
Sorting Algorithms and Their Execution Times
an Empirical Evaluation

Guillermo O. Pizarro-Vasquez1(B), Fabiola Mejia Morales1,
Pierina Galvez Minervini1, and Miguel Botto-Tobar2,3

1 Salesian Polytechnic University, Guayaquil, Ecuador
gpizarro@ups.edu.ec

2 Universidad de Guayaquil, Guayaquil, Ecuador
3 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. One of themain topics in computer science is how to perform data clas-
sification without requiring plenty of resources and time. The sorting algorithms
Quicksort, Mergesort, Timsort, Heapsort, Bubblesort, Insertion Sort, Selection
Sort, Tree Sort, Shell Sort, Radix Sort, Counting Sort, are the most recognized
and used. The existence of different sorting algorithm options led us to ask: What
is the algorithm that us better execution times?Under this context, it was necessary
to understand the various sorting algorithms in C and Python programming lan-
guage to evaluate them and determine which one has the shortest execution time.
We implement algorithms that help create four types of integer arrays (random,
almost ordered, inverted, and few unique). We implement eleven classification
algorithms to record each execution time, using different elements and iterations
to verify the accuracy. We carry out the research using the integrated development
environments Dev-C++ 5.11 and Sublime Text 3. The products allow us to identify
different situations in which each algorithm shows better execution times.

Keywords: Sorting · Sorting algorithms · Standard dataset · Integrated
development environment · Execution time

1 Introduction

One of the fundamental issues related to computer science is how to perform data sorting
without requiring a lot of resources and time. We can define sorting as organizing a
disordered collection of items to increase or decrease order [1]. Sorting and, by extension,
sorting algorithms are critical to several tasks. Sorting algorithms can help remove or
merge data through sorting by the primary uniqueness criterion; they are also useful in
finding out where two broad sets of elements differ. By the same logic, sorting algorithms
can also determine which data appears in both datasets.

Over time sorting algorithms have been implemented in almost all programming
languages; therefore, they combine multiple language components with helping new
programmers learn how to code. Additionally, it is nearly impossible to discuss sorting
without mentioning performance. Performance is the key for all systems to function

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Botto-Tobar et al. (Eds.): ICAETT 2020, AISC 1302, pp. 335–348, 2021.
https://doi.org/10.1007/978-3-030-63665-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63665-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-63665-4_27


336 G. O. Pizarro-Vasquez et al.

efficiently; thus, we can claim that sorting helps us understand performance, which
leads to an improvement in software structures and designs.

Since the early days of computer science, the sorting and classifying problem has
been a prevalent topic of research due to the complexity of efficiently using precise and
straightforward coding statements.

One of the purposes intended to achieve using sorting is to minimize the execution
time of a group of tasks. Hence multiple algorithms have been developed and improved
to sort faster, and for this, it is necessary to know the computer specifications, program
design methodology, and software architecture [2].

Some algorithms can be very complex depending on their execution; as an example,
we have the “Bubblesort” that since 1956 is the subject of study [3], and that can be
very complex compared to the “ShellSort” that presents less execution time required to
perform a sorting [4].

We selected the sorting algorithms Quicksort, Mergesort, Timsort, Heapsort, Bub-
blesort, Insertion Sort, Selection Sort, Tree Sort, Shell Sort, Radix Sort, Counting Sort,
because they are the most recognized and used around the world. In this research, it is
necessary to stipulate that we do not implement memory management algorithms, as we
will only measure the performance of the classification algorithms without additional
code.

There are two types of sorting data, internal sorting and external sorting. Internal
sorting methods store sorted values in main memory; therefore, we assume that the time
required to access any item is the same. On the other hand, external sorting methods
store the values to sort in secondary memory; Assuming that the time required to access
any item depends on the last position obtained.

The classification algorithms have two classifications, which are comparative and
non-comparative [5]. In the comparison-based sorting algorithm, the disordered data
is sort by comparing the data pairs repeatedly. If the data is out of order, they are
interchanged with each other [6]. This exchange operation of this sort is known as a
comparison exchange. Non-comparison ordering algorithms are responsible for classi-
fying data using the data’s specific well-established properties, such as data distribution
or binary representation [7]. Four parameters are necessary for the sorting algorithms,
which are determined: stability, adaptability, time complexity, space complexity [8].

Comparison-based sorting algorithms generally have two subdivisions: complexity
O(n2) and complexity O(n log n). In general, the O(n2) sorting algorithms have a slower
execution than the O(n log n) algorithms; despite this, the O(n2) sorting algorithms are
still fundamental in computer science. One of O(n2) algorithms’ benefits is that they
are non-recursive, requiring much less RAM. Another application of the O(n2) ordering
algorithm is in the sorting of small matrices. Because the O (n log n) sorting algorithms
are recursive, it is inappropriate to sort small arrays as they perform poorly (Table 1).

We can highlight that among the O(n2) sorting algorithms, Selection Sort and
Insertion Sort are the best-performing algorithms in general data distributions [9].

Several authors have carried out experiments to define which one or which of these
algorithms have better execution times; most of them indicate that Quicksort is the
ideal one; however, the authors of these experiments only venture to make comparisons
between a maximum of 9 sorting algorithms at a time [10–13]. Also, it is necessary to



Sorting Algorithms and Their Execution Times an Empirical Evaluation 337

Table 1. Sorting algorithms used and their complexity.

