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Abstract.
In the last decade, the phase field model has been established to simulate crack nucleation as

well as crack propagation. In this variational approach the physically discontinuity of a crack is
modeled by a continuous field variable that distinguishes between intact and broken material.
The phase field model has been recently extended to viscoelastic materials in various ways, in
which the rate dependent response of viscoelastic materials are taken into account.

We propose a viscoelastic fracture phase field model and apply it to simulate the fracture in
ice shelves. Thereby we consider the viscoelastic rheology of ice, which can be represented by a
Maxwell model. The elastic response is often neglected in ice dynamic simulations but crucial
for fracture mechanical studies.

The numerical examples of this contribution are implemented and conducted in the finite
element software FEniCS and data mimic typical situations in Antarctic and Greenland ice
shelves.

1 INTRODUCTION

Based in Griffith concept of energy release rates Margio and Francfort [1] presented a vari-
ational formulation of fracture mechanics which was transformed into the phase field method
for fracture by Bourdin [2, 3, 4]. Since then, the phase field method is widely used to simulate
fracture processes, due to its simple and robust numerical implementation. Another advantage
of this method is its ability to simulate crack initiation as well as crack propagation and also
crack branching. In the last decade the approach has been modified in various ways to study for
example the influence of the degradation function [5, 6, 7] or the driving force by using different
splitting schemes [8, 9, 10, 11].

The method has been extended from brittle to dynamic fracture [12, 13, 14, 15, 16] and
fatigue failure [17, 18, 19, 20, 21]. Furthermore, various material behaviors such as anisotropy
[22, 23, 24, 25, 26], plasticity [27, 28, 29, 30, 31] and also viscoelasticity [32, 33, 34, 35] were
studied. In the viscoelastic case, attention was only given to solid like behavior.
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Figure 1: The Maxwell material can be used to represent the rheology of ice [43]. It consists
of an elastic spring characterized by Young’s modulus E and a damper with a viscosity η. The
series connection of the elements results in an elastic response of the material on short time
scales and a viscous response on long time scales [42].

In this paper we apply the phase field method for fracture to the research field of glaciers and
simulate fractures in ice shelves. Ice shelves are the floating extensions of glaciers, which flow
due to the gravity into the ocean. The ice shelf is still connected to its corresponding glacier
and fed by it. At the terminus of the ice shelf to the ocean, called the calving front, cracks form
and ice breaks away, resulting in ice bergs. The calving of icebergs is one of the predominating
mass loss mechanisms in Greenland. The mass loss can be enhanced due to major break up
events of ice shelves. This is because the floating parts of outlet glaciers play an important
role regarding the stability of the inland ice by buttressing it. If the ice shelf disintegrates the
respective glacier speeds up and has therefore a higher contribution to sea level rise. Examples
for such disintegration events can be found at Zachariæice stream [36] and Jakobshavn Isbræ [37]
in Greenland or the Wilkins ice shelf [38] in Antarctica. It is therefore important to investigate
the formation of cracks within an ice shelf in order to better understand the dynamics at the
calving front.

As cracks do not always travel through the entire ice shelf immediately, but can also remain
stable for a longer period of time due to the complex stress situation, it is significant to consider
the viscoelastic rheology of ice. Ice acts like an elastic material on short time scales but on long
time scales it can be described as a viscous fluid. Therefore ice is a viscoelastic fluid.

Existing models describing the long term behavior of glaciers and ice sheets, often neglect
the elastic response of the material, including only viscous flow. However, recent studies have
shown that measured deformations can only be explained by considering the viscoelastic material
behavior of ice [39, 40, 41]. Another drawback of existing ice sheet models is the way the process
of calving is described. Often simple assumptions of calving rates or stress based criteria are used.
Both cases are strong simplifications of the calving process. To overcome these simplifications,
we propose a viscoelastic phase field model to simulate fracture in ice shelves and apply our
model to a typical situation leading to calving, which can be found in Greenland as well as in
Antarctica.

2 MODEL

In this section the constitutive model for ice is presented. Subsequently the phase field
method for fracture is introduced.

