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Abstract. This paper presents an homogenization strategy to determine a deterministic
constitutive model for composite damage quantification, based on a simplified stochastic
FE2 model and the validation of this strategy using a numerical test.

1 INTRODUCTION

The simulation of an in-service composite structure failure remains a major challenge
in engineering. This is mainly due to the non-homogeneous nature of these materials. In
particular, the damage evolution mechanisms, as they appear on a relatively small scale
compared to the scale of the structure, plus the brittle aspect of the failure. Current
solutions to diagnose damage patterns in a composite structure consist in carrying out
Non Destructive Testing [1], using either active or passive NDT, such as acoustic emission-
based systems. However, when employing these techniques, one is not able to describe
neither the overall state of the structure and its degradation, nor its remaining lifetime.
To overcome these difficulties, we propose a damage prediction approach via the use of
digital twinning, where a numerical model will continuously assimilate data from accoustic
emission sensors and provide damage states as time advances.

Two scale Finite Element models, such as FE2 , can in principle be utilized to predict
the evolution of damage within the microstructure of composite materials. However, due
to its extreme computational cost, many alternative-FE2-based techniques are put forward
to take advantage of the expressive power of material-point-level FEM models whilst
ensuring computationally tractable maroscale simulations. One known approach is the
process of meta-modeling [2, 3], where one construct an homogeneous constitutive model
at the mesoscale that implicitly embeds the FE2 constitutive generality and simplifies it.

In this work, we will present an homogenization strategy to determine a deterministic
mesoscopic constitutive model based on an improved FE2 model [4, 5] and the validation
of this model on a numerical test.
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2 THE MULTISCALE FIBRE BREAK MODEL DEVELOPED AT MINES
PARISTECH

A stochastic mesoscopic model described also as a simplified FE2 model, was developed
at Mines Paristech first by Blassiau [4] and then was used by Thionnet [5] to quantifie
damage process leading up to failure. This model is based on a two scale approach that
provides detailed simulations, considering many physical phenomena,which were identified
experimentally on specimens using acoustic emission control [7, 8] and high resolution
tomography.

The first scale of the model is the microscale, where the composite is seen to be formed
with the epoxy matrix surrounding carbon fibers. For a fiber volume fraction Vf ≈
0.64, the size of the Representative Volume Element has been deduced from the work
of Baxevanakis [9], who was interested in micromechanics and tests at fibers scale. In
addition, multi-fragmentation tests were performed on a single fiber embedded in the
matrix in order to evaluate the length of the weakest link of a fiber (≈ 0.5mm), and by
varying the number and the lengths of fibers in a bundle, it was numerically found that
beyond the use of 6 fibers and a length L = 4mm, the strength of the composite material
converged. Thus the conducted numerical study allowed to define the size of the 2D-RVE,
besides it also showed that fiber breaks were concentrated in the same plane where each
fiber only breaks once when its lentgth is ≈ 0.5mm. This latter characteristic added to
some geometrical constraints allowed Blassiau [7] to extend the 2D-RVE into a 3D-RVE
consisting of 32 fibers arranged in a hexagonal array as shown in Figure 1.a.

(a)

Figure 1: (a) Size of the cell representative of the RVE : L=4 mm, l=h=0.05 mm.
(b),(c),(d),(e),(f),(g),(h) Representative cells of the material damage state and corre-
sponding broken fibers are in red.[5]
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The evolution of the number of fiber breaks during the lifetime of a structure requires
in general the knowledge of the fibers strength properties. In addition, tensile tests were
conducted on single fibers using different gauge length (25, 50, 100, 250 mm) and then ex-
trapolated to a gauge length equal to the length of the already determined cell (L = 4mm),
in order to experimentally calibrate a Weibull distribution of fiber strength. This made
the corresponding 3D-RVE stochastic, where 6 representative cells of material damage
states were considered : starting from a virgin state (Figure 1.b) to the completely dam-
aged state (Figure 1.h). These states actually describes the evolution of the number of
fiber breaks in the 3D-RVE when it is subject to a certain load.

