
D4.3 Benchmarking report as tested on the
available infrastructure

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: IT4I
Deliverable Type: Other
Dissemination Level: Public
Related WP & Task: WP 4, Task 4.4
Status: Final

Deliverable 4.2

Authoring

Prepared by:
Authors Partner Modified Page/Sections Version Comments
Tomas Karasek IT4I V0.1
Stanislav Böhm IT4I V0.1
Brendan Keith TUM V0.1
Ramon Amela BSC V0.2
Rosa M Badia BSC V0.2
Tomas Karasek IT4I V0.3
Stanislav Böhm IT4I V0.3

Change Log

Versions Modified Page/Sections Comments
V0.1 First document version
V0.2 Results with PyCOMPSs and corrections
V0.2 Results with HyperLoom and corrections

Approval

Aproved by:
Name Partner Date OK

Task leader Jan Martinovic IT4I 30.07.19 OK
WP leader Rosa M. Badia BSC 30.07.19 OK
Coordinator Riccardo Rossi CIMNE 30.07.19 OK

Page 2 of 14

Deliverable 4.2

Executive summary

The main focus of this deliverable is testing and benchmarking the available infrastructure
using the execution frameworks PyCOMPSs and HyperLoom. A selected benchmark
employing the Multi Level Monte Carlo (MLMC) algorithm was run on two systems:
TIER-0 (MareNostrum4) and TIER-1 (Salomon) supercomputers. In both systems, good
performance scalability was achieved.

Page 3 of 14

Deliverable 4.2

Table of contents

1 Introduction 7

2 Experiments description 7
2.1 API modification . 8

2.1.1 Keep flags . 8
2.1.2 Checks . 9
2.1.3 Init() . 9
2.1.4 Programming style update . 9

3 Infrastructures benchmark 10
3.1 Results obtained on MareNostrum 4 . 11

3.1.1 PyCOMPSs . 11
3.1.2 HyperLoom . 11
3.1.3 Conclusion . 12

3.2 Results obtained on Salomon . 12
3.2.1 PyCOMPSs . 13
3.2.2 HyperLoom . 13
3.2.3 Conclusion . 13

4 Conclusion 13

Page 4 of 14

Deliverable 4.2

List of Figures

1 Benchmark domain Ω and boundaries. 7

Page 5 of 14

Deliverable 4.2

Nomenclature / Acronym list

Acronym Meaning
API Application Programming Interface

ExaQUte
EXAscale Quantification of Uncertainties for Technology
and Science Simulation

DAG Directed Acyclic Graph
FILE IN Path to a file passed to a function that is not modified
FILE INOUT Path to a file passed to a function that is modified during the call
FILE OUT Path to a file passed to a function that is created during the call
HPC High Performance Computing
IN Parameter of a function that is not modified
INOUT Parameter of a function that is modified during the call
OpenMP Open Multi Processing
MPI Message Passing Interface
PBS Portable Batch System
PyCOMPSs Python binding for COMPS Superscalar
SLURM Simple Linux Utility for Resource Management

Page 6 of 14

Deliverable 4.2

Figure 1: Benchmark domain Ω and boundaries.

1 Introduction

In Task 4.4, infrastructure benchmarking takes place. This deliverable summarizes the
results of benchmarking on two supercomputers: MareNostrum 4 operated by BSC, and
Salomon operated by IT4Innovations. The deliverable is structured as follows: In Section
2, the benchmark run on all supercomputers is described followed by Section 3, where
results for each supercomputer are presented. Section 3 is divided into two parts, one part
for each supercomputer, where results for each execution framework, PyCOMPSs and Hy-
perLoom, are presented, together with the conclusions for each individual supercomputer.
In Section 4, the overall conclusion, summarizing all results, is presented.

2 Experiments description

In the ExaQUte project, the PDEs of principle concern are the incompressible Navier–
Stokes equations, given as follows:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u ,

∇ · u = 0 .
(1)

In this section, we will use these equations to define a benchmark problem in order to
develop the current deliverable.

In the ExaQUte project, we will be simulating wind flow past large complicated struc-
tures under calibrated physical conditions. Figure 1 is an extremely simplified 2D rep-
resentation of this scenario. Here, the impeding object is simply a square, which leaves
behind the computational domain Ω.