Sorting algorithms Complexity Memory Method

Bubblesort [BS] O(n2) O(1) Exchanging

Insertion sort [IS] O(n2) O(1) Insertion

Counting sort [CS] O(n + k) O(n + k) Non-comparison

Mergesort [MS] O(n log n) O(n) Merging

Tree sort [TrS] O(n log n) O(n) Insertion

Radix sort [RS] O(nk) O(n) Non-comparison

Shell sort [ST] O(n1.25) O(1) Insertion

Selection sort [SS] O(n2) O(1) Selection

Heapsort [HS] O(n log n) O(1) Selection

Quicksort [QS] O(n log n) O(log n) Partitioning

Timsort [TS] O(n log n) O(n) Insertion &
Merging

mention that the response times may vary depending on the CPU characteristics, RAM,
and other computer specifications on which are run the algorithms. In this context, to
obtain concrete results, a different number of data is required to execute the sorting. It
also executes the process repeatedly to verify the integrity of the results. Consequently,
the existence of different options of sorting algorithms leads us to ask: What is the
algorithm that gives us better execution times? Does the programming language have
any impact on the performance of the sorting algorithms? Furthermore, how to verify
the integrity of said results?

Due to the above reasons, it is necessary to carry out a complete experiment that
indicates which of the sorting algorithms is the one with the best execution times. Thus,
the research objective was to compile the various existing sorting algorithms in the C
and Python programming languages to evaluate them. The research consists of three
main steps. First, the algorithms’ implementation helped create four types of different
integer arrangements (random data, nearly sorted data, reverse sorted data, random data
sorted by categories), which forms standard datasets. The second step is to implement
the eleven sorting algorithms and sort the standard datasets, recording each algorithm’s
times using a different number of elements and iterations to check the results’ integrity.

Moreover, the final step is the analysis of the obtained results. We will describe the
methodology of the experiment in more detail; what were the steps to follow? We will
explain the results in each stage, the tools used, and the results obtained.

2 Materials and Methods

Runtimes may vary depending on the characteristics of the CPU, RAM, and other spec-
ifications of the computer running at the time. Therefore, it is necessary to indicate the



338 G. O. Pizarro-Vasquez et al.

specifications of the equipment used. We used a 64-bit computer with an Intel i5 pro-
cessor, 8 GB RAM, and a Windows 10 operating system in this research. To start the
investigation, the codes of the algorithms that generate the integer arrays had to be stud-
ied, considering that the ordering algorithms were going to be used to sort in ascending
order four different types of integer arrays. The algorithms to generate the collections
are [14]:

• Random – It generates random numbers with uniform distribution.
• Nearly Sorted – It generates an array of numbers sorted in ascending order and then
introduces some randomness; 20% of the data, in no specific position, is changed by
altering them with other random data.

• Reversed – It generates an array of descending ordered numbers.
• Few Unique – It generates an array by setting the value of the categories m. In this
case, there will only be five categories; then, select several random numbers gave a
size N (N is the size of the array). M represents the size of the types and implements
the formula M = N/m. Finally, repeat each random number (obtained in the second
step) M times to complete the matrix N; there is no sort.

Once we implemented these algorithms, the arrays were stored in a text file (txt),
to use the same dataset for each sorting algorithm. It is expected in this research that
the algorithms generate data sets with 100, 1,000, 10,000, 100,000, 1,000,000 elements
for each algorithm. Still, some of these algorithms threw errors at the moment of trying
to generate integer arrays of more than 100.000 items in both Dev-C++ and Python
(Table 2).

Table 2. List of files with data generated by algorithms

Algorithms for generating integer arrays 100 1,000 10,000 100,000 1,000,000

Random ✓ ✓ ✓ ✓ X

Nearly sorted ✓ ✓ ✓ ✓ X

Reversed ✓ ✓ ✓ ✓ X

Few unique ✓ ✓ ✓ ✓ ✓

Discerning that creating data sets with 1,000,000 items was impossible with all
algorithms, the best decision is to use a data set of up to 100,000 items.

To later obtain the classification algorithm (the references of the codes are in [15]).
The algorithms code was modified in Dev-C++ and Python, so that they consume the
previously generated data files and that the system has a certain number of iterations
(Fig. 1).

The process is carried out with 1, 10, 100, 1,000, 10,000 iterations, recording the
execution times in a spreadsheet file to be analyzed. It is essential to mention that the
execution time of the algorithms is in milliseconds.

As a result of the analysis of execution times, we obtained four tables, one for
each type of integer arrays generator algorithm, with the average values of each sorting



Sorting Algorithms and Their Execution Times an Empirical Evaluation 339

Fig. 1. Experiment process diagram

algorithm group’s execution times by the number of iterations. Furthermore, with these
files, graphs or figures were made using r programming. The tables and figures will show
and explain in the next section.

3 Results

The eight tables with the execution times were summarized in two tables to facilitate the
results’ comprehension and analysis.

Appendix 1 shows the execution time averages of the random, Nearly Sorted, Few
Unique, and Reversed data in C. In most algorithms, the execution and classification
were satisfactory, but there were cases where there was a considerable consumption of
a resource, so the program returned an error message.

Appendix 2 shows the execution time averages of the random, Nearly Sorted, Few
Unique, and Reversed data in Python. An error occurred in Python due to excessive
memory consumption, which did not allow the total execution of the sorting with 10.000
and 100.000 datasets.

