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Construction of Customized Mass-Stiffness Pairs
Using Templates

Carlos A. Felippa1

Abstract: This paper is a tutorial exposition of the template approach to the construction of customized mass-stiffness pairs for selected
applications in structural dynamics. The exposition focuses on adjusting the mass matrix while a separately provided stiffness matrix is
kept fixed. Two well known kinetic-energy discretization methods described in finite-element method �FEM� textbooks since the mid-
1960s lead to diagonally lumped and consistent mass matrices, respectively. These two models are sufficient to cover many engineering
applications. Occasionally, however, they fall short. The gap can be filled with a more general approach that relies on the use of templates.
These are algebraic forms that carry free parameters. This approach is discussed in this paper using one-dimensional structural elements
as examples. Templates have the virtue of producing a set of mass matrices that satisfy certain a priori constraint conditions such as
symmetry, nonnegativity, invariance, and momentum conservation. In particular, the diagonally lumped and consistent versions can be
obtained as instances. Thus those standard models are not excluded. Availability of free parameters, however, allows the mass matrix to
be customized to special needs, such as high precision vibration frequencies or minimally dispersive wave propagation. An attractive
feature of templates for FEM programming is that only one element implementation as module with free parameters is needed, and need
not be recoded when the application problem class changes.

DOI: 10.1061/�ASCE�0893-1321�2006�19:4�241�

CE Database subject headings: Finite elements; Structural dynamics; Mass; Vibration; Bending; Beams; Stiffness.
Introduction

Two standard procedures for building finite-element mass matri-
ces have been known and widely used since the mid-1960s, lead-
ing to consistent and diagonally lumped forms. These models are
denoted by MC and ML, respectively, in the sequel. Abbreviations
CMM and DLMM, respectively, will be also used. Collectively
these take care of many engineering applications in structural
dynamics. Occasionally, however, they fall short. The gap can be
filled with a more general approach that relies on templates.
These are algebraic forms that carry free parameters. This ap-
proach is covered in this paper using one-dimensional structural
elements as expository examples.

The template approach has the virtue of generating a set of
mass matrices that satisfy certain a priori constraints such as sym-
metry, nonnegativity, invariance, and momentum conservation. In
particular, the diagonally lumped and consistent mass matrices
can be obtained as instances. Thus those standard models are not
excluded. Availability of free parameters, however, allows the
mass matrix to be customized to special needs such as high pre-
cision in vibration analysis, or minimally dispersive wave propa-
gation. This versatility will be evident from the examples. The set

1Dept. of Aerospace Engineering Sciences and Center for Aerospace
Structures, Campus Box 429, Univ. of Colorado, Boulder, CO
80309-0429. E-mail: carlos.felippa@colorado.edu

Note. Discussion open until March 1, 2007. Separate discussions must
be submitted for individual papers. To extend the closing date by one
month, a written request must be filed with the ASCE Managing Editor.
The manuscript for this paper was submitted for review and possible
publication on October 20, 2005; approved on January 6, 2006. This
paper is part of the Journal of Aerospace Engineering, Vol. 19, No. 4,

October 1, 2006. ©ASCE, ISSN 0893-1321/2006/4-241–258/$25.00.

JOURNA

 J. Aerosp. Eng., 2006, 
of parameters is called the template signature, and uniquely char-
acterizes an element instance.

An attractive feature of templates for finite-element methods
�FEM� programming is that each “custom mass matrix” need not
be coded and tested individually. It is sufficient to implement the
template as a single element-level module, with free parameters
as arguments, and simply adjust the signature to the problem at
hand. In particular the same module should be able to produce the
conventional CMM and DLMM models, which can provide valu-
able crosschecking.

Customization Scenarios

The ability to customize the mass matrix is not free of cost. The
derivation is more complicated, even for one-dimensional �1D�
elements, than those based on standard procedures. In fact, hand
computations rapidly become unfeasible. Help from a computer
algebra system �CAS� is needed to complete the task. When is
this additional work justified? Two scenarios can be mentioned.

The first is high fidelity systems. Dynamic analysis covers a
wide range of applications. There is a subclass that calls for a
level of simulation precision beyond that customary in engineer-
ing analysis. Examples are deployment of precision structures,
resonance analysis of machinery or equipment, adaptive active
control, ultrasonics imaging, signature detection, radiation loss in
layered circuits, and molecular- and crystal-level simulations in
micro- and nanomechanics.

In structural static analysis an error of 20 or 30% in peak
stresses is not cause for alarm—such discrepancies are usually
covered adequately by safety factors. But a similar error in fre-
quency analysis or impedance response of a high fidelity system

may be disastrous. Achieving acceptable precision with a fine
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mesh, however, can be expensive. Model adaptivity comes to the
rescue in statics; but this is less effective in dynamics on account
of the time dimension. Customized elements may provide a prac-
tical solution: achieving adequate accuracy with a coarse regular
mesh.

A second possibility is that the stiffness matrix comes from a
method that avoids displacement shape functions. For example,
assumed-stress or assumed strain elements. �Or, it could simply
be an array of numbers provided by a black-box program, with no
documentation explaining its source.� Under this scenario the
concept of “consistent mass matrix,” in which velocity shape
functions are taken to coincide with displacement ones, loses its
comfortable variational meaning. One way out is to take the mass
matrix of an element with similar geometry and freedom configu-
ration derived with shape functions, and to pair it with the given
stiffness. But in certain cases, notably when the FEM model has
rotational freedoms, this may not be easy or desirable.

Parametrization Techniques

There are several ways to parametrize mass matrices. Three tech-
niques found effective in practice are summarized in the follow-
ing. All of them are illustrated in the worked out examples of the
sections entitled “Two-Node Bar Element,” “Three-Node Bar El-
ement,” and “Two-Node Timoshenko Beam Element.”

Matrix-Weighted Parametrization

A matrix-weighted mass template for element e is a linear com-
bination of �k+1� component mass matrices, k�1 of which are
weighted by parameters

Me =
def

M0
e + �1M1

e + ¯ + �kMk
e �1�

Here M0
e is the baseline mass matrix. This should be an accept-

able mass matrix on its own if �1= ¯ =�k=0. The simplest in-
stance of Eq. �1� is a linear combination of the consistent and
diagonally lumped masses

Me =
def

�1 − ��MC
e + �ML

e �2�

This can be reformatted as Eq. �1� by writing
Me=MC

e +��ML
e −MC

e �. Here k=1, the baseline is M0
e �MC

e ,
���1 and M1

e is the “consistent mass deviator” ML
e −MC

e . Ex-
pression �2� is often abbreviated as “LC-weighted mass matrix.”

A matrix-weighted mass template represents a tradeoff. It cuts
down on the number of free parameters. Such a reduction is es-
sential for two-dimensional �2D� and three-dimensional elements.
It makes it easier to satisfy conservation and nonnegativity con-
ditions through appropriate choice of the Mi

e. On the minus side it
generally spans only a subspace of acceptable matrices.

Spectral Parametrization

This has the form

Me =
def

HTD�H, D� = diag�c0�0 c1�1 ¯ ck�k� �3�

in which H�generally full matrix. Parameters �0¯�k appear as
entries of the diagonal matrix D�. Scaling coefficients ci may be
introduced for convenience. Some of the � coefficients may be

preset from a priori conservation conditions.
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Configuration �3� occurs naturally when the mass matrix is
constructed first in generalized coordinates, followed by transfor-
mation to physical coordinates via H. If the generalized mass is
derived using mass-orthogonal functions �e.g., Legendre polyno-
mials in 1D elements�, the unparametrized generalized mass
D=diag�c0 c1 ¯ck� is diagonal. Parametrization is effected by
scaling entries of this matrix. Some entries may be left fixed,
however, to satisfy a priori constraints.

Expanding Eq. �3� and collecting matrices that multiply �i

leads to a matrix weighted combination form �1� in which each
Mi

e is a rank-one matrix. The analogy with the spectral represen-
tation theorem of symmetric matrices is obvious. But in practice it
is usually better to work directly with the congruential represen-
tation �3�.

Entry-Weighted Parametrization

An entry-weighted mass template applies parameters directly to
every entry of the mass matrix, except for a priori constraints on
symmetry, invariance and conservation. This form is the most
general one and can be expected to lead to best possible solutions.
But it is restricted to simple �usually 1D� elements because the
number of parameters grows quadratically in the matrix size,
whereas for the other two schemes it grows linearly.

Combined Approach

A hierarchical combination of parametrization schemes can be
used to advantage if the kinetic energy can be naturally decom-
posed from physics. For example the Timoshenko beam element
covered in the section entitled “Two-Node Timoshenko Beam El-
ement” uses a two-matrix-weighted template form similar to Eq.
�2� as top level. The two components are constructed by spectral
and entry-weighted parametrization, respectively.