2.1 Ice rheology

Ice shows a viscoelastic material behavior. Phenomena like the calving of ice bergs illustrate
its short term elastic material response. On the other hand the flow of glaciers shows the viscous
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Figure 2: In the left panel a domain Ω with a sharp crack interface Γ is shown. On the right
side the crack is approximated by the continuous scalar field s which varies between intact s = 1
and fully broken s = 0 material within the crack width l0.

behavior on longer time scales. A material of this kind can be represented by a Maxwell model
shown in Figure 1 [43]. The Maxwell material model consists of two rheological elements. An
elastic and a viscous one, connected in series and characterized by Young’s modulus E and the
shear viscosity η, respectively. Due to the series connection it can be assumed that the stress
acting on the elastic element σe and the stress acting on the viscous element σv are equal to the
stress applied to the material model σ:

σ = σe = Eεe = σv = ηε̇v . (1)

Hence the constitutive relations of the elastic element and the viscous element can be equalized.
The overall strain of the Maxwell model ε is the sum of the elastic strain εe and the viscous
strain εv:

ε = εe + εv . (2)

Combining Equations (1) and (2) leads to Equations (3) and (4)

σ = E(ε− εv) , (3)

ε̇v =
E

η
(ε− εv) . (4)

Where Equation (3) is the constitutive relation for the Maxwell material model in dependency of
the viscous strain εv which serves as an internal variable. The evolution of this internal variable
with respect to time ε̇v is described by Equation (4).

2.2 Phase field model for fracture

In the phase field approach for fracture the sharp crack interface is smoothed out and de-
scribed by an continuous scalar field s. The additional field variable s distinguishes between
intact s = 1 and fully broken material, where s = 0. The concept of an approximated crack
compared to a sharp crack can be seen in Figure 2.

Following previous work [33, 35], the pseudo energy potential for a viscoelastic material
consists of three parts

Π =

∫
Ω
ψedV +

∫
Ω
ψfdV +

∫
Ω
ψvdV (5)
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the elastic strain energy, the fracture energy and the viscous energy, respectively. The elastic
strain energy density can be decomposed into its volumetric ψe

vol and deviatoric part ψe
dev

ψe = ψe
vol +ψe

dev

= 1
2Kε

e
vol : ε

e
vol +µεedev : εedev ,

where K is the bulk modulus, µ the shear modulus and εe the strain tensor. In infinitesimal
strain theory the strain tensor εe is given with the displacement u as

εe =
1

2

(
∇u+∇uT

)
.

Macaulay brackets

⟨x⟩+ =

{
x x ≥ 0
0 x < 0

⟨x⟩− =

{
x x ≤ 0
0 x > 0

are used to split the volumetric strain energy into its positive and negative part. By not degrad-
ing the negative volumetric part, crack propagation does not take place under compression but
only under tensile or shear loading. The elastic energy part ψe of the pseudo energy potential Π
results in

ψe =

∫
Ω
g(s)

(
1

2
K⟨εevol : εevol⟩+ + µεedev : εedev

)
+

1

2
K⟨εevol : εevol⟩−dV . (6)

A widely used quadratic degradation function g(s) = s2 + ηRS is used, where ηRS ≪ 1 is a small
residual stiffness, which is introduced to ensure a numerically well conditioned system for the
totally broken phase.

Following the approach by Ambrosio and Tortorelli [44], the energy required to generate new
crack surfaces is derived from the following energy density

ψf = Gc

(
s2

4lo
+ lo∇s · ∇s

)
. (7)

Here Gc is the critical energy release rate, a material property connected to the fracture toughness
by KI =

√
EGc for a plane stress state. The parameter l0 represents the crack width and, in

order to provide mesh independent results, should contain at least three mesh elements.
The contribution of the stored viscous energy ψv to the total energy is given by

ψv =

∫
Ω

∫
t

1

2
ηε̇v : ε̇vdV . (8)

Compared to Dammaß et al. [35] the viscous energy is not degraded and it is therefore assumed,
that no viscous energy acts as a driving force on the crack.