Some algorithms have a more extensive range of execution times than others. There-
fore, to organize it more thoroughly and efficiently to understand, we divide the sorting
algorithms into two categories, “efficient algorithms” with a standard range of execution
times and the “inefficient algorithms” with a much more extensive range of execution
times. “Efficient algorithms” are defined as those whose execution times exceed that of
the other algorithms by a margin of at least 100 ms.

The “inefficient algorithms” are Bubblesort, Insertion sort, and Selection sort; the
remaining algorithms are considered “efficient algorithms.”

There are differences between C and Python; one of the differences is that the range
of Python runtimes is much more extensive.

Considering the average execution times for sorting random data for the “efficient
algorithms,” Heapsort is the one with the higher execution times. On the other hand,



340 G. O. Pizarro-Vasquez et al.

Timsort is the sorting algorithm that presents the lowest execution times in Python; in
C, Tree sort is the most efficient one.

In the case of the average execution times for sorting nearly sorted data for the
“efficient algorithms,” Heapsort is the one with the higher execution times in C and
only up to 1.000 iterations. When the number of iterations surpasses 1.000, Radix sort
becomes the worst one. In Python, Tree sort is the one with the worst execution times.

In all the cases while working with “inefficient algorithms,” Bubblesort was the one
that got the worst execution times.

Table 3. Most efficient & least efficient algorithms

Efficient algorithms

Algorithms Most efficient Least efficient

Programming language C Python C Python

Random Tree sort Timsort Heapsort Heapsort

Nearly Sorted Tree sort Timsort Radix sort Tree sort

Reversed Tree sort Timsort Heapsort Tree sort

Few Unique Tree sort Timsort Heapsort Heapsort

Inefficient algorithms

Algorithms Most efficient Least efficient

Programming
language

C Python C Python

Random Insertion
sort

Selection
sort

Bubblesort Bubblesort

Nearly Sorted Insertion
sort

Insertion
sort

Bubblesort Bubblesort

Reversed Insertion
sort

Selection
sort

Bubblesort Bubblesort

Few Unique Insertion
sort

Selection
sort

Bubblesort Bubblesort

Table 3 specifies the final results for each type of integer array according to the
programming language and the sorting algorithms’ efficiency.

Figure 2 shows that Tree Sort is the most efficient sorting algorithm in C; however,
it has higher execution times than Timsort in Python.

It is crucial to point out that Timsort and Counting sort in C had bad execution times,
and they will have been the most efficient ones, but they failed to sort more than 1000
elements. Thus, we can still say that Timsort and Counting sort are the most efficient
algorithms in C when we try to type a few items.

Contrary to Fig. 2, Fig. 3 shows that both programming languages have Bubblesort
as the most inefficient algorithm, and its execution times are longer in Python than in C.



Sorting Algorithms and Their Execution Times an Empirical Evaluation 341

Fig. 2. Most efficient sorting algorithms

Fig. 3. Most inefficient sorting algorithms

With everything established above, we now know what algorithms give us the best
execution times, no matter the number of elements and iterations.

4 Discussion

This research paper found out that the programming language significantly impacts how
the sorting algorithms behave and how much data they can sort. An example of this is



342 G. O. Pizarro-Vasquez et al.

that Timsort is the most efficient sorting algorithm in Python, while Tree Sort is the best
one in C. Both have the same complexity O(n log n). Also, Bubblesort O(n2) is the one
that has the worst execution times, no matter the number of elements or iterations.

In the paper “Analysis and Review of Sorting Algorithms” [1], the authors only used
five sorting algorithms. Bubblesort, Insertion Sort, Selection Sort, and Quicksort. Their
research also concluded that Bubblesort is only suitable for small lists or arrays because
it has the worst performance. Another paper that had similar results was “Analysis and
Testing of Sorting Algorithms on a Standard Dataset” [10] in which once more, Bubble-
sort had theworst execution times. In their case, theyworkedwith nine sorting algorithms
programmed with C++. They also use different datasets, and the best algorithms in their
case were Counting sort, which also gave us good execution times but did not run with
larger arrays. Timsort and Tree Sort do not appear in the document mentioned above.

In “Experimental study on the five sort algorithms,” they demonstrated that the num-
ber of items in the dataset or array has a considerable impact on the sorting algorithm’s
performance. Each sorting algorithm is suitable for a specific situation. If any patterns or
rules are found in the input sequence, inserting and sorting bubbles is a suitable option.
However, when the input scale is large, Merge Sort and Quicksort are the main choices
[12].

Timsort was created in 2002 by Tim Peters [16] for use in the Python language. A
hybrid classification algorithm based on the Insertion Sort and Merge Sort algorithm
works are in blocks that sort using the insertion order one by one. Then the sorted blocks
are merged using the merge operation used in the merge [17].

Thus, its popularity has increased, which opens the way to a series of investigations
on its operation such as the investigation of “Monte Carlo simulation of polymerization
reactions: optimization of the computational time” in which they analyzed the Monte
Carlo simulation of a steady-state polymerization process to reduce the overall com-
putational time, where the authors compare four ordering algorithms such as Timsort,
Bubblesort, Insertion Sort, and Selection Sort, resulting in that Timsort was the most
efficient algorithm in that implementation and Bubblesort the one with the worst time
[18].

The authors of “Binary Tree Sort is More Robust Than Quick Sort in Average Case”
[19] explained that we could use Binary tree sort if the sorted elements do not need a
uniform. They proved that the robustness of Tree sort is a decisive factor instead of just
focusing on the algorithm’s complexity. The aforementioned makes it easier for us to
explain why Trees Sort was better with larger C language arrays.