Two-Node Bar Element

The template concept is best grasped through an example that
involves the simplest structural finite element: the two-node pris-
matic bar of density �, area A and length �, moving along x. See
Fig. 1. The most general form of the 2�2 mass matrix form is the
entry-weighted template

Me = �M11
e M12

e

M21
e M22

e � = Me��11 �12

�21 �22
� = �A � ��11 �12

�21 �22
�
�4�

The first form is merely a list of entries. To parametrize it, the
total element mass Me=�A� is taken out as a factor. The free
parameters �11 through �22 are simply numbers. This illustrates a
basic convenience rule: Free template parameters should be di-
mensionless. To cut down on the number of free parameters one

Fig. 1. Two-node prismatic bar element
looks at mass property constraints. The most common ones are

6
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• Matrix symmetry: Me= �Me�T. For Eq. �4� this requires
�21=�12.

• Physical symmetry: For a prismatic bar Me must exhibit an-
tidiagonal symmetry: �22=�11.

• Conservation of total translational mass: Same as conservation
of linear momentum or of kinetic energy. Apply the uniform
velocity field u̇=v to the bar. The associated nodal velocity
vector is u̇e=ve=v�1 1�T. The kinetic energy is
Te= �1/2��ve�TMeve= �1/2�Mev2��11+�12+�21+�22�. This
must equal �1/2�Mev2, whence �11+�12+�21+�22=1.

• Nonnegativity: Me should not be indefinite. �This is not an
absolute must, and it is actually relaxed in the Timoshenko
beam element discussed in the section entitled “Two-Node Ti-
moshenko Beam Element”.� Whether checked by computing
eigenvalues or principal minors, this constraint is nonlinear
and of inequality type. Consequently it is not often applied ab
initio, unless the element is quite simple, as in this case.
On applying the symmetry and conservation rules three pa-

rameters of Eq. �4� are eliminated. The remaining one, called �, is
taken for convenience to be �11=�22= �1/6��2+�� and
�12=�21= �1/6��1−��, which gives

M�
e =

1

6
�A � �2 + � 1 − �

1 − � 2 + �
� = �1 − ��

1

6
�A � �2 1

1 2
�

+ �
1

2
�A � �1 0

0 1
� = �1 − ��MC

e + �ML
e �5�

Expression �5� shows that the one-parameter template can be pre-
sented as a linear combination of the well known consistent and
diagonally-lumped mass matrices. So starting with the general
entry-weighted form �4� we end up with a two-matrix-weighted
form befitting Eq. �2�. If �=0 and �=1, Eq. �5� reduces to MC

e

and ML
e , respectively. This illustrates another desirable property:

The CMM and DLMM models ought to be instances of the
template.

Finally we can apply the nonnegativity constraint. For the two
principal minors of M�

e to be nonnegative, 2+��0 and
�2+��2− �1−��2=3+6��0. Both are satisfied if ��−�1/2�.
Unlike the others, this constraint is of inequality type, and only
limits the range of �.

The remaining task is to find �. This is done by introducing an
optimality criterion that fits the problem at hand. This is where
customization comes in. Even for this simple case the answer is
not unique. Thus the sentence “the best mass matrix for the two-
node bar is so-and-so” has no unique meaning. Two specific op-
timization criteria are studied in the following.

Best � by Angular Momentum Preservation

Allow the bar to move in the �x ,y	 plane by expanding its nodal
degrees of freedom �DOF� to ue= �ux1 uy1 ux2 uy2�T so Eq.
�5� becomes a 4�4 matrix

M�
e =

1

6
�A � 


2 + � 0 1 − � 0

0 2 + � 0 1 − �

1 − � 0 2 + � 0

0 1 − � 0 2 + �
� �6�

Apply a uniform angular velocity �̇ about the midpoint. The
associated node velocity vector at �=0 is u̇e= �1/2�

˙ T
���0 −1 1 0� . The discrete and continuum energies are
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T �
e =

1

2
�u̇e�TM�

e u̇e =
1

24
�A�3�1 + 2��

T e =�
−�/2

�/2

�A��̇x�2dx =
1

24
�A�3 �7�

Matching T �
e =T e gives �=0. So according to this criterion the

optimal mass matrix is the consistent one �CMM�. Note that if
�=1, T �

e =3T e, whence the DLMM overestimates the rotational
�rotary� inertia by a factor of 3.

Best � by Fourier Analysis

Another useful optimization criterion is the fidelity with which
planes waves are propagated over a bar element lattice, when
compared to the case of a continuum bar pictured in Fig. 2.

Symbols used for propagation of harmonic waves are collected
in Table 1 for the reader’s convenience. �Several of these are
reused in the sections entitled “Two-Node Bar Element” and
“Three-Node Bar Element.”� The discrete counterpart of Fig. 2 is
shown in Fig. 3. This is a lattice of repeating two-node bar ele-
ments of length �. Lattice wave propagation nomenclature is
similar to that defined for the continuum case in Table 1, but
without zero subscripts.

Table 1. Nomenclature for Harmonic Wave Propagation in a Continuum
Bar

Quantity Meaning �physical dimensions in brackets�

�, E, A Mass density, elastic modulus, and cross section area
of bar, respectively

�ü0=Eu0� Bar wave equation; alternate forms: −�0
2u=c0

2u� and
u�+k0

2u=0

u0�x , t� Waveform u0=B0 exp�i�k0x−�0t�� �L�, in which
i=
−1

B0 Wave amplitude �L�

�0 Wavelength �L�

k0 Wave number k0=2	 /�0 �1/L�
�0 Circular �also known as angular� frequency �0=k0c0

=2	f0=2	c0 /�0 �rad/T�

f0 Cyclic frequency f0=�0 / �2	��cycles/T �Hz/s��

T0 Period T0=1/ f0=2	 /�0=�0 /c0 �T�

c0 Phase velocity c0=�0 /k0=�0 /T0=�0f0=
E /� �L/T�


0 Dimensionless wave number 
0=k0�0 �
0=2	 in
continuum�

�0 Dimensionless circular frequency �0=�0T0=�0�0 /c0

Note: Zero subscripted quantities, such as k0 or c0, refer to the continuum
bar. Unsubscripted counterparts, such as k or c, pertain to a discrete FEM

Fig. 2. Propagation of a harmonic wave over an infinite, continuum
prismatic bar. The wave-profile axial displacement u�x , t� is plotted
normal to the bar.
lattice as in Fig. 3.
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The lattice propagation process is governed by the semidis-
crete equation of motion Mü+Ku=0, which can be solved by
Fourier methods. To study solutions it is sufficient to extract a
two-element patch as illustrated in Fig. 3�a�. Within some con-
straints noted later the lattice can propagate travelling harmonic
waves of wavelength � and phase velocity c, as depicted in Fig.
3�b�. The wave number is k=2	 /� and the circular frequency
�=2	 /T=2	c /�=kc. Fig. 3�b� displays two characteristic
lengths: � and �. The element-to-wavelength ratio is called
�= � /�. This ratio characterizes the fineness of the discretization
with respect to wavelength. A harmonic wave of amplitude B is
described by the function

u�x,t� = B exp�i�kx − �t�� = B exp�i�
x − �c0t�/ � �, i = 
− 1

�8�

Here the dimensionless wave number 
 and circular frequency �
are defined as 
=k� =2	� /�=2	� and �=�� /c0, respectively,
in which c0=
E /� is the continuum bar wave speed.

Using the well-known bar stiffness matrix and the mass tem-
plate �5� gives the patch equations

�A�

6 
2 + � 1 − � 0

1 − � 4 + 2� 1 − �

0 1 − � 2 + �
�
üj−1

üj

üj+1
�

+
EA

� 
 1 − 1 0

− 1 2 − 1

0 − 1 1
�
uj−1

uj

uj+1
� = 0 �9�

From this one takes the middle �node j� equation, which repeats
in the infinite lattice

�A�

6
�1 − � 4 + 2� 1 − ��
üj−1

üj

üj+1
� +

EA

�
�− 1 2 − 1 �

�
uj−1

uj

uj+1
� = 0 �10�

Evaluate Eq. �8� at x=xj−1=xj −�, x=xj and x=xj+1=xj +� while
keeping t continuous. Substitution into Eq. �10� gives the wave
propagation condition

�Ac0
2

3�
�6 − �2 + ���2 − �6 − �1 − ���2�cos 
�

��cos
�c0t

�
− i sin

�c0t

�
�B = 0 �11�

If this is to vanish for any t and B, the expression in brackets must

Fig. 3. An infinite lattice of two-node prismatic bar elements: �a�
Two-element patch extracted from lattice; �b� characteristic
dimensions for a propagating harmonic wave
vanish. Solving gives the frequency to wave number relations
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�2 =
6�1 − cos 
�

2 + � + �1 − ��cos 


= 
2 +
1 − 2�

12

4 +

1 − 10� + 10�2

360

6 + ¯


 = arccos�6 − �2 + ���2

6 + �1 − ���2�
= � −

1 − 2�

24
�3 +

9 − 20� + 20�2

1920
�5 + ¯ �12�

Returning to physical wave number k=
 /� and frequency
�=�c0 /�

�2 = �6c0
2

�2 � 1 − cos�k � �
2 + � + �1 − ��cos�k � �

= c0
2k2�1 +

1 − 2�

12
k2�2 +

1 − 10� + 10�2

360
k4�4 + ¯ �

�13�

An equation that links frequency and wave number: �=��k� as in
Eq. �13�, is a dispersion relation. An oscillatory dynamical system
is nondispersive if � is linear in k, in which case c=� /k is con-
stant and the wave speed is the same for all frequencies. The
dispersion relation for the continuum bar �within the limits of
mechanics of materials assumptions� is c0=�0 /k0: all waves
propagate with the same speed c0. On the other hand the FEM
model is dispersive for any �, since from Eq. �12� we get

c

c0
=

�

kc0
=

1




 6�1 − cos 
�

2 + � + �1 − ��cos 


= 1 +
1 − 2�

24

2 +

1 − 20� + 20�2

1920

4 + ¯ �14�

The best fit to the continuum for small wave numbers 
=k� 
1
is obtained by taking �= �1/2�. This makes the second term of the
foregoing series vanish. So from this standpoint the best mass
matrix for the bar is

�M�
e ��=�1/2� =

1

2
MC

e +
1

2
ML

e =
�A�

12
�5 1

1 5
� �15�

Fig. 4�a� plots the dimensionless dispersion relation �12� for the
consistent ��=0�, diagonally lumped ��=1� and LC-averaged
��= �1/2�� mass matrices, along with the continuum-bar relation
�0=
0. The lattice curves of Fig. 4�a� have a 2	 period:
��
�=��
+2	n�, n being an integer. Thus it is enough to plot

Fig. 4. Results from Fourier analysis of two-node bar lattice: �a�
Dispersion curves for various choices of �; �b� wave number
dependent �M that makes lattice match the continuum
��
� over 
� �0,2	�. The maximum lattice frequency, which

6
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occurs for 
=k� =	 or �=2�, is called the Nyquist or folding
frequency.

If it is possible to pick � as function of � or 
 we can match
the continuum over a certain range of 
 or �. This can be done by
equating �=
 �or c=c0� and solving for �

�M = 1 +
6


2 −
3

1 − cos 


=
1

2
−


2

40
−


4

1,008
−


6

28,800
− ¯

=
1

2
−

4	2�2

40
−

16	4�4

1,008
− ¯

=1 +
6

�2 −
3

1 − cos �

=
1

2
−

�2

40
−

�4

1,008
−

�6

28,800
− ¯ �16�

in which �=2	 
. The function �M�
� is plotted in Fig. 4�b�.
Interesting values are �M =0 if 
=3.38742306673364 and
�M =−�1/2� if 
=
lim=4.05751567622863. If 
�
lim the fitted
Me becomes indefinite. So Eq. �16� is practically limited to the
range 0�k� �4/� as shown in the plot.

Best � by Modified Equation

The gist of Fourier analysis is to find an exact solution, namely
Eq. �8�, which separates space and time in the characteristic equa-
tion �11�. The rest is routine mathematics. The method of modi-
fied differential equations makes less initial assumptions but is
not by any means routine. The objective is to find a modified
differential equation that, if solved exactly, produces the FEM
solution at nodes, and to compare it with the continuum wave
equation given in Table 1. The optimal � is the one that repro-
duces the original differential equation. For this simple element
and a repeating lattice, this criterion leads to the same optimal
mass matrix as Fourier analysis and is omitted to save space.

Three-Node Bar Element

As pictured in Fig. 5, this element is prismatic with length �,
cross-section area A, and mass density �. Midnode 3 is at the
center. The element DOFs are arranged as ue= �u1 u2 u3�T. Its well
known stiffness matrix is paired with a entry-weighted mass

Fig. 5. The three-node prismatic bar element
template
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Ke =
EA

3� 
 7 1 − 8

1 7 − 8

− 8 − 8 16
�

M�
e =

�A�

90 
 12 + �1 − 3 + �3 6 + �4

− 3 + �3 12 + �1 6 + �4

6 + �4 6 + �4 48 + �2
� �17�

The idea behind the assumed form of M�
e in Eq. �17� is to define

the mass template as a parametrized deviation from the consistent
mass matrix. That is, setting �1=�2=�3=�4=0 makes M�

e =MC
e .

Setting �1=�3=3, �2=12, and �4=−6 gives the well known di-
agonally lumped mass matrix generated by Simpson’s integration
rule: ML

e =�A� diag��1/6� , �1/6� , �2/3��. Thus again the stan-
dard models are template instances. Notice that M�

e in Eq. �17�
incorporates matrix and physical symmetries a priori but not con-
servation conditions.

Linear and angular momentum conservation requires
2�1+�2+2�3+4�4=0 and �3=�1, respectively. Eliminating �3

and �4 from those constraints reduces the template to two
parameters

M�
e =

�A�

360 
 4�12 + �1� 4�− 3 + �1� 24 − 4�1 − �2

4�− 3 + �1� 4�12 + �1� 24 − 4�1 − �2

24 − 4�1 − �2 24 − 4�1 − �2 4�48 + �2�
�

�18�

For Eq. �18� to be nonnegative, �1�−9/2 and 15+�1

−3
5
9+2�1� �1/4��2�15+�1+3
5
9+2�1. These inequal-
ity constraints should be checked a posteriori.

Patch Equations

Unlike the two-node bar, two free parameters remain after the
angular momentum conservation condition is enforced. Conse-
quently we can ask for satisfactory wave propagation conditions
in addition to conservation. To assess performance of mass-
stiffness combinations we carry out the plane wave analysis of the
infinite beam lattice shown in Fig. 6.

From the lattice we extract a typical two node patch as illus-
trated. The patch has five nodes: Three endpoints and two mid-
points, which are assigned global numbers j−2, j−1, . . . , j+2.
The unforced semidiscrete dynamical equations of the patch are

P ¨ P P P

Fig. 6. Lattice of three-node bar elements from which a two-element
patch is extracted
M u +K u =0, where
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MP =
�A�

360 

4�12 + �1� 24 − 4�1 − �2 4�− 3 + �1� 0 0

24 − 4�1 − �2 4�48 + �2� 24 − 4�1 − �2 0 0

4�− 3 + �1� 24 − 4�1 − �2 8�12 + �1� 24 − 4�1 − �2 4�− 3 + �1�
0 0 24 − 4�1 − �2 4�48 + �2� 24 − 4�1 − �2

0 0 4�− 3 + �1� 24 − 4�1 − �2 4�12 + �1�
�

KP =
EA

3�

7 − 8 1 0 0

− 8 16 − 8 0 0

1 − 8 14 − 8 1

0 0 − 8 16 − 8

0 0 1 − 8 7
� �19�

uP = �uj−2 uj−1 uj uj+1 uj+2 �T
From the foregoing we keep the third and fourth equations,
namely those for nodes j and j+1. This selection provides the
equations for a typical corner point j and a typical midpoint
j+1. The retained patch equations are

M j,j+1
P üP + K j,j+1

P uP = 0 �20�

The 2�5 matrices M j,j+1
P and K j,j+1

P result on deleting rows one,
two, and five of MP and KP, respectively.

Fourier Analysis

We study the propagation of harmonic plane waves of wavelength
�, wave number k=2	 /�, and circular frequency � over the lat-
tice of Fig. 6. For convenience they are separated into corner and
midpoint waves
tic waves are long-wavelength, low-frequency mechanical waves
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uc�x,t� = Bce
i�kx−�t�, um�x,t� = Bmei�kx−�t� �21�

Wave uc�x , t� propagates only over corners and vanishes at mid-
points, whereas um�x , t� propagates only over midpoints and van-
ishes at corners. Both have the same wave number and frequency
but different amplitudes and phases. �Waves �21� can be com-
bined to form a single wave form that propagates over all nodes.
The combination has two components that propagate with the
same speed but in opposite directions. This is useful when study-
ing boundary conditions or transitions in finite lattices, but is not
needed for a periodic infinite lattice.� As in the two-node bar case,
we will work with the dimensionless frequency �=�� /c0 and
dimensionless wave number 
=k�.

Inserting Eq. �21� into Eq. �19�, passing to dimensionless vari-
ables and requiring that solutions exist for any t yields the char-
acteristic equation
1

180
960 − 2�48 + �2��2 − �960 + �24 − 4�1 − �2��2�cos
1

2



symm 4�210 − �12 + �1��2 + �30 + �3 − �1��2�cos 
�
��Bc

Bm
� = 0 �22�
For nontrivial solutions the determinant of the characteristic ma-
trix must vanish. Solving for �2 gives two frequencies for each
wavenumber 
. They can be expressed as the dispersion relations

�a
2 =

�1 + �

�5 + �6cos 

, �o

2 =
�1 − �

�5 + �6cos 

�23�

in which �1=720�−208−�2+ ��2−32�cos 
�, �2=64��1−60��1

−32�1�2+13�2
2+384�474+�2�, �3=12�−112+�2��128+�2�,

�4=64�132+ ��1−60��1�−32��1−6��2+�2
2, �5=16�−540

+ ��1−60��1�−8�30+�1��2+�2
2, �6=2,880+16��1−60��1

−8�1�2+�2
2, and �=120
6
�2−�3 cos 
−�4 cos 2
. Frequen-

cies �a and �o pertain to the so-called acoustic and optical
branches, respectively. This nomenclature originated in crystal
physics, in which both branches have physical meaning as mod-
eling molecular oscillations. �In molecular crystallography, acous-
caused by sonic-like disturbances, in which adjacent molecules
move in the same direction. Optical waves are short-wavelength,
high-frequency oscillations caused by interaction with light or
electromagnetics, in which adjacent molecules move in opposite
directions. The last section provides references.�

Fig. 7 illustrates nomenclature used for a two-branched disper-
sion diagram such as that given by Eq. �23�. The meaning of
terms such as “stopping band” is defined in the following. In
FEM discretization work only the acoustic branch has physical
meaning because for small 
 �i.e., long wavelengths� it ap-
proaches the continuum bar relation �=
, as shown in the next
equation. On the other hand, the optical branch is physically spu-
rious. It is caused by the discretization and pertains to high-
frequency lattice oscillations, also known as “mesh modes.”

