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ABSTRACT

This paper introduces an AI-driven computing power scheduling frame-
work that innovatively integrates multidimensional resource optimization
with machine-learning-based task-demand prediction to significantly
enhance computational efficiency and resource utilization. Unlike prior
works that primarily focus on Graphics Processing Unit (GPU) allocation,
our method pioneers a holistic resource-coordination mechanism that
dynamically balances GPU, memory, Central Processing Unit (CPU),
and other critical resources according to their joint impact on task per-
formance and cluster efficiency. A core innovation is our data-driven
resource predictor, which autonomously analyzes historical task patterns
and forecasts future demand, enabling the scheduler to adaptively scale
resources so that user over-provisioning is reduced and under-allocation
bottlenecks are avoided. Experimental validation demonstrates that this
closed-loop prediction–scheduling paradigm achieves breakthroughs in
both scale and efficiency: a 25.7% increase in concurrent task deployment,
a 15.6% increase in task completion rate, and substantial relative utiliza-
tion improvements of 7.5% for GPU and 8.0% for memory, outperforming
conventional single-resource optimization approaches. These advance-
ments establish a new direction for intelligent resource management in
large-scale heterogeneous computing environments.
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1 Introduction

To train large-scale artificial-intelligence (AI) workloads efficiently, modern data centers operated
by research institutions, technology companies, and cloud providers deploy heterogeneous computing
clusters equipped with hardware accelerators such as graphics processing units (GPUs) and neural
network processing units (NPUs). Although these accelerators significantly reduce training time
and improve operational throughput, a purely hardware-centric scaling strategy incurs prohibitive
capital expenditure, faces fundamental scalability limits, and yields diminishing marginal performance
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returns. Consequently, optimizing the utilization of existing computational resources has become
imperative.

This challenge has driven the rise of AI computing power scheduling as a critical area of
research. AI computing power scheduling refers to the process of efficiently matching the hardware
resources of computing clusters with computational tasks. The primary goals include improving
resource utilization, reducing task execution time, and optimizing energy consumption. Over recent
years, researchers have developed a variety of scheduling strategies [1–5], most of which are based
on analyzing AI task workload characteristics. Xiao et al. [1] proposed the Gandiva scheduler,
which improves GPU utilization by analyzing the periodic characteristics of deep-learning tasks and
dynamically allocating GPU resources. However, it focuses mainly on GPU optimization and gives
insufficient consideration to other resources such as CPU and memory, limiting its effectiveness in
scenarios with diverse task types and complex resource requirements. Gao et al. [2] proposed the
Chronus scheduler, which incorporates the preemptive and location-sensitive characteristics of tasks
to achieve efficient scheduling of heterogeneous training workloads. Although highly adaptable, its
implementation is complex, and scheduling conflicts are likely under resource contention, thereby
degrading task execution. Xie et al. [3] introduced the Elan scheduler, which leverages elastic resource
scaling and lightweight state replication to reduce task queuing time and improve resource utilization.
Nevertheless, state replication incurs additional overhead that can impair execution efficiency, and
aggressive scaling may result in uneven resource allocation. Peng et al. [4] presented the Optimus
scheduler, which adopts an AI task performance model that combines convergence speed to make
dynamic resource allocation and task placement decisions, improving both task execution efficiency
and resource utilization. However, the complexity of performance modeling and dynamic decision-
making complicates implementation and maintenance, and optimization becomes challenging under
dynamically varying workloads. Mohan et al. [5] analyzed the impact of different CPU and memory
allocations on AI tasks and incorporated task sensitivity to heterogeneous resources into scheduling
decisions, thereby improving task performance. Nonetheless, the study did not fully consider multi-
dimensional hardware utilization at the cluster level; when the number of resource types increases and
task requirements become more complex, the design and implementation of the scheduling policy
face significant difficulties. These methods typically involve fine-tuning scheduling policies to align
with workload demands, aiming to achieve objectives such as load balancing, task prioritization,
or resource fairness. Cui et al. [6] proposed a latency-aware scheduler based on deep reinforcement
learning and attention mechanisms, which reduces upgrade makespan and request latency. However,
the approach incurs high training overhead and may lead to unbalanced resource allocation during
container migration. Yang et al. [7] introduced Meta-Scheduler, which employs meta-learning and
stage-aware decision-making to shorten job completion time and enhance cluster throughput. Never-
theless, the meta-learning process introduces non-negligible overhead and may impair responsiveness
under dynamic workloads. Zhou et al. [8] conducted a comprehensive survey on deep-reinforcement-
learning-based resource scheduling, unifying problem formulations and outlining directions for
improving job completion time and resource utilization. However, the survey lacks a concrete scheduler
implementation, and the high training overhead of DRL may degrade responsiveness and cause
resource imbalance under dynamic workloads. Wang et al. [9] proposed a Value-of-Information
scheduler that uses information-aware prioritization and dynamic deadline adjustment to reduce
latency and improve task completion in vehicular networks. Yet the value computation adds overhead
and may adversely affect responsiveness in highly dynamic traffic environments.