“Best sorting algorithm for nearly sorted lists” compares five algorithms, Insertion
Sort, Shell sort, Merge Sort, Quicksort, and Heapsort on nearly sorted lists. Their test
results showed that Insertion Sort is best for small or very nearly-sorted lists and that
Quicksort is better otherwise [20]. Insertion Sort was also the best “Inefficient Algo-
rithm” in our experiment. They concluded that there is no one sorting method that is best
for every situation. For that reason, it is necessary to keep experimenting and comparing
a new sorting algorithm, which is why we used more sorting algorithms.

With quantum computing, multiple implementations can be made, such as quan-
tum treemaps used to visualize large hierarchical datasets. In an application such as
using a recursive technique motivated by the Quicksort algorithm, these algorithms



Sorting Algorithms and Their Execution Times an Empirical Evaluation 343

offer compensation, producing partially sorted designs that are reasonably stable and
have relatively low aspect ratios [21].

However, the question often arises. How fast can quantum computers sort? A quan-
tum computer only needs to compare O(0.526n log2 n) + O(n) times. Performing an
improvement to the lower limit to (n log n), we obtain that the best comparison-based
quantum classification algorithm can be at most a constant time faster than the best
classical algorithm [22].

We encourage experimenting with those interrogations similar to those shown in this
research article and implementing quantum classification methods in future work.

5 Conclusion

This research’s primary purpose was to evaluate and analyze variations in execution
times of sorting algorithms written in C and Python. We were interested in the resulting
execution times when a sorting algorithm is run multiple times for a given dataset, and
if those times differ depending on a programming language.

The experiment’s orientation was for eleven classification algorithms: Quicksort,
Merge-sort, Timsort, Heapsort, Bubblesort, Insertion Sort, Selection Sort, Tree Sort,
Shell Sort, Radix Sort, Counting Sort. For each sorting algorithm, a range of array sizes
was created and then examined.

One of the main results is that distributions of the execution times were discrete,
with relatively few distinct values. Another important finding is that the execution time
increased as the array size increased for all sorting algorithms. Also, organizing the data
affects execution times, showing that some algorithms are better for sorting random data
than inverted data, Etc. Finally, the programming language has a significant impact on
how the sorting algorithms behave and how much data they can sort without the code
throwing an errormessage. A concrete example of this is that Timsort is themost efficient
sorting algorithm in Python, while Tree Sort is the best one in C. Both have the same
complexity O(n log n). In both cases, Bubblesort O(n2) is the one that has the worst
execution times, no matter the number of elements or iterations.

Appendix

Appendix 1. Execution Time Averages in C

Random (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 1 0.0149 0.0102 0.0057 0.0121 0.0284 0.0074 0.0163 0.0140 0.0075 0.0037 0.0024

10 0.0035 0.0069 0.0039 0.0072 0.0229 0.0070 0.0142 0.0036 0.0057 0.0034 0.0020

100 0.0026 0.0061 0.0032 0.0051 0.0220 0.0072 0.0141 0.0026 0.0045 0.0034 0.0017

1000 0.0023 0.0053 0.0027 0.0057 0.0189 0.0046 0.0136 0.0042 0.0040 0.0096 error

10000 0.0021 0.0053 0.0022 0.0054 0.0157 0.0023 0.0133 0.0041 0.0029 0.0146 error

1000 1 0.0705 0.1129 0.2143 0.2210 2.1418 0.6657 1.2248 0.0635 0.1102 0.0471 0.0071

10 0.0650 0.1081 0.0762 0.1509 2.1651 0.6505 1.2236 0.0401 0.1153 0.0514 0.0071

(continued)



344 G. O. Pizarro-Vasquez et al.

(continued)

Random (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 0.0635 0.1005 0.0712 0.1514 2.5847 0.6459 1.2322 0.0379 0.1129 0.0470 0.0072

1000 0.0494 0.0869 0.0507 0.1325 1.6873 0.3392 1.2153 0.0460 0.0712 0.0883 error

10000 0.0287 0.0681 0.0317 0.0816 1.2030 0.0388 1.2111 0.0470 0.0296 0.1677 error

10000 1 0.7475 1.2682 error 1.8875 298.9984 64.8266 121.1839 0.1820 1.5020 0.4770 0.0718

10 0.7458 1.2530 error 1.9217 295.5248 66.9882 127.1354 0.1408 1.4965 0.4644 error

100 0.7383 1.3059 error 1.9203 292.9857 65.0310 123.7623 0.1393 1.5423 0.4886 error

1000 0.5518 1.0522 error 1.6540 205.6387 32.9524 117.5058 0.1454 0.9564 0.9526 error

10000 0.3743 0.8348 error 1.2170 120.8390 3.3560 117.3990 0.1475 0.4116 1.3971 error

100000 1 7.5794 14.6408 error 21.4637 33941.2179 6434.9664 11729.1623 0.6891 17.9443 4.8676 0.5679

10 8.0029 14.6789 error 22.8292 33618.3597 6464.3184 11766.5191 0.6403 17.6360 4.7118 error

100 7.6986 14.3785 error 21.3103 33650.1493 6421.5479 11690.4792 0.6535 18.2611 4.6397 error

1000 6.0036 12.0452 error 19.1913 22651.4197 3362.4318 11858.7491 0.6524 11.0385 0.9526 error