The distinction between the two branches can be better
grasped by examining the Taylor expansions of frequencies �23�

about 
=0

6
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�a
2 = 
2 +

C4
4

4!
+

C6
6

6!
+

C8
8

8!
+ ¯ , �o

2 = D0 +
D2
2

2!
+ ¯

5 � 1,440C4 = 14,400 − �1
2 = �240 − 4�1 + �2��4�1 − �2�

10 � 1,4402C6 = 41,472,000 + 7,200�1
2 + 180�1

3 + �1
4 − 720�1

2�2

60 � 1,4403C8 = − 2,030,469,120,000 + 348,364,800�1
2

− 14,515,200�1
3 − 342,720�1

4 − 2,520�1
5

− 7�1
6 + 58,060,800�1

2�2 + 1,451,520�1
3�2 + 10,080�1

4�2

− 2,903,040�1
2�2

2

D0 =
1

�3
, D2 = −

�1
2�43,200 + 360�1 + �1

2 − 1,440�2�
�3

2 �24�

Here �1=4�1−�2−120, �2=�1−2, and �3=28,800+360�1+�1
2

−1,440�2=−2,880−960�1+16�1
2−120�2−8�1�2+�2

2. Note that
the expansion of �a

2 approaches 
2 as 
→0. Clearly the acoustic

Fig. 7. Notation pertaining to a typical two-branch dispersion
diagram. The stopping band is the union of I and II.

Fig. 8. Dispersion curves of four mass matrices for the three-node p
branch and continuum-bar line �=
. Acoustic and optical branches
JOURNA
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branch is the long-wavelength counterpart of the continuum bar,
for which �=
. On the other hand, the optical branch has a
nonzero frequency �o

2=1/�3 at 
=0, called the cutoff frequency,
which cannot vanish although it may go to infinity if �3=0. As
illustrated in Fig. 7, the lowest and highest values of �o �taking
the + square root of �o

2� are called �o
max and �o

min, respectively,
whereas the largest �a is called �a

max. Usually, but not always,
�0

min and �a
max occur at 
=	.

If �o
min��a

max, the range �o
min����a

max is called the acous-
toptical frequency gap. Frequencies in this gap are said to pertain
to Portion I of the stopping band, a term derived from filter tech-
nology. Frequencies ���o

max pertain to Portion II of the stopping
band. A stopping band frequency cannot be propagated as har-
monic plane wave over the lattice. This can be proven by showing
that if � pertains to the stopping band, the characteristic equation
�22� has complex roots with nonzero real parts. This causes ex-
ponential attenuation so any disturbance with that frequency will
decay exponentially.

Customization

Fig. 8 shows dispersion curves for the four parameter settings
tabulated in Table 2. The four associated mass matrices are posi-
tive definite. Dispersion curves for the consistent mass MC

e and
the diagonally lumped mass ML

e are shown in Figs. 8�a and b�.
Both matrices have an acoustical branch that agrees with the con-
tinuum to order O�
4�, as shown by the series listed in Table 2.

For a mass matrix to produce fourth order accuracy in the
acoustic branch, C4=0 in series �24�. This has the two solutions
�2=4�1 and �2=4�1−240. Both CM and DLM comply with the
first solution. To get sixth order accuracy for small 
 we impose
C4=C6=0. This has only two solutions: ��1=2 ,�2=8	 and
��1=62,�2=8	. Only the first solution is of interest, as the sec-
ond one produces large positive-negative entries and exactly the

ic bar, plotted for 
� �0,2	�. Plots display acoustic branch, optical
with period 2	; note symmetry about 
=	.
rismat
repeat
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same dispersion curves. The resulting mass matrix turns out to be
a linear combination of CMM and DLMM. It is labeled BLC for
“best lumped-consistent combination”

MBLC
e =

�A�

90 
 14 − 1 2

− 1 14 2

2 2 56
� =

1

3
MC

e +
2

3
ML

e �25�

As shown in Table 2, the acoustic branch of this matrix agrees up
to O�
6� with the continuum bar. The dispersion curves are shown
in Fig. 8�c�.

A different kind of customization is advisable in dynamic
simulations that involve propagation of high frequencies, such as
shock and impact. The presence of the optical branch is undesir-
able, because it introduces spurious noise into the solutions. For
such problems the two-node bar, which lacks an optical branch,
should be used. If use of a three-node model is mandated for
some reason, the harmful effects of the optical branch can be
reduced by making it of constant frequency. Setting ��1=8 ,
�2=32	 produces the mass

MCOF
e =

�A�

90 
 10 5 − 10

5 10 − 10

− 10 − 10 80
� �26�

in which acronym COF stands for “constant optical frequency.”
Then �o

2=12 for all wave numbers, as pictured in Fig. 8�d�. This
configuration maximizes the stopping band and facilitates the
implementation of a narrow band filter centered at that frequency.
The acoustic branch accuracy is inferior to that of the other mod-
els, however, so this customization involves a tradeoff.

One final parameter choice is worth mentioning as a curiosity.
Setting ��1=−2,�2=−8	 produces a dispersion diagram with no
stopping band: The optical branch comes down from +� at

=0,2	 and merges with the acoustic branch at 
=	. The appli-
cation of this mass matrix �which is singular� as a modeling tool
is presently unclear and its dispersion diagram is omitted.

Two-Node Timoshenko Beam Element

The last example is far more elaborate than the previous two. The
goal is to construct a mass template for the prismatic, plane-beam
Timoshenko model. This includes the Bernoulli-Euler model as
special case, and consequently results can be reused for that
model. The continuum Timoshenko model is first examined in
some detail, since frequency expansion formulas applicable to
template customization by characteristic root fitting are not easily

Table 2. Useful Mass Matrices for Three-Node Bar Element

Mass
matrix

Template signature

�1 �2 �3 �4

CMM 0 0 0 0

DLMM 3 12 3 −6

BLC 2 8 2 −4

COF 8 32 8 −16
found in the literature.
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Continuum Analysis

Consider a structural beam member modeled as a shear-flexible
Timoshenko plane beam, as illustrated in Fig. 9. Fig. 9 provides
the notation used in the following. Section properties
�� ,E ,A ,As , I , IR	 are constant along x. The beam is transversally
loaded by line load q�x , t� �not shown in Fig. 9�, with dimension
of force per length. The primary kinematic variables are the trans-
verse deflection v�x , t� and the total cross-section rotation
��x , t�=v��x , t�+��x , t�, where �=V / �GAs� is the mean shear ro-
tation. The kinetic and potential energies in terms of those vari-
ables are

T�v,�� =
1

2�0

L

��Av̇2 + �IR�̇2�dx

��v,�� =�
0

L �1

2
EI�v��2 +

1

2
GAs�� − v��2 − qv�dx �27�

where superposed dots denote time derivatives. The equations of
motion �EOM� follow on forming the Euler-Lagrange equations
from the Lagrangian L=T−�:

�L

�v
= 0 → GAs��� − v�� + �Av̈ = q

�L

��
= 0 → EI�� + GAs�v� − �� − �IR �̈ = 0 �28�

An expedient way to eliminate � is to rewrite the two equations in
Eq. �28� in transform space

Taylor expansion of �a
2

�acoustic branch�
Taylor expansion of �a

2

�optical branch�

2+

6

720
−

11
8

151,200
+

7
10

129,600
+O�
12�

60−20
2+O�
4�

−

6

1,440
−


8

48,383
−


10

4,147,200
+O�
12�

24−2
2+O�
4�


2−

8

37,800
−


10

864,000
+O�
12� 30−

15
2

4
+O�
4�


2−

6

240
−


8

6,048
+


10

86,400
O+O�
12�

12

Fig. 9. A plane beam member modeled as Timoshenko beam,
illustrating notation followed in the continuum analysis. Transverse
load q�x� not shown to reduce clutter. Infinitesimal deflections and
deformations grossly exaggerated for visibility.
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��As2 − GAsp
2 GAsp

GAsp EIp2 − GAs − �IRs2 ��ṽ

�̃
� = �q̃

0
� �29�

in which �p ,s , ṽ , �̃ , q̃	 denote transforms of �d /dx ,d /dt ,v ,� ,q	,
respectively �Fourier in x and Laplace in t�. Eliminating �̃ and
returning to the physical domain yields