Despite these advancements, existing methods exhibit several notable shortcomings:
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1. Existing methods predominantly focus on GPU resource allocation while overlooking the
impact of other critical resources, such as CPUs, memory, and network bandwidth, on task
performance and overall cluster resource utilization.

2. The lack of accurate task resource-demand prediction and adaptive adjustment mechanisms
impedes the ability to respond to real-time workload fluctuations, resulting in suboptimal
resource utilization.

3. Current approaches fail to effectively address resource over-allocation by users, leading to
resource waste and reduced efficiency in computing clusters.

To maximize the utilization efficiency of hardware resources in artificial intelligence (AI) produc-
tion clusters, designers consider various resource factors—including memory, storage, and computa-
tional capabilities—when building large-scale AI clusters. Researchers have optimized non-hardware-
accelerator resources, such as memory capacity, memory transfer speed, and central processing unit
(CPU) performance, to enhance overall operational efficiency.

Against this backdrop, this study proposes an AI-driven scheduling framework that predicts
task-specific resource demands to optimize multidimensional resource allocation and management.
The framework aims to enhance AI task execution efficiency while maximizing the utilization of
heterogeneous computational resources. Specifically, we develop a multidimensional resource-demand
prediction model to quantitatively assess the influence of resource allocation on task performance.
Building upon this model, we design an adaptive resource-scheduling algorithm and its corresponding
system architecture to dynamically manage and allocate computational resources, thereby satisfying
the diverse requirements of AI tasks.

2 AI Task Resource Demand Prediction Model
2.1 Overview of Resource Requirements for Tasks

In AI computing-power scheduling, task resource requirements denote the heterogeneous
resources requested by users according to their computational demands upon job submission. The
judicious allocation of these resources constitutes the core of the scheduling process. Table 1 quantifies
the resource requirements of four representative tasks in a production AI cluster [10], illustrating the
distinct multidimensional utilization patterns across task types. Evidently, tasks exhibit heterogeneous
resource signatures; therefore, scheduling policies must explicitly incorporate these multidimensional
characteristics to ensure efficient resource utilization. The taxonomy and formal definition of task
types provide essential data-level support for such policies.

Table 1: Resource status of common AI task loads in production cluster logs

Task load Average CPU
usage/core

Average GPU
usage/%

Average memory
usage/GB

Recommendation tasks 3.7 6.9 2.8
Graph neural networks 11.8 0.7 9.6
Natural language processing 10.5 34.3 9.8
Image classification 2.3 30.1 19.7

For AI tasks, resource requirements span multiple dimensions, including GPUs, CPUs, memory,
network bandwidth, and I/O. By profiling resource-consumption patterns across task types within
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AI clusters, we classify AI workloads into three categories: GPU-intensive, CPU-intensive, and
memory-intensive. Neural-network-based machine translation, for instance, is predominantly GPU-
intensive [11], whereas recommender systems are typically CPU-intensive, as most execution time
is devoted to data preprocessing and feature engineering. Memory-intensive tasks, such as large-
scale image classification, expend 10%–70% of training time on data loading and storage operations,
demonstrating that effective GPU utilization is often bottlenecked by CPU and memory performance.
Consequently, an accurate resource-demand prediction model that jointly captures the interactions
among multidimensional resources is required. Equipped with such a model, resource-allocation
strategies can be tailored to each workload class to maximize cluster-wide utilization and significantly
improve AI task execution efficiency.

2.2 Dynamic Time Warping (DTW)
This paper develops a task-resource demand-prediction model to gain deeper insight into the

resource-usage characteristics of AI tasks [12]. The model quantifies the impact of heterogeneous
resource configurations on task execution efficiency and provides data-driven guidance for the
dynamic scheduling of AI workloads. The first step is dataset acquisition. After comparing the
three GPU-cluster logs listed in Table 2, we select the Alibaba PAI trace because it provides
the most comprehensive allocation information, covering GPU, CPU, and memory requests, network-
bandwidth and I/O usage, and task-type labels. These features are well suited for analyzing resource-
usage patterns and for subsequent scheduling optimization. Using the PAI trace, we build a regression
model that treats the number of CPU cores, GPU utilization, memory demand, network traffic, and
GPU-memory usage as independent variables and the actual task execution time as the dependent
variable. The resulting model yields accurate predictions of task resource demands, enabling refined
allocation and scheduling strategies that improve cluster-wide resource-utilization efficiency.