The second scale of the model is the macroscale, where structures, namely compos-
ite pressure vessels, are modelled describing the overall behavior, geometry, mesh, and
boundary conditions. In addition, a two-scale simplified FE2 approach was developed
to relate the previously described microscopic damage information to the macroscopic
calculations. The latter improved FE2 technique actually consists on homogenizing the
behavior of the fibers and the matrix that forms the RVE into a single stochastic damage-
able orthotropic material. This homogenized constitutive law is then integrated locally
at each Gauss point of the mesh while taking into account the fiber strengths designated
by a MonteCarlo process that is associated with the Weibull distribution. Concerning
the type of the mesh, a convergence study conducted by Blassiau [7] (using the size of
the 3D-RVE) indicated that a hexahedral Finite Element that contains 8 Gauss points,
where each embeds the model of the 3D-RVE, gave similar macroscopic stress field as one
Finite Element containing 1 3D-RVE. Thus the size of 3D finite element (a x b x c) that
must be used for analysing the composite structure is displayed in Figure 2 below.

a

b

c

RVE

CPV mesh

Finite 
Element

Figure 2: Characteristics of the simplified FE2 calculation, 3D-RVE at the microscopic
scale, 1 finite element c3d8 type, 8 nodes, 8 Gauss points, a=8 mm, b=c=0.1 mm [5]
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The two-scale model detailed above [7] relates the microscale damage information to
the macroscale calculations by updating the rigidity matrix at each time step of the finite
element analysis using the equation below :

C11 = C11
0(1 − 1

NFC
) (1)

where C11 is the updated stiffness in the fiber direction, C11
0 is the current stiffness of the

material (also in fiber direction), ad NFC are the number of fibres that are still undam-
aged. In addition to this, the modelisation of the Composite Pressure Vessel with this
model will have an expensive computational cost. The cost is also due to the variability
(stochasticity) that is described at a very small scale (size of the 3D-RVE) and to the in-
variant mesh which is refined even in unnecessary parts of the structure. Hence, the latter
illustration lead us to the main objective, detailed in Section 3, where the stochastic part
of this model [7] will be homogenized to a deterministic stress-strain law that represent
the behavior before the failure (instability point) of the whole composite.

3 HOMOGENIZTION TECHNIQUE TOWARDS ADETERMINISTICMESO-
SCOPIC DAMAGE MODEL FOR COMPOSITE PRESSURE VESSELS

The Composite Pressure Vessel, as shown in Figure 3, is made by filament windings
process on both cylindrical and spherical parts that consecutively presents the cylinder
and the dome. The composite material is then characterized by the stacking sequence of
filaments and their thicknesses, as well as the material of the inner layer which is useful
for separating the pressurized gas inside the tank from the composite material (the liner
: metallic or polymer material).
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Figure 3: Composite Pressure Vessel components
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The main idea, related to the end of Section 2, is to determine the homogenized meso-
scopic constitutive law of the CPV using the existing simplified FE2 numerical model
previously mentioned. It is then assumed to realize tensile tests on specimens of different
sizes using the same stacking sequence of the CPV. The searched homogenized model will
give the possibility to overcome the constraint of the invariant mesh and will make it pos-
sible to mesh the structure with tetrahedron finite elements and to re-mesh the damaged
layers in only one element at the scale of a ply, in order to reduce the computational cost.
PS : The materials of the CPV are either orthotropic materials or damaged orthotropic
materials (for the damaged ply) for composites and an elastic isotropic material for the
liner.

The homogenization method can then be summed in 3 main steps presented by the
following organizal chart.