EIv�� + �Av̈ − ��IR +
�AEI

GAs
�v̈� +

�2AIR

GAs
v̇̇̇̇ = q −

EI

GAs
q� +

�IR

GAs
q̈

�30�

�Note that this derivation does not presume that I� IR, as usually
done in textbooks.� For the unforced case q=0, Eq. �30� has plane
wave solutions v=B exp�i�k0x−�0t��. The propagation condition
yields a characteristic equation relating k0 and �0. To render
it dimensionless, introduce a reference phase velocity
c0

2=EI / ��AL4� so that k0=�0 /c0=2	 /�0, a dimensionless fre-
quency �=�0L /c0 and a dimensionless wave number 
=k0L. As
dimensionless measures of relative bending-to-shear rigidities and
rotary inertia take

�0 = 12EI/�GAsL
2�, rR

2 = IR/A, �0 = rR/L �31�

The resulting dimensionless characteristic equation is


4 − �2 − � 1

12
�0 + �0

2�
2�2 +
1

12
�0�0

2 �4 = 0 �32�

This is quadratic in �2. Its solution yields two kinds of squared-
frequencies, which will be denoted by � f

2 and �s
2 because they

are associated with flexural and shear modes, respectively. Their
expressions are listed in the following along with their small-

�long wavelength� Taylor series:
JOURNA

 J. Aerosp. Eng., 2006, 
� f
2 = 6

P − 
Q

�0�0
2

= 
4 − � 1

12
�0 + �0

2�
6 + � 1

144
�0

2 +
1

4
�0�0

2 + �0
4�
8

− � 1

1728
�0

3 +
1

24
�0

2�0
2 +

1

2
�0�0

4 + �0
6�
10 + ¯

= 
4 + A6
6 + A8
8 + ¯ �33�

�s
2 = 6

P + 
Q

�0�0
2

=
12

�0�0
2 + � 12

�0
+

1

�0
2�
2 − 
4 + � 1

12
�0 + �0

2�
6 + ¯

= B0 + B2
2 + ¯ �34�

in which P=1+
2��0
2+ �1/12��0� and Q= P2− �1/3�
4�0�0

2.
The dispersion relation � f

2�
� defines the flexural frequency
branch whereas �s

2�
� defines the shear frequency branch. If
�0→0 and �0→0, which reduces the Timoshenko model to the
Bernoulli-Euler one, Eq. �32� collapses to �2=
4 or �in principal
value� �=
2. This surviving branch pertains to flexural motions
whereas the shear branch disappears—or more precisely, �s

2�
�
→ +�. It is easily shown that the radicand Q in the exact expres-
sions is strictly positive for any ��0�0,�0�0,
�0	. Thus for
any such triple, � f

2 and �s
2 are real, finite and distinct with

� f
2�
���s

2�
�; further, �� f
2 ,�s

2	 increase indefinitely as 
→�.
Following the nomenclature introduced in Fig. 7, the value �s at

=0 is called the cutoff frequency.

To see how branches look, consider a beam of a narrow rect-
angular cross section of width b and height h, fabricated of iso-
tropic material with Poisson’s ratio �. We have E /G=2�1+�� and
As /A�5/6. �Actually a more refined As /A ratio would be
10�1+�� / �12+11��, but that makes little difference in the re-
sults.� In addition A=bh, I= IR=bh3 /12, rR

2 = IR /A=h2 /12,
�0

2=rR
2 /L2= �1/12�h2 /L2 and �0=12EI / �GAsL

2�
=12�1+��h2 / �5L2�. As �0 /12=12�1+�� �0

2 /5, the first-order ef-
fect of shear on � f

2, as measured by the 
6 term in Eq. �33�, is
2.4–3.6 times that from rotary inertia, depending on �. Replacing
into Eqs. �33� and �34� yields
�� f
2

�s
2� =

60 + 
2�17 + 12���2 � 
�60 + 
2�17 + 12���2�2 − 240
4�1 + ���4

2�1 + ���4

=�
4 −
1

60
�17 + 12���2
6 +

1

3600
�349 + 468� + 144�2��4
8 + ¯

60 + �17 + 12���2
2 − �1 + ���4
4 + ¯

�1 + ���4
� �35�

in which �=h /L. Dispersion curves ��
� for �=h /L= �1/4� and �= �0, �1/2�	 are plotted in Fig. 10�a�. Phase velocities � /
 are shown
in Fig. 10�b�. Fig. 10�b� also shows the flexural branch of the Bernoulli-Euler model. The phase velocities of the Timoshenko model tend
to finite values in the shortwave, high-frequency limit 
→�, which is physically correct. The Bernoulli-Euler model is wrong in that limit
because it predicts an infinite propagation speed.
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Beam Element

The shear-flexible plane beam member of Fig. 9 is discretized by
two-node elements. An individual element of this type is shown in
Fig. 11, which illustrates its kinematics. The element has four
nodal freedoms arranged as

ue = �v1 �1 v2 �2�T �36�

Here �1=v1+�1 and �2=v2+�2 are the total cross-section rota-
tions evaluated at the end nodes. The dimensionless properties
�31� that characterize relative shear rigidity and rotary inertia are
redefined using the element length

� = 12EI/�GAs�
2�, rR

2 = IR/A, � = rR/� �37�

If the beam member is divided into Ne elements of equal length,
�=L /Ne whence �=�0Ne

2 and �=�0Ne. Thus even if �0 and �0

are small with respect to one, they can grow without bound as the
mesh is refined. For example if �0=1/4 and �0

2=1/100, which
are typical values for a moderately thick beam, and we take
Ne=32, then ��250 and �2�10. Those are no longer small
numbers, a fact that will impact performance as Ne increases. The
stiffness matrix to be paired with the mass template is taken to be
that of the equilibrium element

Ke =
EI

�3�1 + ��

12 6 � − 12 6�

6 � �2�4 + �� − 6 � �2�2 − ��
− 12 − 6 � 12 − 6�

6 � �2�2 − �� − 6 � �2�4 + ��
�
�38�

This is known to be nodally exact in static analysis for a prismatic
beam member, and therefore an optimal choice in that sense.

Fig. 10. Spectral behavior of continuum Timoshenko beam model fo
�=h / � =1/4 and two Poisson’s ratios; showing Timoshenko flexural

Fig. 11. Two-node element for Timoshenko plane beam, illustrating
kinematics. As in Fig. 9, displacements and rotations are grossly
exaggerated for visibility.
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Setting Up the Mass Template

FEM derivations usually split the 4�4 mass matrix of this ele-
ment into Me=Mv

e +M�
e, where Mv

e and M�
e come from the trans-

lational inertia and rotary inertia terms, respectively, of the kinetic
energy functional T�v ,�� of Eq. �27�. The most general mass
template would result from applying a entry-weighted parametri-
zation of those two matrices. This would require a set of 20
parameters �10 in each matrix�, reducible to about one half on
account of invariance and conservation conditions. Attacking the
problem this way, however, leads to unwieldy algebraic equations
even with the help of a computer algebra system, while conceal-
ing the underlying physics. A divide and conquer approach works
better. This is briefly outlined next and covered in more detail in
the next subsections.

�I� Express Me as the one-parameter matrix-weighted form
Me= �1−�0�MF

e +�0MD
e . Here MF

e is full and includes the CMM
as instance, whereas MD

e is 2�2 block diagonal and includes the
DLMM as instance. This is plainly a generalization of the LC
linear combination �2�.

�II� Decompose the foregoing mass components as
MF

e =MFT
e +MFR and MD

e =MDT
e +MDR

e , where subscripts identify
their source in the kinetic energy functional: T if coming from the
translational inertia term �1/2��Av̇2 and R from the rotary inertia

term �1/2��IR�̇2.
�III� Both components of MF

e are expressed as parametrized
spectral forms, whereas those of MD

e are expressed as entry
weighted. The main reasons for choosing spectral forms for the
full matrix are reduction of parameters and physical transparency.
No such concerns apply to MD

e .
The analysis follows a “bottom up” sequence, in order �III�–

�II�–�I�. This has the advantage that if a satisfactory custom mass
matrix for a target application emerges during �III�, Stages �II�
and �I� need not be carried out, and that matrix directly used by
setting the remaining parameters to zero.

Full-Mass Parametrization

As noted earlier, one starts with full-matrix spectral forms. Let �
denote the natural coordinate that varies from −1 at node 1 to +1
at node 2. Two element transverse displacement expansions in
generalized coordinates are introduced

vT��� = L1���cT1 + L2���cT2 + L3���cT3 + L4���cT4 = LTcT

ˆ

rrow b�h rectangular cross-section. �a� Dispersion curves ��
� for
ear branches and Bernoulli-Euler curve �=
2. �b� Wave speed � /
.
r a na
and sh
vR��� = L1���cR1 + L2���cR2 + L3���cR3 + L4���cR4 = LRcR

6
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L1��� = 1, L2��� = �, L3��� =
1

2
�3�2 − 1�, L4��� =

1

2
�5�3 − 3��

L̂4��� =
1

2
�5�3 − �5 + 10���� = L4��� − �1 + 5��� �39�

The vT and vR expansions are used for the translational and rota-
tional parts of the kinetic energy, respectively. The interpolation
function set �Li	 used for vT is formed by the first four Legendre
polynomials over �= �−1,1�. The set used for vR is the same ex-

cept that L4 is adjusted to L̂4 to produce a diagonal rotational mass
matrix. All amplitudes cTi and cRi have dimension of length.