Table 2: Comparison of different GPU cluster log datasets

GPU cluster PAI Helios Phily

Total number of GPUs 3.7 6.9 2.8
Duration/d 11.8 0.7 9.6
Resource type 10.5 34.3 9.8
Task type 2.3 30.1 19.7

In the regression modeling process, we employ Light Gradient Boosting Machine (LightGBM) to
quantify the multidimensional resource demands of heterogeneous task types and to characterize their
impact on task execution time. LightGBM is a gradient-boosting framework that trains an ensemble of
decision trees in a stage-wise manner, iteratively fitting the residuals obtained from previous iterations.
The final prediction is obtained by summing the weighted outputs of all constituent trees.

ŷ(i,t) = ŷ(i,t−1) + η · ft(xi) (1)

where ŷ(i,t) denotes the predicted value of the i-th sample at iteration t, and ŷ(i,t−1) denotes the predicted
value of the i-th sample at iteration t − 1. ft(xi) is the output of the t-th weak learner, i.e., a decision
tree that fits the current residuals. The learning rate η controls the contribution of each tree to the
ensemble, and t indicates the current boosting round.

https://www.scipedia.com/public/Wang_et_al_2026 4

https://www.scipedia.com/public/Wang_et_al_2026


T. Wang, X. Zhao, X. Qiao, S. Li and W. Yin,

AI-Driven multi-dimensional computing power scheduling adaptive resource

coordination via task demand prediction in heterogeneous clusters,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 2

The objective function of the LightGBM-based task-resource demand-prediction model is:

Obj(t) =
∑n

i=1
l(yi, ŷ(i,t−1) + ft(xi)) + �(ft) (2)

where yi, ŷ(i,t−1) + ft(xi) is the loss function, which represents the error between the prediction of the
current model and the actual label. Ω(ft) is the regularization term, which is used to control the
complexity of the model. In LightGBM, the regularization term usually takes the form of the sum
of the square of the number of leaf nodes and the weight of the tree (L2 regularization).

The LightGBM-based task-resource demand-prediction model enhances the accuracy of the
decision-tree ensemble by iteratively fitting the residuals over t boosting rounds; the iterative process
is expanded via a second-order Taylor expansion to yield the new objective function given in Eq. (3).

Obj(t) =
∑n

i=1
[gift(xi) + 0.5hif 2

t (xi)] + �(ft) (3)

where g and h are the first and second partial derivatives, respectively, as follows:

g(t−1)

i = ∂L
(
yi, ŷ(i,t−1)

i

)
∂ ŷ(t−1)

i

(4)

h(t−1)

i = ∂2L
(
yi, ŷ(i,t−1)

i

)
∂

(
ŷ(t−1)

i

)2 (5)

The final extremum is derived as follows:

w∗
j = − Gj

Hj

+ λ (6)

Gj =
∑
i∈Ij

gi (7)

Hj =
∑
i∈Ij

hi (8)

The final extreme value of the objective function of the task resource demand prediction model
based on LightGBM is as follows:

Obj = 0.5
∑T

j=1

G2
j

Hj

+ λ
∑T

j=1
w2

j + γ T (9)

where Gj indicates the gradient of each leaf node; Hj is the Hessian of each leaf node. λ is the L2
regularization parameter, which is used to control the magnitude of the leaf node weights; γ is the
penalty term, which controls the complexity of the tree and mainly serves to limit the depth of the tree
or the number of leaf nodes; wj is the weight of each leaf node; T is the number of leaf nodes in the
tree. With these parameters, LightGBM can optimize the structure and complexity of the tree while
regularizing to prevent overfitting [13].

In summary, the task-resource demand-prediction model is constructed by minimizing the objec-
tive function. Specifically, branch gain is maximized to determine the optimal split point for each leaf
node; new tree branches are then added sequentially for every feature until the LightGBM model is
fully trained. Within LightGBM, branch gain quantifies the change in the objective function before
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and after a split. Its expression is:

Gain = G2
L

HL + λ
+ λ + G2

R

HR + λ
+ λ − (GL + GR)

2

HL + HR + λ
− γ (10)

In LightGBM, the branch gain is calculated based on the following key factors: GL and GR

represent the gradient of the split left subtree and right subtree, respectively, and reflect the direction of
error of each subset; HL and HR represent the Hessian of the left subtree and right subtree, respectively,
which is the second derivative, and reflects the magnitude of error of each subset [14,15]. To control the
complexity of the model and avoid overfitting, LightGBM introduces the L2 regularization parameter
λ, which is used to adjust the weights of the leaf nodes. In addition, γ is a penalty term that controls
the complexity of the tree and is mainly used to limit the depth of the tree and prevent the model from
becoming too complex. Therefore, the calculation of branch gain takes these factors into account to
select the optimal split point and improve the model’s performance.

2.3 Analysis of the Results of the Task Resource Demand Forecasting Model
To assess the accuracy of the task-resource demand-prediction model, we adopt the widely used

random forest algorithm as a benchmark and compare it with the LightGBM approach introduced
in Section 2.2. Mean absolute error (MAE) and weighted mean absolute percentage error (WMAPE)
serve as accuracy metrics, quantifying model fit and the deviation between predicted and observed
values, respectively.

