
using partsival with the adaptations presented in this paper, leading to an optimized rover
wheel design [5].
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Sandböden. Doctoral thesis, Technische Universität Ilmenau, 2016.

[12] R. Lichtenheldt. A stable, implicit time integration scheme for discrete element method and
contact problems in dynamics. In 5th International Conference on Particle-based Methods -
Particles, pages 297–308, 2017.

11



Felix Buchele, Roy Lichtenheldt and Leon Stubbig

[13] R. Lichtenheldt. et al. partsival - collision-based particle and many-body simulations on gpus
for planetary exploration systems. In The 5th Joint International Conference on Multibody
System Dynamics, 2018.

[14] R. Lichtenheldt, S. Ono, and L. Stubbig. Large scale discrete element simulation campaigns
- simulating extraterrestrial soils in partsival. In 14th World Congress on Computational
Mechanics, 2021.
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