Unlike the usual Hermite cubic shape functions, the polyno-
mials in Eq. �39� have a direct physical interpretation.
L1�translational rigid mode; L2�rotational rigid mode;
L3�pure-bending mode symmetric about �=0; L4 and

L̂4�bending-with-shear modes antisymmetric about �=0.
With the usual abbreviation �·���d�·� /dx= �2/ � �d�·� /d�, the

associated cross-section rotations are

�T = vT� + �T = LT� cT + �T, �R = vR� + �R = LR�cR + �R �40�

in which the mean shear distortions are constant over the element
etrized. Imposing also angular momentum conservation requires

JOURNA
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�T =
��2

12
vT� =

10�

�
cT4, �R =

��2

12
vR� =

10�

�
cR4 �41�

The kinetic energy of the element in generalized coordinates is

T e =
1

2�0

�

��Av̇T
2 + �IR�̇R

2�dx

=
�

4�−1

1

��Av̇T
2 + �IR�̇R

2�d�

=
1

2
ċT

TDTċT +
1

2
ċR

TDRċR, �42�

in which both generalized mass matrices turn out to be diagonal
as intended

DT = �A � diag�1
1

3

1

5

1

7
�

DR = 4�A � �2 diag�0 1 3 5�

To convert DT and DR to physical coordinates �36�, vT, vR, �T, and
�R are evaluated at the nodes by setting �= ±1. This establishes
the transformations ue=GT cT and ue=GRcR. Inverting:
cT=HTue and cR=HRue with HT=GT

−1 and HR=GR
−1. A symbolic

calculation yields
HT =
1

60�1 + ��

30�1 + �� 5 � �1 + �� 30�1 + �� − 5 � �1 + ��

− 36 − 30� − 3 � 36 + 30� − 3�

0 − 5 � �1 + �� 0 5 � �1 + ��
6 3 � − 6 3�

�
HR =

1

60�1 + ��

30�1 + �� 5 � �1 + �� 30�1 + �� − 5 � �1 + ��

− 30 15 � � 30 15 � �

0 − 5 � �1 + �� 0 5 � �1 + ��
6 3 � − 6 3�

� �43�
Matrices HT and HR differ only in the second row. This comes

from the adjustment of L4 to L̂4 in Eq. �39�. To render this into a
spectral template inject six free parameters in the generalized
masses while moving 4�2 inside DR�

DT� = �A � diag�1
1

3
�T1

1

5
�T2

1

7
�T3�

DR� = �A � diag�0 �R1 3�R2 5�R3� �44�

The transformation matrices �43� are reused without change to
produce MF

e =HT
TDT�HT+HR

TDR�HR. If �T1=�T2=�T3=1 and
�R1=�R2=�R3=4�2 one obtains the well known CMM of Archer
�1963�, see Przemieniecki �1968, p. 296�, as a valuable check.
Configuration �44� already accounts for linear momentum conser-
vation, which is why the upper diagonal entries are not param-
�T1=1 and �R1=4�2, whence the template is reduced to four
parameters

MF
e = �A � HT

T

1 0 0 0

0
1

3
0 0

0 0
1

5
�T2 0

0 0 0
1

7
�T3

�HT

+ �A � HR
T


0 0 0 0

0 4�2 0 0

0 0 3�R2 0

0 0 0 5�R3

�HR �45�

Because both HT and HR are nonsingular, choosing all four pa-
rameters in Eq. �45� to be nonnegative guarantees that MF

e is

nonnegative. This useful property eliminates lengthy a posteriori
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checks. Setting �T2=�T3=�R2=�R3=0 and �=0 yields the cor-
rect mass matrix for a rigid beam, including rotary inertia. This
simple result highlights the physical transparency of spectral
forms.

Block-Diagonal Mass Parametrization

Template �45� has a flaw: It does not include the DLMM. To
remedy the omission, a block diagonal form, with four free pa-
rameters: ��T1 ,�T2 ,�R1 ,�R2	 is separately constructed

MD
e = MDT + MDR

= �A � 

1

2
�T1 � 0 0

�T1 � �T2�2 0 0

0 0
1

2
− �T1�

0 0 − �T1 � �T2�2

�
+ �A � 


0 �R1 � 0 0

�R1 � �R2�2 0 0

0 0 0 − �R1�

0 0 − �R1 � �R2�2
�

�46�

Four parameters can be merged into two by adding

MD
e = �A � 


1

2
�1 � 0 0

�1 � �2�2 0 0

0 0
1

2
− �1�

0 0 − �1 � �2�2

� �47�

where �1=�T1+�R1 and �2=�T2+�R2. Sometimes it is convenient
to use the split form �46�, for example in lattices with varying
beam properties or lengths, a topic not considered there. Other-
wise Eq. �47� suffices. If �1=0, MD

e is diagonal. However for
computational purposes a block diagonal form is just as good and
provides additional customization power. Terms in the �1,1� and
�3,3� positions must be as shown to satisfy linear momentum
conservation. If angular momentum conservation is imposed a
priori it is necessary to set �2= �1/2��2, and only one parameter
remains.

The general template is obtained as a linear combination of
MF

e and MD
e

Me = �1 − �0�MF
e + �0MD

e �48�

Summarizing, there is a total of seven parameters to play with:
Four in MF

e , two in MD
e , plus �0. This is less that the 9-to-11 that

would result from a full entry-weighted parametrization, so not all
possible mass matrices are included by �48�.

Fourier Analysis

An infinite lattice of identical beam elements of length � is set up.
Plane waves of wave number k and frequency � propagating over

the lattice are represented by
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v�x,t� = Bv exp�i�kx − �t��, ��x,t� = B� exp�i�kx − �t��

�49�

At each typical lattice node j there are two freedoms: v j and � j.
Two patch equations are extracted, and converted to dimension-
less form on defining 
=k� and �=�c /�, in which
c=EI / ��A�4� is a reference phase velocity. �Do not confuse with
c0.� The condition for wave propagation gives the characteristic
matrix equation

det�Cvv Cv�

C�v C��
� = CvvC�� − Cv�C�v = 0 �50�

where the coefficients are complicated functions not listed there.
Solving the equation provides two equations: �a

2 and �o
2, where a

and o denote acoustic and optical branch, respectively. These are
expanded in powers of 
 for matching to the continuum. For the
full mass matrix one obtains

�a
2 = 
4 + C6
6 + C8
8 + C10


10 + ¯ , �o
2 = D0 + D2
2 + ¯

�51�

Coefficients up to 
12 were computed by Mathematica. Relevant
ones for parameter selection are

C6 = − �/12 − �2

C8 = �2 − 15�R2 − �T2 + 5��1 + �� + 60�1 + 3���2

+ 720�4�/720

C10 = �− 44 + 35�T2 − 3�T3 − 282� + 525�R2�1 + �� − 105�R3�1

+ ��+ 1,575�R2��1 + �� − ��3�T3 − 35�T2�4 + 3��

+ 35��17 + 5��3 + ����+ �− 2,940 + 12,600�R2�1 + ��

+ 420�2�T2�1 + �� − 5��7 + 6��2 + ������2− 25,200�2

+ ��7 + 6����4 − 302,400�1 + ���6�/�302,400�1 + ���

D0 = 25,200�1 + ��/�7 + 105�R2 + 3�T3 + 2,100�2�2�

D2 = �2,100�1 + ���− 56 − 35�T2 + 3�T3 − 63� + 3�T3�

+ 105�R3�1 + ��− 525�R2�1 + ��2 − 35�T2��2 + ���

+ 2,100�1 + ���3,360� + 6,300�2 + 2,100�3��2

+ 52,920,000�2�1 + ���4�/�7 + 105�R2 + 3�T3

+ 2,100�2�2�2 �52�

For the block-diagonal template �47�

�a
2 = 
4 + F6
6 + F8
8 + F10


10 + ¯ , �o
2 = G0 + G2
2 + ¯

�53�

where

F6 = − 24�2 − �, F8 =
2880�2 − 5� + 360�2� − 1 − 5� + 5�2

720

G0 =
6

�2�1 + ��
, G2 =

24�2 + � − 2

2�2�1 + ��
�54�

The expansions for the seven-parameter template �48� are consid-
erably more complicated than the previous ones, and are omitted

to save space.
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Template Instances

Seven useful instances of the foregoing templates are identified
and described in Table 3. Table 4 lists the template signatures that
generate those instances. These tables include two existing mass
matrices �CMM and DLMM� re-expressed in the template con-
text, and five new ones. The latter were primarily obtained by
matching series such as Eqs. �52� and �53� to the continuum ones
�Eqs. �33� and �34��, up to a certain number of terms as described
in Table 3.