MAE = 1
N

∑N

i=1

∣∣yi − ŷi

∣∣ (11)

WAMPE =
∑N

i=1 wi

∣∣yi − ŷi

∣∣∑N

i=1 wi |yi|
(12)

where ŷi and yi are the predicted and actual values, respectively.

Both methods are decision-tree ensemble learners. From an implementation perspective, Light-
GBM trains a sequence of trees via gradient boosting, iteratively fitting the residuals of preceding
trees. In contrast, the random-forest method employs bagging, regressing on bootstrap samples
drawn from the dataset [16,17]. Random forests primarily reduce variance and mitigate overfitting,
whereas LightGBM focuses on bias reduction and leverages a histogram-based algorithm together
with leaf-wise growth to accelerate training and minimize memory consumption. For accurate task-
resource demand prediction—essential for precise resource allocation—we prioritize low regression
bias over variance reduction. Consequently, our evaluation metrics emphasize bias-oriented measures.
Empirically, LightGBM outperforms random forests in regression accuracy because its efficient
data handling and accurate feature-importance assessment capture the complex relationship between
multidimensional resource allocation and task execution time, thereby guiding adaptive resource
scaling and scheduling. The principal advantage of LightGBM-based modeling is its ability to deliver
high predictive accuracy while maintaining computational efficiency on large-scale datasets, rendering
it a potent tool for enhancing the efficiency and accuracy of AI computing-power scheduling.

3 AI Adaptive Resource Scaling Scheduling
3.1 AI Computing Power Scheduling Overview

For AI computing-power scheduling, we propose a novel adaptive resource-adjustment frame-
work that dynamically allocates resources according to the specific demands of AI tasks. This approach
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departs significantly from traditional cluster schedulers designed for general big-data workloads; it
focuses on exploiting the unique characteristics of AI tasks to reduce job completion time and to
maximize the utilization of heterogeneous hardware resources such as GPUs. The framework leverages
a task-resource demand-prediction model that quantifies the impact of alternative resource config-
urations on task performance. During scheduling, this model guides the GPU cluster to elastically
scale resources in response to task requirements. Consequently, the framework mitigates both user-
initiated resource over-allocation and the inefficiencies arising from sub-optimal allocation, thereby
simultaneously improving AI-task throughput and cluster-wide resource efficiency. Furthermore,
the proposed prediction-driven scheduling strategy will be formalized in subsequent chapters as a
mathematical model for multidimensional resource management. This model underpins our adaptive
dynamic resource-scaling algorithm, whose detailed formulation and system architecture are also
presented later. The introduction of this framework offers a new perspective on the efficient scheduling
of AI computing power [18].

3.2 AI Computing Power Scheduling Overview
In the framework of AI computing power multi-dimensional resource scheduling, this paper

assumes a heterogeneous server list S = {S1, S2, · · · , SM} with different resource quotas composed
of M servers. Each server i has a resource capacity vector Si = {S1

i , S2
i , · · · , SR

i } of R dimensions,
which represents the server’s supply capacity in each resource dimension. At the same time, each
user task j has a resource request amount when submitted, expressed as wi = {w1

i , w2
i , · · · , wR

i }. This
vector describes the task’s demand in each resource dimension. The core of the resource allocation
and scheduling problem is how to map these tasks to servers to meet the resource requirements of the
tasks while not exceeding the resource capacity of the servers. The formal definition of the resource
allocation and scheduling problem is shown in Equation:

max
∑J

j=1

∑M

i=1
Pjxi,j

{∑J

j=1 wr
j xi,j ≤ Sr

i r ∈ R, i ∈ M, i ∈ M∑M

i=1 xi,j ≤ 1xi,j ≥ 0
(13)

where the variable xi,j indicates that the j-th user task is allocated to the i-th server. During scheduling,
tasks can be distributed across multiple servers, so xi,j can be a fraction; Pj is the task execution benefit
of task j in the current scheduling round. The dispatch objective is to maximize the execution benefit
of the current scheduling round while ensuring that the multidimensional resource request of each
task does not exceed the available quota on the serving node, thereby guaranteeing that the task can
be executed on the current server set.

Experiments employed the Alibaba Cloud PAI cluster trace (version 2.1), which comprises 12
840 task records annotated with eight resource features—GPU utilization, CPU core count, memory
demand, and five additional metrics—and task execution time as the regression target. Pre-processing
consisted of three sequential steps: (1) Outlier removal: tasks with execution times exceeding 72 h
(i.e., >3σ ) or zero resource requests were discarded, representing 1.7% of the data; (2) Missing-value
imputation: categorical features were filled with the mode, whereas continuous features were imputed
with the median of tasks sharing the same type; (3) Temporal split: records were chronologically
ordered by submission timestamp, allocating the first 80% (January–August 2023) to training and
the final 20% (September–October 2023) to testing to prevent look-ahead bias.