10000 4.4945 9.9346 error 17.0932 12265.4345 335.2610 11444.6697 0.6552 5.0353 14.5989 error

Nearly sorted (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 1 0.0065 0.0084 0.0036 0.0591 0.0157 0.0026 0.0498 0.0152 0.0053 0.0054 0.0023

10 0.0031 0.0072 0.0024 0.0076 0.0211 0.0021 0.0145 0.0039 0.0040 0.0142 0.0020

100 0.0022 0.0051 0.0023 0.0055 0.0140 0.0019 0.0143 0.0028 0.0043 0.0051 0.0059

1000 0.0023 0.0056 0.0023 0.0056 0.0148 0.0021 0.0170 0.0044 0.0032 0.0118 error

10000 0.0022 0.0057 0.0022 0.0058 0.0150 0.0021 0.0132 0.0043 0.0030 0.0175 error

1000 1 0.0664 0.0804 0.0436 0.1232 1.4216 1.0850 5.0960 0.0648 0.1264 0.0635 0.0167

10 0.0587 0.0746 0.0473 0.1278 1.5113 0.2016 1.2170 0.0368 0.1130 0.1570 error

100 0.0566 0.0725 0.0385 0.1294 1.4778 0.2065 1.2323 0.0335 0.1099 0.0614 error

1000 0.0461 0.0707 0.0343 0.1209 1.2948 0.1138 1.2140 0.0436 0.0700 0.1040 error

10000 0.0282 0.0658 0.0303 0.0820 1.1436 0.0170 1.1859 0.0486 0.0293 0.1695 error

10000 1 0.6643 0.9435 error 1.5351 208.4337 19.6579 119.1224 0.2130 1.7079 0.6386 0.1365

10 0.6865 0.9634 error 1.6610 193.4145 20.0551 121.1661 0.1514 1.7112 0.6426 error

100 0.7111 0.9634 error 1.5482 190.4780 20.0197 118.8711 0.1548 1.7194 0.7056 error

1000 0.5480 0.8773 error 1.4625 152.2325 10.1305 118.5112 0.1528 1.0949 1.1911 error

10000 0.3759 0.8214 error 1.2002 116.1112 1.0735 120.0545 0.1482 0.4238 1.4127 error

100000 1 5.6883 11.0523 error 17.2255 14051.2450 501.8177 11832.1875 0.8658 10.1685 9.4685 1.2621

10 5.5417 11.5409 error 17.9486 14027.0252 495.1589 11814.0204 0.6930 10.4666 9.4292 error

100 5.6053 10.7023 error 17.3267 14028.2937 496.3286 11930.1854 0.6568 10.2494 9.2739 error

1000 5.4688 10.2111 error 17.0733 12630.6195 255.7339 11939.0698 0.6492 8.6424 9.8717 error

10000 4.5268 9.7984 error 16.0976 11489.6494 27.4709 12013.5563 0.6699 5.0404 17.1336 error

Few unique (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 1 0.0202 0.0102 0.0036 0.0122 0.0990 0.0082 0.0159 0.0133 0.0071 0.0053 0.0026

10 0.0035 0.0080 0.0024 0.0067 0.0245 0.0074 0.0144 0.0042 0.0061 0.0062 0.0017

100 0.0023 0.0057 0.0023 0.0050 0.0227 0.0073 0.0138 0.0029 0.0047 0.0051 0.0017

1000 0.0024 0.0058 0.0023 0.0054 0.0197 0.0050 0.0138 0.0049 0.0063 0.0093 error

10000 0.0021 0.0055 0.0023 0.0054 0.0165 0.0027 0.0135 0.0056 0.0028 0.0175 error

1000 1 0.0707 0.1079 0.0431 0.1654 2.3080 0.6995 1.8619 0.0681 0.1057 0.0459 0.0092

10 0.0678 0.1103 0.1216 0.1584 2.2054 0.6461 1.2374 0.0417 0.1082 0.0480 error

100 0.0655 0.1042 0.0395 0.1496 2.3190 0.6789 1.2425 0.0410 0.1055 0.0464 error

1000 0.0473 0.0930 0.0343 0.1322 1.6716 0.3478 1.2311 0.0485 0.0677 0.0959 error

(continued)



Sorting Algorithms and Their Execution Times an Empirical Evaluation 345

(continued)

Few unique (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

10000 0.0282 0.0693 0.0304 0.0809 1.1960 0.0392 1.2142 0.0560 0.0291 0.1670 error

10000 1 0.7346 1.3134 error 1.9435 303.0240 64.6072 120.0242 0.1886 1.4950 0.4800 0.0673

10 0.7173 1.2638 error 1.8604 291.4519 65.2157 121.5685 0.1542 1.5188 0.4765 error

100 0.7241 1.2929 error 1.8939 288.5536 64.3683 120.4502 0.3016 1.5972 0.4880 error

1000 0.5528 1.0575 error 1.5950 202.7150 32.8495 120.1730 0.1609 0.9759 1.1033 error

10000 0.3741 0.8454 error 1.1478 128.2706 3.3390 120.0205 0.1595 0.4123 1.3959 error

100000 1 7.5547 14.7736 error 20.7879 35097.0922 6494.1620 12027.4861 0.6967 17.5160 4.9567 0.6649

10 7.6227 15.0838 error 22.5534 34684.1799 6477.7336 12157.8741 0.7044 17.8177 4.7438 error