Combining Equations (6), (7) and (8) the pseudo energy potential Π (see Equation (5))
results in

Π =

∫
Ω
g(s)

(
1

2
K⟨εevol : εevol⟩+ + µεedev : εedev

)
+

1

2
K⟨εevol : εevol⟩−dV

+

∫
Ω
Gc

(
s2

4lo
+ lo∇s · ∇s

)
dV +

∫
Ω

∫
t

1

2
ηε̇v : ε̇vdV .
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Figure 3: Satellite image of the area of interest. The left panel shows a map of Greenland in
which the location of the 79◦N glacier is marked. The middle panel shows a satellite image of
the floating glacier tongue and its front taken in September of 2020. The glacier is flowing from
west to east into the ocean, appearing black in the image. Areas of light blue color show so
called pinning points where the ice shelf is grounded. The blue frame indicates the location of
the detail shown in the right panel (Copernicus Sentinel-2 data 2020).

The governing equations are derived by means of calculus of variations. By calculating the
variation of Π with respect to u the equilibrium in conjunction with the constitutive equation (3)
are obtained. The evolution of the phase field parameter s is given by ṡ = −MδsΠ. Here the
mobility parameter M is enhancing the numerical stability of the system. Furthermore, the
variation with respect to εv of the time discretised pseudo energy potential δεvΠ∆t = 0 results
in the evolution Equation (4) for the internal variable ε̇v.

3 NUMERICAL EXAMPLE

The presented model is applied to a typical situation in ice shelves where cracks occur. First,
the modelling domain and the associated boundary conditions are described. This is followed by
some aspects of the numerical implementation. Afterwards the results of a numerical experiment
are presented.

3.1 Modeling domain

To mimic a typical situation found in ice shelves in Greenland and Antarctica, the Nioghalvf-
jerdsbræ in Greenland is used as a reference domain. The Nioghalvfjerdsbræ, also referred to
as 79◦N glacier, is one of the largest outlet glaciers of the Greenland ice sheet. Its location and
a satellite image of its calving front is shown in Figure 3. At various points the usually floating
glacier tongue is grounded, due to mountains. In the middle panel of Figure 3 these so called
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Figure 4: The left panel of the figure shows the two dimensional model domain. It consists
of a square plate with an edge length of 12 km. Within this plate two circles with a diameter
of 1.25 km each represent idealised pining points. The distance between the pinning points
is 3.125 km. In the right panel the boundary conditions used throughout the simulation are
indicated. Displacement boundary conditions are described on the outer domain boundary,
whereas a no penetration condition is applied to the circle boundary.

pinning points are shown in blue color. On one hand these pinning points provide additional
stability to the glacier by buttressing it. On the other hand these features are the onset of cracks
as can be clearly seen in the middle and the right panel of the figure. Such pinning points can
be found at several ice shelves in Greenland and Antarctica, which is why we want to investigate
the formation of cracks at those points.

In a first attempt, a two dimensional model domain including two circular obstacles repre-
senting idealised pinning points was created. A similar scenario can be found in the right panel
of Figure 3 showing a detailed view of the satellite image. Restricted by two pinning points and
with a velocity of approximately vx = 2mday−1 the glacier flows from west to east. The corre-
sponding model domain is shown in the left panel of Figure 4. The dimensions of the domain
correspond approximately to those of the 79◦N glacier in the right panel of Figure 3.

3.2 Boundary conditions

After selecting the model domain, appropriate boundary conditions are needed. We assume
that the domain is connected to the rest of the ice shelf and therefore the vertical displacement
uy at the upper and lower boundary is 0. At the right side of the domain a constant veloc-
ity of vx = 2mday−1 is applied, which is in good agreement with measured velocities of the
79◦N glacier. This choice of displacement boundary condition leads to a tension stress state. As
the pinning points are fixed, the ice must flow around them. To achieve this a penalty term is
added to the pseudo potential Π

Π + p

∫
Γpp

1

2
(u · n)2 dA = 0 (9)

where n is the outer normal vector of the circle boundaries Γpp. This additional term in the
formulation ensures that no ice can flow into the circles, representing the pinning points. A
penalty parameter p = 10 · 1010 is chosen, which leads to a sufficient compliance of the boundary
condition. An overview of these boundary conditions can be found in the right panel of Figure 4.