On the inflow boundary, Γin, the following temporal average velocity is prescribed:

u(t,Γin) · n = u
(z

z0

)α

, u(t,Γin) · n⊥ = 0 , (2)

where n is the unit normal vector field on ∂Ω and n⊥ is any unit length vector field
orthogonal to n. The novelty here is that this boundary condition is stochastic, but time-
invariant, with uncertain parameters u ∼ N(10, 1.0) and α ∼ N(0.12, 0.12), where . The
remaining boundaries, Γsurf , Γzen, and Γout have wall, free slip, and zero flux boundary

Page 7 of 14

Deliverable 4.2

conditions, respectively; i.e.,

u(t,Γsurf) = 0 , σ(t,Γout)n = 0 ,

u(t,Γzen) · n = 0 , σ(t,Γzen)n · n⊥ = 0 ,
(3)

where σ = −pI + ν
(
∇u +∇u>) is the Cauchy stress tensor.

The above-described problem is stochastic, and the chosen algorithm to study uncer-
tainty propagation for this deliverable is Multilevel Monte Carlo (MLMC). We refer to
the work package 5 for details about the algorithm. The Quantity of Interest of study is
the drag coefficient, computed on the square building.

2.1 API modification

For purpose of benchmarking of execution frameworks the common API defined in deliv-
erable 4.1 is updated in the following way:

• To prevent memory leaks, intermediate temporary results were separated from ob-
jects that are requested by the user application. This has been implemented by
creating a keep flag

• Implementing checks which ensures that creating a successful run of an application
with the ExaQUte API on one node (local backend) also leads to a correct run in a
distributed environment.

• To avoid problems with cloudpickle and for easier testing, explicit init() function
has been introduced.

• Update of the programming style to make the API compliant with Python coding
style.

2.1.1 Keep flags

A first improvement of the common API was the introduction of ”keep” flag. If the ”keep”
flag is set to ”true” while task is created, then it indicates that the user wants to hold
the resulting value(s) of the task and is responsible for an explicit clean-up (by calling
the delete_object function). Otherwise, the task result is considered temporary. In the
case of chains of tasks, the results is kept until the first ”synchronization point”, that
is, by calling ”barrier” or ”get value from remote”. At this synchronization point, the
object is fully cleaned by the system when necessary and the user does not have to care
about its deletion. In this case, using the object after the synchronization point returns
an exception.

Example:

1 @exaqute.task()
2 def task1()
3 return 10
4
5 @exaqute.task()
6 def task2(x, y)
7 return x + y
8
9

10 a = task1()
11 b = task2(a, 10, keep=True)

Page 8 of 14

Deliverable 4.2

12 result = get_value_from_remote(b)
13
14 # "a" is automatically cleaned as soon as possible , "a" is not available upto this

point
15 # "b" has to be cleaned manually
16
17

By introducing the keep flag, the invocation to the ”compute” method is not required
as the necessary information can be derived from the keep flags.

2.1.2 Checks

To ensure that creating a successful run of an application with the ExaQUte API on one
node (local backend) also leads to a correct run in a distributed environment, a check
procedure has been implemented.

In the previous version, the ”empty” implementation was used, e.g.:

1 def get_value_from_remove(obj):
2 return obj # just return first parameter
3

This solution worked and leads to functional program; however, it does not prevent an
invalid usage of the API in some cases. It can also easily lead to an application that uses
the API wrongly without any error. However, when a different backend is used, it may
end to an error state.

For example:

1 x = 10
2 get_value_from_remote(x)

Do not indicate any error in the original implementation, but obviously, as ”x” is not
a result of task; it is an invalid usage of the API.

2.1.3 Init()

The original API used an implicit initialization by the module import. This makes some
simplification for users but brings some non-trivial problems.

• Modules that tracks imports usually do not assume behaviour with such a strong
side effect of the import; therefore, usage of cloudpickle was broken.

• It is hard to test such libraries. It is hard to setup a test environment before import,
import separated functions for unit testing without calling init, or create a fixture
that initializes and deinitializes environment for each test.

So solve these problems we have introduced method init() in the ExaQUte API that
contains the initialization. The user is obligated to call it before any ExaQUte function
(except usage of decorators).

2.1.4 Programming style update

We have renamed two entities in ExaQUte API:

• ExacuteTask() to task(): It already resides in ExaQUte package, so it is not neces-
sary to repeat this. Also, decorators are usually named by snake case convention.

Page 9 of 14

Deliverable 4.2

• processing Units to processing units: According PEP8 (standard coding style for
Python), argument of a function should be named by snake case, not CamelCase
convention.