100 7.6268 14.5629 error 20.9330 33167.3059 6477.3688 12295.0094 0.6874 17.2473 4.6473 error

1000 6.0191 12.1864 error 18.7028 22996.9892 3293.4073 11399.2589 0.6687 10.9321 9.6269 error

10000 4.3826 10.4619 error 14.6550 12252.0630 328.5804 11635.6127 0.6777 5.0300 8.0059 error

Reversed (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 1 0.0027 0.0065 0.0063 0.0099 0.0284 0.0143 0.0135 0.0331 0.0037 0.0053 0.0013

10 0.0017 0.0053 0.0068 0.0197 0.0276 0.0140 0.0130 0.0041 0.0075 0.0050 error

100 0.0078 0.0050 0.0053 0.0187 0.0300 0.0137 0.0140 0.0024 0.0029 0.0052 error

1000 0.0022 0.0051 0.0039 0.0055 0.0226 0.0083 0.0132 0.0041 0.0031 error error

10000 0.0019 0.0052 0.0023 0.0055 0.0159 0.0030 0.0130 0.0038 0.0029 error error

1000 1 0.0226 0.1109 0.0647 0.2971 2.7470 1.3273 1.1790 0.0615 0.0480 0.0618 0.0127

10 0.0237 0.0673 0.0667 0.5297 2.8306 1.3362 1.1401 0.0409 0.0568 0.0625 error

100 0.0611 0.0655 0.0657 0.2134 2.8199 1.3104 1.1621 0.0382 0.0472 0.0630 error

1000 0.0277 0.0665 0.0481 0.1321 1.9682 0.6799 1.1688 0.0458 0.0379 error error

10000 0.0267 0.0656 0.0314 0.0832 1.2151 0.0732 1.1825 0.0467 0.0259 error error

10000 1 0.3014 0.8716 error 1.5572 276.1865 130.9751 112.9974 0.2141 2.7750 0.7980 0.0938

10 0.3137 0.8425 error 1.4730 272.3418 132.0642 113.7755 0.1464 0.0266 0.7612 error

100 0.3342 0.9739 error 1.4701 271.2186 130.0438 112.7412 0.1429 0.0322 0.8062 error

1000 0.3610 0.8166 error 1.3609 193.0997 66.9404 114.9121 0.1435 0.0781 error error

10000 0.3577 0.8106 error 1.1514 120.3492 6.6871 116.7057 0.1478 0.3679 error error

100000 1 4.3624 10.2862 error 17.1909 27093.0421 13115.8318 11257.0213 0.6813 8.5972 9.3526 0.9130

10 4.1092 10.0653 error 17.2984 27077.2859 13081.0810 11274.6340 0.7093 8.4274 9.2778 error

100 4.0350 9.7103 error 17.3921 27186.5398 14016.1420 11416.3516 0.6549 8.4440 9.1002 error

1000 4.7252 9.6941 error 17.0638 19120.7744 6722.9272 11126.5332 0.6694 8.1070 error error

10000 4.4514 9.5313 error 14.1699 11716.5482 701.1256 11351.2102 0.6577 5.0600 error error

Appendix 2. Average Execution Times in Python

Random (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 1 0.3253 0.3447 0.0591 0.4410 1.1796 0.5673 0.5574 0.3174 0.1840 0.2072 0.1802

10 0.3017 0.3551 0.0669 0.4495 1.2176 0.6299 0.5537 0.3325 0.1903 0.1953 0.1933

100 0.3021 0.3713 0.0619 0.4433 1.2246 0.5906 0.5450 0.3358 0.1988 0.1963 0.1975

1000 0.2894 0.3552 0.0587 0.4239 1.1696 0.5829 0.5387 0.3265 0.1901 0.1884 0.1887

10000 0.2854 0.3510 0.0574 0.4171 1.1606 0.5755 0.5348 0.3225 0.1871 0.1862 0.1857

1000 1 6.8990 5.7842 3.2887 27.7787 126.4296 60.8604 54.0734 4.4141 3.6280 3.6659 3.5635

(continued)



346 G. O. Pizarro-Vasquez et al.

(continued)

Random (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

10 5.2033 4.8432 0.0599 6.8569 117.3365 67.3682 57.1244 4.5659 3.6835 3.7556 3.8659

100 5.1562 4.9112 0.0632 6.7423 118.1921 62.6277 55.6794 4.6610 3.7779 3.8228 3.8511

1000 5.2211 5.0086 0.0634 6.8367 118.8780 62.8142 55.6440 4.6790 3.8310 3.8301 3.8293

10000 5.1168 4.8983 0.0618 6.6996 116.7939 61.8774 54.6691 4.5610 3.7491 3.7441 3.7489

10000 1 65.7770 64.1239 0.0826 92.0450 12220.2270 6697.4468 5814.6917 66.2586 61.9572 61.7803 59.2173

10 65.4447 63.9647 0.0557 91.5492 11902.5500 6492.1609 5677.3800 66.9012 59.5979 59.4189 59.5188

100 65.5597 63.9213 0.0570 91.6201 11895.0791 6488.8347 5668.4324 66.8955 59.7671 59.8399 59.7862

1000 64.8800 63.1248 0.0558 90.4387 11782.7659 6437.5941 5604.8044 66.4650 59.1533 59.1234 59.2495

Nearly sorted (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 1 1.1844 1.0452 0.0676 1.3179 1.6930 0.2420 1.3455 2.1746 0.3287 0.3209 0.3215