For the spectral template it is possible to match the flexure
branch up to O�
10�. Trying to match O�
12� leads to complex
solutions. For the diagonal template the choice is more restrictive.
It is only possible to match flexure up to O�
6�, which leads to
instance DLMM. Trying to go further gives imaginary solutions.
For the seven-parameter template �48� it is again possible to
match up to O�
10� but no further. The instance that exhibits the
least truncation error while retaining positivity is FBMG. This is
globally optimal for the Bernoulli-Euler limit �=�=0, but the
results are only slightly better for the reasons discussed in section

Table 3. Useful Template Instances for Timoshenko Beam Element

Instance name Description

CMM Consistent mass matrix of Archer. Matches flexural
up to O�
6�.

FBMS Flexural-branch matched to O�
10� with spectral �L
template �45�.

SBM0 Shear branch matched to O�
0� while flexure fitted

SBM2 Shear branch matched to O�
2� while flexure fitted

DLMM Diagonally lumped mass matrix with rotational mas
to match flexural branch to O�
6�.

CDLA Average of CMM and DLMM. Matches flexure bra
O�
8�.

FBMG Flexural branch matched to O�
10� with seven-para
template �48�.

Table 4. Template Signatures for Mass Matrices of Table 3

Instance
name

Template
form

Template si

�T2 �T3 �R2 �

CMM �45� 1 1 4�2 4

FBMS �45� 2 26/3 4�2+� /3

SMB0 �45� 2 −7/3 4�2+� /3 20

SMB2 �45� 2 −7/3 c2 20

DLMM �47�

CDLA �48� 1 1 4�2 4

FBMG �48� c3 c4 c5

Note: c1= �25�3+120�2+�2�45−300�2�+3��7−20�2+1200�4�� / �1
c3= �9+
105� /10; c4= �61
105−483� /18; c5= �
105−1�� /30; c
+120,960��4+5
105�48�+87�2+40�3�−24�6+21�+20�2��2+720�
JOURNA
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entitled “Optimal mass matrices for the Bernoulli-Euler Beam”.
Matching both flexure and shear branches leads to instances
SBM0 and SBM2, which have the disadvantages noted in Table 3.

The exact dispersion curves of these instances are shown in
Fig. 12 for �=48/125 and �2=1/75, which pertains to a thick
beam. On examining Fig. 12�c� it is obvious that trying to match
the shear branch is difficult; the fit only works well over a tiny
range near 
=0.

Vibration Analysis Example

The performance of the seven instances of Tables 3 and 4 for
vibration analysis is evaluated on a simply supported prismatic
beam of length L divided into Ne equal elements. The cross sec-
tion is rectangular with width b and height h. The material is
isotropic with Poisson’s ratio �=0. Three different height-to-span
ratios h /L, characterizing a thin, moderately thick and thick
beam, respectively, are considered. Results for these configura-
tions are collected in Figs. 13–15, respectively, for the first three

Comments

A popular choice. Fairly inaccurate, however, as beam gets
thicker. Grossly overestimates intermediate frequencies.

e� Converges faster than CMM. Performance degrades as beam
gets thicker, however, and element becomes inferior to
CDLA.

10� Custom application: To roughly match shear branch and
cutoff frequency as mesh is refined. Danger: Indefinite for
certain ranges of � and �. Use with caution.

8� Custom application: To finely match shear’ branch and cutoff
frequency as mesh is refined. Danger: Indefinite for wide
ranges of � and �. Use with extreme caution.

ed Obvious choice for explicit dynamics. Accuracy degrades
significantly, however, as beam gets thicker. Underestimates
frequencies. Becomes singular in the Bernoulli-Euler limit.

Robust all-around choice. Less accurate than FBMS and
FBMG for thin beams, but becomes top performer as aspect
ratio increases. Easily constructed if CMM and DLMM
available in code.

Known to be the globally optimal positive-definite choice for
matching flexure in the Bernoulli-Euler limit. Accuracy,
however, is only marginally better than FBMS. As in the case
of the latter, performance degrades as beam gets thicker.

e Fit to continuum frequencies

�1 �2 �0 � f
2 �flexural� �s

2 �shear�

Up to 
6 None

Up to 
10 None

Up to 
10 Up to 
0

Up to 
8 Up to 
2

0 1
2�2 Up to 
6 None

0 1
2�2 1 /2 Up to 
8 None

1/12 1
2�2 c7 Up to 
10 None

��; c2= �−19+10�2�90�2−1�−30��1−26�2+120�4�� / �75�1+��2�;
8�+727�2+840�3+22,128�2+19,848��2−10,080�2�2−113,040�4

��4� / �60�21+
105��1+���; and c7= �3−5
5/21� /8.
branch

egendr

to O�


to O�


s pick

nch to

meter
gnatur

R3

�2

c1

��2

��2

�2

c6

5�1+�

6= �−4
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vibration frequencies. All calculations are rendered dimensionless
using the scaling techniques described previously.

Vibration accuracy is displayed as log-log plots of dimension-
less natural frequency error versus Ne. The error is displayed as
d=log10���comp−�exact � �, which gives at a glance the number of
correct digits d, versus log2Ne for Ne=1–32. Should the error be
approximately controlled by a truncation term of the form �
m,
the log-log plot should be roughly a straight line of slope �m,
since 
=k� =kL /Ne.

Fig. 12. Dimensionless dispersion curves of Timoshenko mass matric
�0

2=1/75=0.0133. �a� Curves for standard consistent and diagonall
matched FBMS and CDLA; �c� curves for the shear-branch-matche
FBMG.

Fig. 13. Accuracy of first three natural vibration frequencies of SS p
model with �0=�0=0. Exact �to 12 places� frequencies
=88.826439609804. Cutoff frequency +�.
254 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 200
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The results for the Bernoulli-Euler model, shown in Fig. 13,
agree perfectly with the truncation error in the � f

2 branch as listed
in Table 4. For example, top performers FBMG and FBMS gain
digits twice as fast as CMM, DLMM, and SBM2, as the formers
match � f

2 to O�
10� whereas the latter do that only to O�
6�.
Instances CDLA and SMB0, which agree through O�
8�, come in
between. The highly complicated FBMG is only slightly better
than the simpler FBMS. Their high accuracy should be noted. For

ances of Tables 3 and 4 for a thick beam with �0=48/125=0.384 and
ed matrices CMM and DLMM; �b� curves for the flexural-branch-
0 and SBM2; and �d� curve for flexure-branch globally optimized

tic beam using the mass matrices of Tables 3 and 4. Bernoulli-Euler
2=9.869604401089, �2=4	2=39.478417604357, and �3=9	2
es inst
y lump
d SBM
risma
�1=	
6
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example, four FBMS elements give �1 to six figures:
9.86960281. . . versus 	2=9.86960440. . ., whereas CMM gives
less than three: 9.87216716. . .. The “accuracy ceiling” of approxi-
mately 11 digits for FBMS and FBMG observable for Ne�16 is
due to the eigensolver working in double precision �� 16 digits�.
Rerunning with higher �quad� floating point precision, the plots
continues marching up as straight lines before leveling at about
25 digits.

On passing to the Timoshenko model, the well ordered
Bernoulli-Euler world of Fig. 13 unravels. The culprits are � and
�. These figure prominently in the branch series and grow with-
out bound as Ne increases, as discussed in section entitled “Beam
Element.” Fig. 14 collects results for a moderately thick beam
with h /L=1/8, which corresponds to �0=3/80 and �0

2=1/768.
The Bernoulli-Euler top performers, FBMS and FBMG, gradually
slow down and are caught by CDLA by Ne=32. All other in-
stances trail, with the standard ones: CMM and DLMM, becom-
ing the worst performers. Note that for Ne=32, CMM and DLMM
provide only 1 digit of accuracy in �3 although there are
32/1.5�21 elements per wavelength

Fig. 14. Accuracy of first three natural vibration frequencies of SS pr
with �0=3/80=0.0375 and �0

2=1/768=0.00130, pertaining to a
frequencies �1=9.662562122511, �2=36.507937703548, and �3=7
Fig. 15 collects results for a thick beam with h /L=2/5, corre-

symm a44�

JOURNA
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sponding to �0=24/625 and �0
2=1/75. The foregoing trends are

exacerbated, with FBMS and FBMG running out of steam by
Ne=4 and CDLA emerging as best for Ne�8. Again DLMM and
CMM trail badly.

The reason for the performance degradation of FBMS and
FBMG as the Timoshenko beam gets thicker is not clear as of this
writing. Eigensolver accuracy is not responsible since rerunning
the cases of Figs. 14 and 15 in quad precision did not change the
plots. A numerical study of the � f

2 truncation error shows that
FBMS and FBMG fit the continuum branch better than CDLA
even for very thick beams. Possible contamination of vibration
mode shapes with the shear branch was not investigated.