3 Infrastructures benchmark

The following two supercomputers were used to execution the numerical experimet de-
scribed in section 2:

• The TIER-0 system MareNostrum 4 operated by BSC with 11.15 Petaflops of peak
performance, which consists of 3,456 compute nodes equipped by two Intel R©Xeon
Platinum 8160 (24 cores at 2,1 GHz each) processors.

• The TIER-1 system Salomon operated by IT4Innovations, with 2 Petaflops of peak
performance consists of 1,009 compute nodes equipped by two Intel R©Xeon Haswell
(12 cores at 2,5 GHz each) processors.

Those supercomputers were selected to measure the performance using the two exe-
cution frameworks (PyCOMPSs and HyperLoom) on broad range of machines because
nowadays not all companies and researchers have access to the most powerful TIER-0 sys-
tems and such benchmarks performed on smaller systems would be very valuable source
of information.

The access to the different supercomputers was granted through different processes.
In the case of MareNostrum 4, the project partners UPC and BSC applied to a call of
the Spanish Supercomputing Network (RES) in January 2019. The application requested
300.000 CPU/hours, 2000 GB of disck and 2000 GB of scracth disk space. The applica-
tion was accepted with priority. The application has been renewed in April, obtaining
320.000 CPU hours. In the case of Salomon, the project partners IT4I and BSC submitted
proposal for multiyear project through Open Call scheme securing 1.2M core hours for
duration of 18 months. For the next period the partners will apply for a larger allocation
since the current one has been consumed very fast.

To measure the performance of the mentioned systems using the two execution frame-
works, a strong scalability experiment was designed.

To equalize the differences in number of cores/node of the different systems, different
number of compute nodes is defined for each system. The total number of cores in
each configuration is the same. To obtain a reasonable scalability graph, four different
allocations on each system has been used. The table below shows the number of compute
nodes on each system.

System No Nodes
MareNostrum 4, 8, 16, 32
Salomon 8, 16, 32, 64

Table 1: Number of compute nodes used on different systems

This will result in using of 192, 384, 768, and 1,536 cores in total.

Page 10 of 14

Deliverable 4.2

The size of the batches used in each of the Levels of the Multi Level Monte Carlo
algorithm was also agreed a priori, to compare equivalent results through the different
systems and different execution environments:

Level Batch Size Number of OpenMP threads
0 1500 1
1 125 2
2 10 4 or optionally, the number of cores

available in the node

Table 2: Batch size for different levels of MLMC

3.1 Results obtained on MareNostrum 4

Since the MLMC algorithm is asynchronous and the possibility of exploiting this fact is
very important, we have chosen to run 9 full iterations with 4 active batches at each time.
We also decided to run second benchmark with more batches in each level of MLMC on
MareNostrum 4 (see table 3).

Level Batch Size Number of OpenMP threads
0 2000 1
1 150 2
2 10 4 or optionally, the number of cores

available in the node

Table 3: Batch size for different levels of MLMC on MareNostrum 4

3.1.1 PyCOMPSs

Table 4 shows the results with the batch size [1500, 125, 10] described at the beginning of
this chapter. Table 5 shows the results for second benchmark with batch size [2000, 150,
10].

3.1.2 HyperLoom

To be able to compare the results obtained on Salomon, the same version on HyperLoom
was installed on MareNostrum as well. During the testing we encountered problem by

No of nodes No of cores Execution time (s) Speedup Ideal Speeedup %

4 192 36 947 1.00 1 1.00
8 384 19 325 1.91 2 0.96
16 768 10 721 3.45 4 0.86
32 1536 5 822 6.35 8 0.79

Table 4: PyCOMPSs results with batch size of [1500, 125, 10] in Mare Nostrum

Page 11 of 14

Deliverable 4.2

No of nodes No of cores Execution time (s) Speedup Ideal Speeedup %

4 192 48 143 1.00 1 1.00
8 384 24 790 1.94 2 0.97
16 768 13 019 3.70 4 0.93
32 1536 7 273 6.62 8 0.83
64 3072 4 089 11.78 16 0.74
128 6144 2 742 17.56 32 0.55

Table 5: PyCOMPSs results with batch size of [2000, 150, 10] in MareNostrum

executing the Problem zero use-case. We investigated this problem and we were able to
track down the problem to the point of transferring the computation to a worker. In
HyperLoom, the commonly used module ”cloudpickle” is used to serialize computation.
The problem when running the Problem zero use-case is, that when the computation is
serialized and later on de-serialized a function that is using Kratos, the Python interpreter
get stucked. Unfortunately we were not able to construct a smaller example to debug it
further. We tested Kratos and HyperLoom independently and both were working fine.
Also, the de-serialization of any other object different to a Kratos involved function was
working and the de-serialization of such object outside of Loom was working as well. It
should be noted that we have been running the same configuration on Salomon and we
never encountered such a problem. Moreover, the de-serialization in ”cloudpickle” is quite
lightweight, so we could rule it out as a root cause of the problem.