10 0.7243 0.5087 0.0345 0.6955 0.9980 0.1390 0.7778 1.2902 0.2029 0.2069 0.2066

100 0.4552 0.3148 0.0179 0.4435 0.7052 0.1023 0.5591 0.9060 0.1393 0.1369 0.1355

1000 0.4654 0.3222 0.0186 0.4527 0.7142 0.1019 0.5728 0.9260 0.1412 0.1382 0.1362

10000 0.4716 0.3275 0.0189 0.4556 0.7184 0.1029 0.5726 0.9268 0.1412 0.1406 0.1389

1000 1 10.8394 4.6520 0.0205 7.0100 69.8064 6.8512 56.4958 10.9039 2.8341 2.8221 2.7761

10 10.9654 4.7921 0.0189 7.1691 70.2443 6.8958 56.7438 11.1606 2.8516 2.8236 2.8254

100 11.4077 4.9532 0.0211 7.3079 72.9078 7.2542 58.1838 11.5669 2.9910 3.5081 2.9799

1000 11.1879 4.8518 0.0200 7.3080 72.8122 7.0869 57.4603 11.3708 3.0061 3.0101 3.0027

10000 10.9778 4.7643 0.0199 7.1918 71.3234 6.9853 56.8876 11.2388 2.9574 2.9469 2.9455

10000 1 114.5071 66.4808 0.0300 96.9319 8102.2887 1585.7202 6222.0002 167.6363 53.5893 53.5187 52.6985

10 117.0330 68.2153 0.0593 103.4408 8083.3021 1580.7920 6064.5560 172.4053 53.5670 52.6310 53.3516

100 120.6905 68.6117 0.0331 104.5879 8640.4002 1626.8096 5884.9889 171.6287 59.5668 58.7390 58.7437

1000 123.7589 70.8472 0.0357 107.8657 8954.4318 1656.2141 5880.9480 174.2174 61.6672 61.6568 61.9305

Few unique (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 1 0.3721 0.3560 0.0556 0.4137 1.4227 0.5369 0.5403 0.3509 0.1649 0.1860 0.1669

10 0.4057 0.3991 0.0680 0.4757 1.3225 0.5262 0.5530 0.3265 0.1851 0.1822 0.2084

100 0.5676 0.6119 0.0696 0.4768 1.3199 0.8597 1.0294 0.5607 0.2395 0.2119 0.1994

1000 0.5602 0.5160 0.0752 0.6533 1.7388 0.5955 0.7250 0.4020 0.2350 0.2094 0.2768

10000 0.5746 0.5548 0.0908 0.6689 1.6950 0.7248 0.7463 0.4634 0.2872 0.2697 0.2813

1000 1 5.7344 5.0763 0.0744 7.5250 205.9111 84.5285 80.0704 5.6699 4.2742 13.8807 4.8759

10 7.9406 7.4175 0.1013 13.6953 207.4326 99.4368 83.0363 6.7028 5.5434 9.5328 6.5981

100 8.3593 8.7713 0.1213 10.8606 202.8462 99.3244 77.9542 7.5102 6.0344 5.8915 5.8995

1000 6.9183 6.8396 0.0989 9.2002 170.5048 84.4819 65.6271 6.3029 4.9429 5.0778 5.0393

10000 6.6683 6.6184 0.0998 9.0623 162.9227 81.4049 64.7323 6.0444 4.7744 4.7598 4.6863

10000 1 80.3642 67.9960 0.0608 9.1993 14215.9962 7218.1729 5719.4402 74.5561 59.7071 71.6940 61.3581

10 80.9916 69.8744 0.0727 99.7600 13450.4785 6995.5644 5610.6605 77.7963 64.7814 64.0847 59.8606

100 82.1668 68.2175 0.0671 98.8513 13436.4983 6998.2024 5619.0589 78.1411 65.0833 64.8308 64.8462

1000 82.4485 69.0838 0.0701 99.6724 13432.9928 6984.6595 5626.1705 78.1879 64.5584 64.7239 65.0979

Reversed (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

100 1 0.9847 0.3123 0.1072 0.4099 1.7469 1.1418 0.5919 1.5278 0.1836 0.1529 0.1860

10 1.0336 0.3278 0.1047 0.3778 1.7754 1.1482 0.5783 1.5313 0.1573 0.1600 0.1901

100 0.9726 0.3119 0.1100 0.3828 1.6976 1.1333 0.5612 1.5143 0.1626 0.1708 0.1569

1000 1.0845 0.3518 0.1158 0.4133 1.9028 1.2136 0.5934 1.6322 0.1764 0.2057 0.2171

10000 1.3242 0.4352 0.1520 0.5311 2.2667 1.3632 0.7002 1.9623 0.2422 0.2267 0.2269

1000 1 75.7457 5.6057 0.1055 11.1159 270.5590 235.2450 106.6613 163.7858 3.6045 3.6041 4.3029

(continued)



Sorting Algorithms and Their Execution Times an Empirical Evaluation 347

(continued)

Reversed (ms)

Data Iter QS MS TS HS BS IS SS TrS ST RS CS

10 94.1954 7.9541 0.1553 10.7789 280.5937 179.2550 75.0042 154.2006 4.5140 4.4940 5.0139

100 95.9501 7.1001 0.1571 10.0475 297.5478 198.9861 85.0806 160.2506 5.7619 5.0435 5.7760