Optimal Mass Matrices for the Bernoulli-Euler Beam

It was observed in the numerical vibration experiments that for
the Bernoulli-Euler model, the top performers �in that limit�
FBMS and FBMG furnished near identical results despite coming
from templates with four and seven parameters, respectively. The
near coalescence can be explained as follows. Specializing the

beam using the mass matrices of Tables 3 and 4. Timoshenko model
ular cross section with h /L=1/8 and �=0. Exact �to 12 places�
68024537. Cutoff frequency �cut=12/ ��0�0

2�=495.741868314549.
FBMS instance to �=�=0 yields
MS
e =

�A�

12,600

4818 729 � 1482 − 321�

172�2 321 � − 73�2

4818 − 729�

symm 172�2
� = �A � 


0.382381 0.057857 � 0.117619 − 0.025476�

0.013651�2 0.025476 � − 0.005794�2

0.382381 − 0.057857�

symm 0.013651�2
� �55�

The flexural branch of the continuum Bernoulli-Euler model is exactly � f
2=
4. A FEM patch with mass �55� matches it up to O�
10�, and

has a truncation error C12

12, with C12=−41/18,144,000�−2.25�10−6.

Specializing the FBMG instance the same way yields

MG
e =

�A�

30,240

a11 1788 � a13 − 732�

a22�
2 732 � a24�

2

a33 1788�
2
� = �A � 


0.389589 0.059127 � 0.110410 − 0.024206�

0.012340�2 0.024206 � − 0.005548�2

0.389589 − 0.059127�
2
� �56�
ismatic
rectang
5.8949
0.012340�
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in which a11=a33=12,396−60
105, a13=2,724+60
105,
a22=a44=117+25
105, and a24=−219+5
105. The flex-
ure branch truncation error is again C12


12 with
C12= �25
105−441� /91,445,760�−2.06�10−6, which is only
about 10% smaller. Consequently the practical difference between
the optimal spectral matrix and the globally optimal one is not
significant. Because both truncation errors are of the same sign, a
C12-canceling linear combination that keeps mass positivity is not
feasible.

Historical Notes and Comments

As narrated in Felippa �2001c�, the first appearance of a mass
matrix in a journal article occurs in two early-1930s papers by
Duncan and Collar �1934, 1935�. Therein it is called “inertia ma-
trix” and denoted by �m�. The original example of Duncan and
Collar �1934, p. 869� displays the 3�3 diagonal mass of a triple
pendulum. In the book of Frazer et al. �1938� the notation changes
to A.

DLMM dominate pre-1963 work. Computational simplicity
was not the only reason. Direct lumping gives an obvious way to
account for nonstructural masses in simple discrete models of the
spring-dashpot-pointmass variety. For example, in a multistory
building “stick model,” where each floor is treated as one DOF in
lateral sway under earthquake or wind action, it is natural to take
the entire mass of the floor �including furniture, isolation, etc.�
and assign it to that freedom. Nondiagonal masses appeared oc-
casionally in aircraft matrix analysis—e.g., wing oscillations in
Sec. 10.11 of Frazer et al. �1938�—as a result of measurements.
As such they necessarily accounted for nonstructural masses due
to fuel, avionics, etc.

The formulation of the CMM by Archer �1963, 1965� was a
major advance. The underlying theory is old; in fact it follows
directly from the Lagrange dynamic equations, which is a two-
century-old proven technique to produce generalized masses. If T
is the kinetic energy of a discrete system and u̇i�xi� the velocity
field defined by the nodal velocities collected in u̇, the master

Fig. 15. Accuracy of first three natural vibration frequencies of SS pr
with �0=24/625=0.384 and �0

2=1/75=0.0133, pertaining to a r
frequencies �1=8.287891683498, �2=24.837128591729, and �3=4
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�system level� M can be defined as the Hessian of T with respect
to nodal velocities

T =
1

2��

�u̇iu̇id�, ui = ui�u̇�, M =
�2T

�u̇ � u̇
�57�

This matrix is constant if T is quadratic in u̇. Some implementa-
tion decisions had to be worked out before use in FEM: localiza-
tion by applying �57� element-by-element and the master M
assembled, and interpolation of the velocity field by the same
shape functions as displacements. These in turn had to wait until
three tools became well established by the early 1960s: �1� the
direct stiffness method of Turner; �2� the concept of shape func-
tions; and �3� the FEM connection to Rayleigh-Ritz. The critical
ingredient �3� was established in the thesis of Melosh �1962�
under Harold Martin, and the subsequent journal article by
Melosh �1963�. The link to dynamics was closed with Archer’s
contributions, and CMM became a staple of FEM. But only a
loose staple. Problems persisted:
1. Nonstructural masses are not naturally handled by CMM. In

systems such as ships or aircraft, the structural mass may be
only a small fraction of the total.

2. It is inefficient in some solution processes, notably explicit
dynamics.

3. It may not give the best results compared to other alterna-
tives. For example, if the stiffness matrix results from a con-
forming displacement interpolation, pairing it with the CMM
becomes conventional Rayleigh-Ritz, and thus provides
upper bounds on natural frequencies. This is not necessarily
a good thing. If the response is strongly influenced by inter-
mediate and high frequencies, as in wave propagation
dynamics, the CMM may give poor results. The weak per-
formance of the CMM displayed in Figs. 14 and 15 for the
Timoshenko beam is not atypical.

4. For elements derived outside the assumed-displacement
framework, velocity shape functions may be unknown or al-
together missing.

Problem �1� can be addressed by constructing “rigid mass el-

beam using the mass matrices of Tables 3 and 4. Timoshenko model
ular cross section with h /L=2/5 and �=0. Exact �to 12 places�
48411234. Cutoff frequency �cut=12/ ��0�0

2�=48.412291827593.
ismatic
ectang
3.1829
6
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ements” accounting for inertia �and possibly gravity or centrifugal
forces� but no stiffness. Nodes of such elements must be linked to
structural �elastic� nodes by multifreedom constraints that enforce
kinematic constraints. This is more of an implementation issue
than a research topic, although numerical difficulties typical of
rigid body dynamics may arise.

Problems 2–4 can be attacked by parametrization. MacNeal
�1970� was the first to observe that averaging the DLMM and
CMM of the two-node bar element gave better results than either
alone. This is covered in the book of MacNeal �1994�. The idea
was further studied by Belytschko and Mullen �1978� using
Fourier analysis. Earlier, Krieg and Key �1972� had already em-
phasized that in transient analysis the introduction of a time dis-
cretization operator brings new compensation phenomena, and
consequently the time integrator and the mass matrix should not
be be chosen separately.

The template approach addresses problems 2–4 by allowing
and encouraging full customization of the mass matrix to the
problem and solution method at hand. The method was originally
developed to construct high-performance stiffness matrices; a his-
torical account and pertinent references are provided in a recent
tutorial by Felippa �2004�. For stiffness-mass pairs it was used by
Felippa �2001a, b� for a Bernoulli-Euler plane beam treated by
Fourier analysis. One idea developed in those papers but not
pursued here was to include the stiffness matrix template in the
customization process. This provides more flexibility but has a
negative side: highly optimized stiffness-mass pairs become sen-
sitive to mesh distortion.

The symbolic derivation scheme used for the EOM �30� was
first used in the thesis of Flaggs �1988�; see also the article by
Park and Flaggs �1984�.

Making K and M frequency dependent was proposed by Prze-
mieniecki �1968�, who expanded both Ke and Me as Taylor series
in �2. The idea was applied to eigenfrequency analysis of bars
and beams, but not pursued further. The approach can be gener-
alized to the template context by making free parameters fre-
quency dependent, as illustrated in the two-node bar example of
the section entitled “Best � by Fourier Analysis.” This may be of
interest for problems dominated by a single driving frequency, as
in some electronic and optical components. For more general use
keeping the parameters frequency independent, as done in the
other two examples, appears to be more practical.

Two powerful customization techniques used regularly for
templates are Fourier methods and modified differential equa-
tions. Fourier methods are limited to separable systems but can be
straightforward to apply, requiring only undergraduate mathemat-
ics. �As tutorials for applied Fourier methods the textbooks by
Hamming �1973, 1998� are recommended.� Modified differential
equation methods, first published in correct form in Warming and
Hyett �1974� are less restrictive but more demanding on two
fronts: mathematical ability and support of a CAS. Processing
power limitations presently restrict these methods to 2D elements
and regular meshes. The selection of template optimization crite-
ria is not yet on firm ground. For example: is conservation of
angular momentum useful in mass templates? The answer seems
to depend on the element complexity.

Results for regular lattices of structural elements have direct
counterparts in a very different area: Molecular physics. More
precisely, the wave mechanics of crystalline solids created in the
XX Century by particle mechanicians, e.g., Born and Huang
�1954� and Ziman �1967�. In crystal models, lattice nodes are
occupied by molecules interacting with adjacent ones. Thus the

“element dimension” � acquires a physical meaning of molecular

JOURNA

 J. Aerosp. Eng., 2006, 
gap. In those applications masses are always lumped at molecule
locations, and atoms vibrate as harmonic oscillators in the poten-
tial well of the force fields of their neighbors. Dispersion curves
govern energy transmission. In a linear atomic chain, the wave-
number range 
� �−	 ,	� is called the first Brillouin zone, a topic
covered by Brillouin �1946� and Jones �1960�. Such a connection
may be of interest as FEM and related discretization methods are
extended into nano-mechanics.
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