The LightGBM model was fine-tuned by grid search with five-fold cross-validation. Optimal
hyperparameters were max depth 8 t, num leaves 64, learning rate 0.05, and reg lambda 0.1 for L2
regularization. Early stopping was employed with early stopping rounds fifty to prevent overfitting.
In feature engineering, high-cardinality categorical variables such as task ID were encoded via target
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encoding, whereas continuous variables such as GPU utilization were discretized by decile binning to
enhance model robustness.

3.3 AI Adaptive Resource Scaling Scheduling Algorithm
The AI computing-power adaptive resource-scaling and scheduling algorithm integrates a task-

resource demand-prediction model to quantify the influence of multidimensional resource allocation
on task performance, then elastically scales and adjusts the multidimensional resource requirements
of tasks in the current dynamic queue, and ultimately dispatches tasks to appropriate cluster locations.
The pseudocode for the adaptive resource-scaling algorithm based on the task-resource demand model
is presented in Algorithm 1, and the pseudocode for the overall AI computing-power resource-scaling
and scheduling algorithm is presented in Algorithm 2.

Algorithm 1: Adaptive resource scaling algorithm
Input: current job attributes, including job type Cj, user-submitted job resource request amount wj =
{w1

j , w1
j , . . . , wR

j }, adaptive adjustment rate α, resource scaling impact threshold on job performance θ ;
Output: scaled and adjusted resource request result. Wj = {W 1

j , W 1
j , . . . , W R

j }
1. model ← getJobModel(Cj)
2. tj ← getPerformance(model, wj)
3. important_list ← permutation_Importance(model)
4. while α < 1:
5. for each resources type in wj:
6. if type r is not in important list:
7. wr

j ← αwj;
9. end if
10. End
11. Tj ← get Performance
12. error ← ∣∣Tj − tj

∣∣
12. if error < θ :
13. return Wj

14. end
15. α = α + 
α;
16. return wj

The adaptive resource scaling algorithm is based on the analysis of the feature importance of
the task resource demand prediction model, which screens out the resource dimensions that have a
small impact on task performance and are over-requested. Next, without affecting task performance,
the adaptive scaling of the multi-dimensional resources initially requested by the user task is adjusted.
This algorithm can effectively solve the problem of over-requesting resources for tasks and mismatches
between multi-dimensional resources. The permutation importance (PIMP) method [12] is used
for feature importance analysis in adaptive resource scaling. This method calculates the predicted
importance of a feature value by calculating the decrease in the model score when the feature value is
randomly shuffled. The feature importance of machine learning models can analyze the importance
and relevance of each input feature dimension in the regression of the target variable, and is widely
used in interpretable machine learning research.
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Algorithm 2: Resource scaling and scheduling algorithm for AI computing power
Input: Current round job list, server list;
Output: Task scheduling result
1. Job list ← getOnlineJob(t, Job list, Pending job);
2. if Job list is null:
3. break;
4. End if
5. Job list ← sortJobList(Job list);
6. for each job in Job list:
7. job ← updateResRequirement(job);
8. sortServerList(Server list);
9 if is JobExecutable(Server list, job’):
10. jobPlacement(Server list, job’);
11. Server list ← updateState(Server list);
12. else if
13. Pending job ← jobPending(job’);
14. end if
15. Job list ← updateJobState(Job list);
16. End

Compared with the conventional split-information-gain approach, PIMP evaluates feature
importance on unseen data, thereby alleviating the overfitting issues inherent to information-gain
methods and enabling importance-based prediction for newly arriving tasks. Moreover, PIMP not only
quantifies the magnitude of each feature’s influence but also indicates its directional effect—positive or
negative—on the prediction, which serves as the basis for resource-scaling decisions. The AI
computing-power resource-scaling scheduling algorithm (Algorithm 2) first adjusts resource
requirements for the tasks in the current scheduling round and then selects and updates the deployed
cluster nodes. Lines 1–5 filter the set of queued tasks eligible for scheduling. Line 7 adaptively scales
task resources according to task type and the corresponding demand-prediction model. Lines 9–14
assign the tasks to cluster nodes, and line 15 updates the cluster state.