1000 89.6183 6.3754 0.2016 9.4727 266.8225 175.1879 74.5492 141.6040 5.0087 4.9125 4.8975

10000 70.1469 4.8713 0.1340 7.3407 209.4537 138.6884 60.2487 111.9173 3.7716 3.7280 3.7273

10000 1 986.7406 56.0200 0.0809 99.4892 20500.1853 14292.7860 5826.8927 1665.4201 39.2121 43.4552 56.8798

10 1015.5719 56.0925 0.0862 91.3458 19832.2244 13878.7156 5695.0407 1675.0777 47.4680 48.8717 45.0589

100 1013.4446 57.3001 0.0939 94.1872 19825.9403 13865.9834 5687.1142 1676.9498 46.1496 47.3867 47.0581

1000 1016.1134 58.0542 0.0951 94.4595 19894.5795 13881.4600 5685.3320 1680.7228 47.5433 47.6109 47.5726

References

1. Kocher, G., Agrawal, N.: Analysis and review of sorting algorithms. Int. J. Sci. Eng. Res.
2(3), 81–84 (2014)

2. Mittermair, D., Puschner, P.: Which sorting algorithms to choose for hard real-time appli-
cations. In: Proceedings of the Ninth Euromicro Workshop on Real Time Systems, Toledo
(2002)

3. Astrachan, O.: Bubble sort: an archaeological algorithmic analysis. SIGCSE Bull. (2003).
(Association for Computing Machinery, Special Interest Group on Computer Science
Education)

4. Khamitkar, S., Bhalchandra, P., Lokhande, S., Deshmukh, N.: The folklore of sorting
algorithms. Int. J. Comput. Sci. Issues (IJCSI) 4(2), 25–30 (2009)

5. Downey, R.G., Fellows,M.R.: Parameterized Complexity, vol. 3. Springer, Heidelberg (1999)
6. Salaria, R.S.: Data Structures & Algorithms Using C. Khanna Book Publishing Co.(p) Ltd.

(2004)
7. Knuth, D.E.: The Art of Computer Programming. Volume 4A: Combinatorial Algorithms,

Part 1. Pearson Education India (2011)
8. Pahuja, S.: A Practical Approach to Data Structures and Algorithms. New Age International

(2007)
9. Bansal, V.K., Srivastava, R., Pooja: Indexed array algorithm for sorting. In: 2009 International

Conference on Advances in Computing, Control, and Telecommunication Technologies,
Trivandrum, Kerala, pp. 34–36 (2009)

10. Faujdar, N., Ghrera, S.P.: Analysis and testing of sorting algorithms on a standard dataset. In:
2015 Fifth International Conference on Communication Systems and Network Technologies,
Gwalior, pp. 962–967 (2015)

11. Edjlal, R., Edjlal, A., Moradi, T.: A sort implementation comparing with bubble sort and
selection sort. In: 20113rd InternationalConference onComputerResearch andDevelopment,
Shanghai, pp. 380–381 (2011)

12. Yang, Y., Yu, P., Gan, Y.: Experimental study on the five sort algorithms. In: 2011 Sec-
ond International Conference on Mechanic Automation and Control Engineering, Hohhot,
pp. 1314–1317 (2011)

13. McMaster, K., Sambasivam, S., Rague, B., Wolthuis, S.: Distribution of execution times for
sorting algorithms implemented in Java. In: Proceedings of Informing Science& ITEducation
Conference (InSITE), pp. 269–283 (2015)

14. GeeksforGeeks, Sorting Algorithms. https://www.geeksforgeeks.org/sorting-algorithms/.
Accessed 21 Feb 2020

https://www.geeksforgeeks.org/sorting-algorithms/


348 G. O. Pizarro-Vasquez et al.

15. Toptal, Sorting Algorithms Animations. https://www.toptal.com/developers/sorting-algori
thms. Accessed 21 Feb 2020

16. Peters, T.: Timsort description. http://svn.python.org/projects/python/trunk/Objects/listsort.
txt. Accessed June 2015

17. Devi, O.R.: Int. J. Adv. Trends Comput. Sci. Eng. 4, 15–21 (2015)
18. Amaral, A., Serpa, A., Rego, D.C., Valim, S., Soares, J.: Monte Carlo simulation of

polymerization reactions: optimization of the computational time (2019)
19. Chakraborty, S., Sarkar, R.: Binary tree sort is more robust than quick sort in average case.

Int. J. Comput. Sci. Eng. Appl. 2, 115–123 (2012)
20. Cook, C.R., Kim, D.J.: Best sorting algorithm for nearly sorted lists. Commun. ACM 23(11),

620–624 (1980)
21. Odeh, A., Elleithy, K., Almasri, M., Alajlan, A.: Sorting N elements using quantum entangle-

ment sets. In: 3rd International Conference on Innovative Computing Technology, INTECH
2013, no. 1, pp. 213–216 (2013)

22. Shi, Y.: Quantum lower bound for sorting, pp. 1–11. Arxiv Preprint (2000). http://arxiv.org/
abs/quant-ph/0009091. Accessed 21 Feb 2020

https://www.toptal.com/developers/sorting-algorithms
http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://arxiv.org/abs/quant-ph/0009091

	Sorting Algorithms and Their Execution Times an Empirical Evaluation
	1 Introduction
	2 Materials and Methods
	3 Results
	4 Discussion
	5 Conclusion
	Appendix
	Appendix 1. Execution Time Averages in C
	Appendix 2. Average Execution Times in Python

	References