We were unable to investigate it further because unfortunately, the debugging tool
Valgrind is not working on MareNostrum, so we were not able to use Helgrind or DRD
to use these tools for detecting lock violations. With a plain GDB tool, we are able to
see that is hanging somewhere in the Python interpreter, but without any futher details.
We have asked MareNostrum support to install Python debuginfo package that should
provide us with insight on what is happening in Python. MareNostrum support installed
Python debuginfo package in version 3.6.6. Since Kratos was instaled on MareNostrum
using version 3.6.1 of Python, it has to be re-builded using same version of the Python i.e.
3.6.6. Unfortunately new problems arises during installation of Kratos which are being
currrently being solved by MareNostrum support.

3.1.3 Conclusion

Results obtained on MareNostrum 4 by PyCOMPSs shows very good scalability of the
example with batch sizes [1500, 125, 10].

With the second batch size [2000, 150, 10] we observe that with 128 nodes the effi-
ciency decreases in a larger proportion than before with smaller node-counts. It would
be interesting to test a highest batch size since we are at the limit of filling the computer
with enough computation.

3.2 Results obtained on Salomon

Since Salomon is much smaller machine than MareNostrum 4 we run a smaller case
with a batch size of [1500, 125, 10] and with an alternative number of iterations. With
PyCOMPSs we setthe number of iterations to 9 and experiment executed by HyperLoom

Page 12 of 14

Deliverable 4.2

No of nodes No of cores Execution time (s) Speedup Ideal Speeedup %

4 96 66 705 1.00 1 1.00
8 192 32 780 2.03 2 1.01
16 384 18 289 3.65 4 0.91
32 768 10 164 6.56 8 0.82
64 1536 7 068 9.44 16 0.40

Table 6: PyCOMPSs results with batch size of [1500, 125, 10] in Salomon (9 iterations)

No of nodes No of cores Execution time (s) Speedup Ideal Speeedup %

4 96 25 171 1.00 1 1.00
8 192 12 376 2.03 2 1.02
16 384 6 014 4.18 4 1.05
32 768 4 673 5.38 8 0.67
64 1536 3 859 6.52 16 0.41

Table 7: HyperLoom results with batch size of [1500, 125, 10] in Salomon (2 iterations)

used 2 iterations. In both cases we keep number of active batches the same as we run on
MareNostrum 4 (4 batches).

3.2.1 PyCOMPSs

Table 6 shows the results with the batch size [1500, 125, 10] and 9 iterations performed
by PyCOMPs on Salomon supercomputer.

3.2.2 HyperLoom

Times obtained by running experiment with batch size [1500, 125, 10] and 2 iterations
are reported in Table 7.

3.2.3 Conclusion

Both cases run on Salomon supercomputer shows very good scalability, close to ideal one,
up to the 16 compute nodes i.e. 384 cores. After this, the scalability drops significantly.
From presented results could be concluded that even for TIER-1 system much bigger case
could be designed and run.

4 Conclusion

Results obtained on both systems, MareNostrum 4 (TIER-0) and Salomon (TIER-1), ex-
hibit very good scalability up to a certain. However, speedup decrease could be explained
by the size of the benchmark which do not have enough computation workload for such
large machines.

Results also show that there is no large difference between TIER-0 and TIER-1 systems
when it comes the the scalability of presented benchmarks. Both systems shows good

Page 13 of 14

Deliverable 4.2

scalability up to the 768. In the future benchmarking will continue with bigger batches
and bigger examples which will on finest level of MLMC run on multiple compute nodes.

Page 14 of 14

	Introduction
	Experiments description
	API modification
	Keep flags
	Checks
	Init()
	Programming style update

	Infrastructures benchmark
	Results obtained on MareNostrum 4
	PyCOMPSs
	HyperLoom
	Conclusion

	Results obtained on Salomon
	PyCOMPSs
	HyperLoom
	Conclusion

	Conclusion