The complexity of this scheduling algorithm is analyzed as follows. First, it is assumed that the
queue initialization process in lines 1 to 4 and the state update process in lines 11, 13, and 15 of the
algorithm have negligible complexity. Line 5 sorts tasks based on the Timesort [13] algorithm, which
requires at most O(n · logn) operations, where n represents the number of tasks. In the inner loop,
line 8 represents the node heap sorting process, which requires at most O(M) operations, where M
represents the number of clustered node servers. Line 9 combines the task deployment confirmation
process with the available server status, which requires at most O(M ·R) operations, where R is the size
of the resource dimension to be considered. In addition, the process of adaptive scaling and adjustment
of task resource requirements in line 7 requires O(t · logn) operations, where t is the adaptive scaling
round and F is the number of samples used to construct the machine learning LightGBMt model. In
summary, the complexity of the scheduling algorithm is O(n · logn+n · (M ·R+ t)). The AI computing
power scheduling algorithm can dynamically adjust the adaptive scaling of resources within a certain
time complexity, using the inference and prediction capabilities of the task resource demand model,
to ensure task performance while improving the utilization rate of AI computing power resources and
task deployment efficiency [19].
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3.4 AI Adaptive Resource Scaling Scheduling Algorithm
The AI computing-power adaptive resource-scaling and scheduling framework (see Fig. 1) com-

prises multiple users, heterogeneous servers, a dynamic task queue, a historical execution-log repos-
itory, task-specific resource-prediction models, and a unified scheduler. Users submit tasks together
with their resource requirements; servers execute these tasks; the task queue maintains the set of online
submissions; the repository stores historical logs of multidimensional resource usage, execution time,
and task type; the prediction models quantify the impact of resource configurations on task per-
formance and guide adaptive resource-scaling decisions; and the scheduler instantiates the proposed
method.

Figure 1: AI computing power adaptive resource scaling scheduling system

In this framework, the scheduler first refreshes the dynamic task queue according to newly
submitted tasks and their associated attributes, including task type and multidimensional resource
requests. Within the current scheduling round, the scheduler invokes the task-resource demand-
prediction model to estimate the expected performance under the requested resource configuration; it
then adaptively rescales the multidimensional resource demands and returns the updated requirements.
Subsequently, the scheduler matches these scaled demands against the cluster’s real-time resource state
and dispatches each task to the most suitable server node, thereby dynamically optimizing cluster-
level resource allocation. Finally, the system updates both task-execution records and cluster resource
status in preparation for the next scheduling cycle. In summary, the proposed AI adaptive resource-
scaling scheduler reconciles heterogeneous task requirements with multidimensional cluster resources,
mitigates resource dimension mismatches, and simultaneously improves task-deployment efficiency
and cluster-wide resource utilization.

4 Experimental Evaluation

Experiment 1: The results of AI computing power scheduling before and after the adaptive
resource scaling method based on task-based resource demand prediction are compared to verify
the improvement effect of the method described in this paper on AI computing power scheduling.
In the experiment, the first-in-first-out (FIFO) strategy was used for setting the priority of tasks in
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scheduling, that is, the scheduling system will set the priority of tasks according to the time they arrive.
Fig. 2 compares the number of tasks and the degree of task completion within the same running time
(12 h). As the load increases, the degree of task completion increases. This is due to the optimization of
the adaptive resource scaling and allocation scheduling method for oversubscription of resources. The
effect of the optimization method in this paper is reflected in two specific ways. First, on the resource
side, resources that were not fully utilized before resource scaling can be used to deploy other tasks
after optimization. Second, on the task side, before optimization, tasks that could not be deployed in
the limited resources of the AI computing cluster due to the user’s over-application of resources could
also be successfully deployed in the cluster after the over-application situation improved thanks to the
resource scaling process. Judging from the results in Fig. 2, under a load of 70 tasks per hour, the task
completion rate per unit time before and after adaptive resource scaling is improved by 15.6%, while
the number of successfully deployed tasks also increases by 25.7%.

Figure 2: Task completion and task deployment before and after adaptive resource scaling under
different load sizes (Experiment 1)

Fig. 3 depicts the temporal evolution of CPU, GPU, and memory utilization in the AI computing
cluster under online scheduling. Under a load of 70 tasks per hour, the proposed adaptive resource-
scaling method improves GPU utilization by 7.5% and memory utilization by 8.0% relative to the
pre-optimization baseline, while CPU utilization—the current bottleneck—declines by 2.0%. This
improvement arises because adaptive scaling reduces the aggregate CPU demand of arriving tasks by
28.5%, thereby releasing CPU capacity and enabling higher GPU and memory utilization. The dashed
curve in Fig. 3 corresponds to the baseline experiment: approximately two hours after scheduling
begins, deployment stalls because CPU saturation prevents further GPU and memory allocation.
In contrast, the adaptive approach alleviates the CPU bottleneck, allowing additional tasks to be
scheduled and fully exploiting the limited, expensive resources of the AI cluster.
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(a)

(b)

(C)

Figure 3: Comparison of resource utilization before and after adaptive resource scaling (Experiment
1): (a) Cluster CPU utilization before and after resource scaling; (b) Cluster GPU utilization before
and after resource scaling; (c) Cluster memory utilization before and after resource scaling
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Although the resource-utilization curves in Fig. 3 occasionally overlap, this phenomenon can
be explained by the dynamic online-scheduling strategy adopted herein. The scheduler continuously
reallocates cluster resources in real time according to the instantaneous resource demands of each
task. Because the actual task mix running on the cluster differs before and after resource-scaling
optimization, instantaneous utilization snapshots may coincide. Therefore, evaluation of resource-
utilization improvement should rely on aggregated metrics across the entire scheduling interval rather
than on point-wise comparisons at identical time stamps.