Step I

Step II

Step III

Stacking sequence

Test specimens

Stochastic

Mesoscopic Model
Orthotropic

Elastic Model

Elastic Effective
properties

Correspondant
Constitutive Law

Figure 4: Organizal chart for explaining numerical homogenization steps

3.1 Detailed description of the homogenization strategy means

The first step, as seen in Figure 4, is to choose the type of the composite pressure vessel
material on which will be performed the homogenization. It is important to mention that
there exists no general rule for this step, therefore composite layer thicknesses choice is
highly depending on the application. In the studied case, the selected CPV represents
the following charecteristics:
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• The stacking sequence [liner/-70◦/+70◦/90◦]

• The damaged model is only applied in the upper layer (also called hoop layer)

The second step, as depicted in Figure 4, is considering that infinite radius of curvature
reservoir are simplified to a parallelipepid specimen of the same material, the tensile tests
will be carried out only on the equivalent parallelipipedic specimens described on Figure
5.a

(a)
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(b)

Figure 5: (a) 3D view of a CPV End and Equivalent test specimen, (b) Geometrical
details of the Equivalent test specimen

The third step, illustrated in Figure 4, consists on performing 10 MonteCarlo simula-
tions (to be statistically representative) using the existing model [7] for each specimen
size detailed in Table 1.

Specimen L1 (mm) L2 (mm) L3 (mm)
1 32 4 1
2 64 8 1
3 128 16 1
4 256 32 1

Table 1: Dimension of the studied specimens

The numerical measurement process is also set up in this step, where two methods de-
pending on the Boundary Conditions were applied to the test specimens in Figure 5.(b).
The first method is the Neumann method, where Dirichlet loads U+a(M) = +Ux1 and
U−a(M) = −Ux1 are applied respectively on S+a, S−a, while all other surfaces are left
free of stress. The second method is the Dirichlet method where lateral diplacements are
added to the boundary conditions of the Neumann method such that on S+b and S−b, are
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applied respectively U+b(M) = 2x
L
Ux1 and U−b(M) = 2x

L
Ux1 .

The properties to be identified are the effective longitudinal stress-strain curve σ11 (lon-
gitudinal stress) according to ε11 (longitudinal strain) that is supposed to be the same on
all the test-specimen, and the curve of τf (Number of Fibre Breaks per unit volume) ac-
cording to ε11 (longitudinal strain). The latter curve will be useful for the post-processing
of the results and for future work in data assimilation.

The direct justification for the use of both numerical measurement processes is for the
sake of the homogenization theory. Where for sufficiently large test specimen, the mean
curves σ11 - ε11 and τf - ε11 with no lateral displacement coincide with the same curves
when adding the lateral displacements due to the elimination of the effect of the geometry
of the structure and the boundary conditions.

3.2 Homogenization step

The failure information that occurs, in the microscopic model, at the scale of the
stochastic Representative Volume Elementary (RVE) composed by the matrix and the
32 fibers is related to the fracture information at the macroscopic scale of the structure as
already explained in Section 2. This relationship is governed by the updating of the first
component of elasticity tensor at each finite element calculation time-step . The material
used in the existing model [7] is an orthotropic damaged material, whose constitutive law
is of the following form :


σ1
σ2
σ3
σ4
σ5
σ6

 =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




ε1
ε2
ε3
ε4
ε5
ε6

 (2)

Given that in component C11 only the stiffness modulus is variable :

C11 =
(1 − µ23µ32)E1

δ
(3)

δ = 1 − ν12ν23ν31 − ν13ν21ν32 − ν12ν21 − ν13ν31 − ν23ν32. (4)

To be able to find the value of longitudinal stiffness modulus E1, the call for the tensor
of flexibility is mandatory, whose first component is :
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S11 =
1

E1

(5)

From this formula one will determine the value of E1 and will be able to express C11 as
function of the longitudinal stiffness modulus for each finite element calculation time step.

The fourth step, as illustrated in Figure 4, is then to perform an elastic orthotropic
calculation on the largest specimen. This specimen should be large enough so the effect
of the geometry and boundary conditions are eliminated (Section 3.1), and should be
remeshed with very fine tetrahedral mesh since the objective is to characterize a contin-
uous model. The elastic calculation should then achieved while varying the longitudinal
stiffness modulus E1 for the damaged layer at each time step of the simulation.