To ensure irreversibility of fracture, a Dirichlet boundary condition for the phase field vari-
able s is applied in each time step [49, 50].
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Figure 5: evolution of the phase field s

3.3 Further implementation aspects

The mesh was created using Gmsh [46] and the model was implemented in the finite element
framework FEniCS [47, 48]. An adaptive time stepping algorithm is used, whereby the viscous
strain rate ε̇v is approximated by a backwards Euler scheme

ε̇v =
εvn+1 − εvn

∆t
. (10)

The material parameters for ice are taken from [43, 45] and can be found in Table 1.

Table 1: Typical material parameters for ice, used throughout the simulation [43, 45].

E 9 · 109 Pa Young’s modulus
ν 0.325 Poisson’s ratio
η 9 · 1014 Pa s viscosity

KI 95 · 103 Pam1/2 fracture toughness

3.4 Results

Figure 5 shows the evolution of the phase field s. At the beginning of the simulation four
crack tips form. At each pinning point two crack tips occur, one at the top and one at the
bottom. The cracks propagate in vertical direction, perpendicular to the flow direction. First
the cracks grow simultaneously at both sides of the pinning points. Then the cracks in the areas
between the circle and the outer domain boundary stop growing and only the cracks in the area
between the pinning points continue to develop. Figure 6 illustrates this situation. In Figure 6a
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(a) phase field variable s (b) elastic energy ψe (c) viscous energy ψv

Figure 6: results for the phase field parameter s, the elastic energy ψe, and viscous energy ψv

(plotted using Paraview [51])

the phase field parameter s is shown. Figure 6b and Figure 6c show the corresponding elastic
energy ψe and viscous energy ψv, respectively. The elastic energy is high at the crack tips. It
is higher at the tips between the circles than on the other two crack tips. Thus the cracks in
the region between the pinning points will continue to develop. In contrast, the viscous energy
reaches its maximum in front of the circles, where the ice has to flow around the pinning points.
The viscous energy is several orders of magnitudes smaller than the elastic energy. After the
crack tips converge between the circles, the crack above the upper ice rise and the crack below
the lower ice rise start to grow again until the domain is completely torn. The lower crack
reaches the boundary of the domain earlier than the upper crack. The simulation was stopped,
once the domain was fully separated.

4 DISCUSSION

The numerical results derived with the phase field method are in good agreement with the
observed crack path from the satellite image shown in Figure 3. In both cases a vertical crack
path occurs at the ice rises. In comparison to the satellite image of the 79◦N glacier the crack
tips at the pinning points in our numerical model converge, whereas in the satellite image the
cracks stop to evolve and move further in the direction of flow. In addition, new cracks arise at
the pinning points. The chosen modeling setup is a first approximation of pinning points in ice
shelves. It does not cover the large complexity of real ice shelves yet.

Although the model setup is symmetric, the cracks did not developed symmetrically. The
crack below the lower pinning point reaches the domain boundary earlier than the crack above
the upper one. The small derivations in the crack evolution probably originate from the triangle
mesh used, which is not fully symmetric. Regarding the non symmetric behaviour of the crack
path, further investigations need to be carried out to examine influence of the mesh.

According to experiments [52] polycrystalline ice shows a strain rate dependent material
behavior, also known as Glen’s flow law. To adapt the constitutive model even further to the
real behavior of ice, we want to consider this power law in the future.
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In this work we only presented simulations in 2D. However the model can be easily extended
to a three-dimensional domain, which is subject of current research.

5 CONCLUSIONS

We proposed a viscoelastic phase field model to simulate fracture in ice shelves, which con-
siders a constitutive relation of a Maxwell material. Despite the simplifications of the proposed
model in terms of the constitutive equation and the model domain, a good agreement between
the cracks in the satellite image and the modeled crack path can be observed. It seems promising
that the viscoelastic phase field model can be used in future to simulate fracture processes in
ice shelves.

Acknowledgement: Calculations for this research were conducted on the Lichtenberg high performance computer of
the Technische Universität Darmstadt.
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