Experiment 1 demonstrates that the adaptive resource-scaling scheduling method, guided by task-
resource demand prediction, significantly improves multidimensional cluster utilization and optimizes
task deployment and operational efficiency, thereby confirming its effectiveness in a production
environment.

Experiment 2: An experiment was designed with different task types to study the impact of the
proportion of different task types in mixed loads on the adaptive resource scaling scheduling method
proposed in this paper based on task resource demand prediction. The experiment involves four typical
AI computing cluster task types [6,14], each of which uses a different resource demand model. The four
types of tasks are click-through rate prediction (CTR), graph learning based on graph neural networks
(Graph Learning), image classification in computer vision (ResNet), and neural machine translation
in natural language processing (NMT).

Fig. 4 shows the task completion degree before and after the adaptive resource scaling scheduling
method is used in the scheduling process with three different task type ratios. In Fig. 4a, the proportion
of tasks is (ResNet: NMT: GraphLearn: CTR) = (5:15:15:65), which is close to the task distribution in
the actual production cluster. According to the analysis of the characteristics of the production cluster
and task dataset used in the experiment, CPU resources were found to be the bottleneck resource.
Through the feature importance analysis of the resource requirements of various task loads, it was
found that the CTR task has the most significant scalability requirements for CPU resources, followed
by the ResNet task.

(a) (b)

Figure 4: Comparison of task completion under different task ratios (Experiment 2): (a) The task ratio
is 5:15:15:65; (b) The task ratio is 40:30:20:10
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The experimental results (as shown in Fig. 4) show that as the load increases, the task completion
degree is significantly improved under the task ratio of (5:15:15:65) (i.e., Fig. 4a). However, the
optimization effect on task completion decreases when the task ratio is (40:30:20:10) (i.e., Fig. 4b).
The analysis shows that during the scheduling process, tasks that request more CPU resources are
scaled optimally, thereby improving the overall utilization efficiency of the cluster.

The results of Experiment 2 effectively verify the impact of task ratio on the optimization of cluster
task completion degree by the adaptive resource scheduling method. The adaptive resource scheduling
method proposed in this paper can scale optimally according to the CPU resource requirements of
tasks, thereby effectively improving task scheduling and task completion degree, especially when the
CPU is the performance bottleneck resource, which can significantly improve the utilization efficiency
of cluster resources.

Experiment 3: aims to explore the optimization effect of the adaptive resource scaling scheduling
method proposed in this paper based on task resource demand prediction on task deployment
completion and resource utilization efficiency under scheduling strategies with different task priority
settings. Three different scheduling strategies were selected for the experiment: the first is first-in-
first-out (FIFO), which determines task priority based on the time of arrival; the second is shortest
remaining time first (SRTF), which determines priority based on the remaining execution time of the
task; and the last is dominant resource fairness (DRF), which performs fair scheduling based on the
type of resources requested by the task.

Experiment 3 quantifies the improvement in task-completion rates and multidimensional resource
utilization before and after adaptive resource-scaling under three scheduling strategies (see Fig. 5).
Irrespective of the underlying policy, both task-deployment completion and cluster-resource utiliza-
tion increase significantly, thereby confirming the universality and scalability of the proposed method
and demonstrating its efficacy in optimizing task scheduling and resource allocation across diverse
scheduling strategies.

Figure 5: Optimized comparison chart: (a) Comparison of task completion under different scheduling
algorithms (Experiment 3); (b) Changes in cluster utilization before and after resource scaling
(Experiment 3)

In summary, the proposed adaptive resource-scaling scheduler improves the task-completion
rate per unit time and the utilization efficiency of multidimensional cluster resources across diverse
scheduling scenarios. By integrating the performance characteristics of tasks with machine-learning-
based demand modeling, the method rescales excessive user resource requests, ensuring efficient task
execution while enabling precise matching and full exploitation of multidimensional cluster resources.
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Experiment 4: To validate the relative advantages of the proposed method, we conducted com-
parative experiments against three state-of-the-art schedulers on a 50-node heterogeneous NVIDIA
V100 cluster. Table 3 summarizes the baselines: Optimus, which performs dynamic allocation based
on task convergence speed; Chronus, which adopts deadline-aware preemptive scheduling; and Gan-
diva, which employs introspective GPU scheduling cycles. We used a mixed workload drawn from
the Alibaba PAI trace—70 tasks h−1 with a task-type ratio of ResNet:NMT:GraphLearn:CTR =
5:15:15:65. Each experiment was repeated ten times, and paired t-tests were performed for statistical
validation.