The final step, in Figure 4, is to post-process the results of step 3 and step 4. Hence,
providing the average responses of the 10 Montecarlo simulations, and the equivalent
elastic response, interopolaton of both results will yield to the homogenized constitutive
law.

4 NUMERICAL RESULTS

4.1 The deterministic mesoscopic model determined by the homogenization
strategy

The constitutive law can finally be defined and summarized in two curves which are
respectively the longitudinal stiffness modulus of the damaged layer and the Number of
Fibre breaks per unit volume τf as a function of the longitudinal deformation as precised
in Figure 6.
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Figure 6: The homogenized constitutive behavior
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4.2 MonteCarlo results and characterization of the instability point

Figures 7 shows below the 10 Montecarlo simulations responses of the Number of fiber
Breaks per unit volume τf as a function of the effective longitudinal deformation ε∗11 of
the 4 specimens illustrated in Table 1.

0.00 0.01 0.02 0.03 0.04 0.05
*
11

0

500

1000

1500

2000

2500

3000

f (
m

m
3 )

 

sample1
sample2
sample3
sample4
sample5
sample6
sample7
sample8
sample9
sample10

(a) Specimen 1

0.00 0.01 0.02 0.03 0.04 0.05
*
11

0

500

1000

1500

2000

2500

3000

f (
m

m
3 )

 

sample1
sample2
sample3
sample4
sample5
sample6
sample7
sample8
sample9
sample10

(b) Specimen 2

0.00 0.01 0.02 0.03 0.04 0.05
*
11

0

500

1000

1500

2000

2500

3000

f (
m

m
3 )

 

sample1
sample2
sample3
sample4
sample5
sample6
sample7
sample8
sample9
sample10

(c) Specimen 3
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Figure 7: tensile tests response curves τf - ε∗11 of the tested specimens

The Analysis of the above sub-figures can lead to a fact that the composite failure point
(also called the instability point) is reached more quickly as the volume of the damaged
layer increases. One can see this latter as the point where the MonteCarlo runs start
to disperse and the damage localization bands begin to appear in the specimen. As a
result this dispersion could be quantified and the failure point could be characterized by
assigning a percentage of this dispersion to it for each studied size. Then, a Weibull model
could be fitted for the data as demonstrated by Figure 8 (for prediction of failure).

P (V, σ) = 1 − e
−V (σ−σu

σ0
)m

(6)
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Figure 8: Weibull Model fitted to the numerical failure points

4.3 Performance validation of the deterministic mesoscopic model

Two calculations were realized using the existing model with the invariant hexahedral
mesh and using the deterministic model on a tetrahedral mesh as shown in Figure 9.
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Figure 9: Details of the homogenization strategy modelisation on a Ring
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The results of both calcultions before the instability point (failure point) are shown in
Figure 10.
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Figure 10: A performance test of the homogenized constitutive behavior on a Ring

5 CONCLUSION AND PERSPECTIVE

The homogenization strategy has been successfully performed and the deterministic
mesoscopic model was determined. This behavior law was also implemented in the Finite
Element Analysis software of Mines ParisTech (Zset). The performance of the new model
was also tested, where two calculations performed using the stochastic model [7] and the
deterministic model has lead to the same result of damage propagation before that the
localisation occurs, consequently, the modelisation of the composite pressure vessel using
the homogenized behavior is no more depending on the fine invariant hexahedral mesh.
For future work of the dissertation, the deterministic model will be utilized to predict the
residual lifetime of the CPV using data assimilation algorithms. Ensemble Kalman filter
[6, 10] will be used for the estimation of the CPV state. In this case, the determined
model will be merged with external data, namely acoustic hit frequencies measured by
integrated sensors, and will manage to assimilate it and to construct sequential damage
states with an optimal computational cost.
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