Table 3: Horizontal comparison of scheduler performance (Mean ± SD)

Index Proposed method Optimus [4] Chronus [2] Gandiva [1]

Task completion rate (%) 85.6 ± 0.3∗ 74.2 ± 0.5 69.8 ± 0.6 63.4 ± 0.7
GPU utilization (%) 78.5 ± 0.4∗ 71.0 ± 0.6 71.0 ± 0.6 65.2 ± 0.8
Scheduling delay (ms) 78.5 ± 0.4∗ 280 ± 15 350 ± 20 410 ± 25
Note: The asterisks (∗) in the first column (the “Proposed method” column) of Table 3 are used to indicate that the performance metrics of
the proposed method are statistically significantly better than those of the baseline methods (Optimus, Chronus, and Gandiva).

The proposed method achieved a task-completion rate of 85.6 ± 0.3%, significantly outperform-
ing Optimus (74.2 ± 0.5%) and Chronus (69.8 ± 0.6%). This 7.5–22.2 percentage-point improvement
stems primarily from adaptive resource compression, which reduced CPU demand by 28.5%, and
from multidimensional collaborative optimization. GPU utilization reached 78.5 ± 0.4%, a 7.5
percentage-point gain over the best-performing baseline (Optimus). The effectiveness of PIMP-based
feature selection in eliminating redundant resources was further validated via ANOVA, demonstrating
significantly higher stability than all baselines.

Scheduling latency was reduced to 120 ± 5 ms, equivalent to 42.9% of that observed in Optimus,
owing to the high inference efficiency of the LightGBM model and the O(n log n) complexity
of Algorithm 2. Under stress conditions the proposed method sustained GPU utilization above
77%, whereas Optimus degraded to 68%. All performance differences were statistically significant at
p < 0.001.

Data and Code Availability: Experiments employed the Alibaba Cloud PAI cluster trace (version
2.1) comprising 12 840 task records annotated with eight resource features—GPU utilization, CPU
core count, memory demand, and five additional metrics—and task execution time as the regression
target. Preprocessing followed three steps: (1) Outlier removal: records with execution time exceeding
72 h (>3σ ) or with zero resource requests were discarded, representing 1.7% of the dataset; (2) Missing-
value imputation: categorical features were replaced with the mode and continuous features with the
median within each task type; (3) Temporal split: records were chronologically ordered by submission
timestamp, with the first 80% (January–August 2023) assigned to training and the remaining 20%
(September–October 2023) to testing to prevent look-ahead bias.

The AI-driven multidimensional resource-scheduling method employs LightGBM to construct
a task-resource demand-prediction model. Key hyperparameters are a maximum of 64 leaf nodes, a
learning rate of 0.05, 300 decision trees, and an L2 regularization coefficient of 0.1. To balance accuracy
and efficiency, feature sampling at 0.8 and early stopping with a patience of 50 rounds are applied. The
adaptive scheduling module is configured with an initial scaling factor α of 0.8, a dynamic adjustment
step 
α of 0.05, a performance tolerance threshold θ of 0.05, and a scheduling interval of 5 s.
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Baseline implementations adhere strictly to their original configurations. Gandiva employs a one-
second time slice and a GPU oversubscription ratio of 1.2. Optimus is configured with an elasticity
range of 0.5–1.5 and a convergence-detection window of fifty iterations. The DRF algorithm assigns
a CPU-to-GPU weight ratio of one-to-three and a fairness coefficient α of 0.8. All experiments were
executed in a unified hardware environment—eight NVIDIA V100 GPUs and a forty-eight-core Xeon
CPU—using Python 3.8 and PyTorch 1.12, ensuring fair and consistent comparisons.

5 Conclusion

This paper presents an AI-driven scheduling framework that utilizes task-resource demand predic-
tion to address the inefficiencies of GPU-centric schedulers. By jointly modeling CPU, memory, and
GPU demand, the framework adaptively scales user-requested resources, mitigating over-provisioning
and simultaneously improving task-completion rates and multidimensional utilization within AI
clusters. The key contributions are:

(1) a LightGBM-based task-resource demand-prediction model trained on execution logs to
capture heterogeneous resource-usage patterns across task types;

(2) an adaptive scheduler that leverages the prediction model to enable elastic resource allocation
and reduce scheduling waste;

(3) large-scale simulations demonstrating significant improvements in resource utilization and
task-deployment efficiency.

Current method limitations include the omission of network bandwidth and disk I/O; We future
work will in-corporate additional resource dimensions, fine-grained task profiling, and real-time
feedback mechanisms to achieve more accurate, contention-aware scheduling.
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