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Abstract: Trading on the energy market is a possible way to reduce the electricity costs of charging
electric vehicles at public charging stations. In many European countries, it is possible to trade
electricity until shortly before the period of delivery on so called intraday electricity markets. In the
present work, the potential for reducing the electricity costs by trading on the intraday market is
investigated using the example of the German market. Based on simulations, the authors reveal that
by optimizing the charging schedule together with the trading on the intraday electricity market, the
costs can be reduced by around 8% compared to purchasing all the required energy from the energy
supplier. By allowing the charging station operator to resell the energy to the intraday electricity
market, an additional cost reduction of around 1% can be achieved. Besides the potential cost savings,
the impacts of the trading unit and of the lead time of the intraday electricity market on the costs are
investigated. The authors reveal that the achievable electricity costs can be strongly affected by the
lead time, while the trading unit has only a minor effect on the costs.
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1. Introduction

The increasing penetration of electric vehicles (EVs) makes the operation of public charging
stations—for example, at shopping malls—a more and more interesting business case. In the literature,
different approaches for reducing the operating costs of such charging stations are proposed, like
providing capacity to the frequency regulation market [1–3], using the batteries of the EVs to shave the
peak of an additional base load [4,5], employing renewable energy resources [6,7] or shifting electricity
consumption to off-peak periods of time-of-use (TOU) electricity rates [8,9].

A further approach to reducing the operating costs is the participation in the electricity market.
Numerous publications investigate the charging of EVs with trading on the day-ahead market [10–15].
An intelligent trading on the day-ahead market can lead to a significant reduction of the electricity costs
arising from charging EVs. However, it is hard to realize in practice, since it requires the knowledge or
at least a good prediction of the energy requirements of the EVs that have to be charged on the next day.
Especially for public charging stations, the prediction of the next day’s usage can be very challenging.

In many European countries, like Germany, it is possible to trade electricity until shortly before
the period of delivery on so called intraday electricity markets. For example, the German intraday market
of the European Power Exchange (EPEX SPOT) [16] allows the trading of 15-min contracts until 30 min
before delivery. This makes it possible to reduce the costs of EV charging by trading on the intraday
market without the need to predict future charging demands. However, EV charging with trading
on the intraday market has been paid much less attention in the literature than EV charging with
trading on the day-ahead market. Goebel and Jacobsen [17] proposed an approach for the control of
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EV charging with the provisioning of negative reserves to the regulation market and with trading
of electricity on the intraday market. In this approach, the trading of electricity is not optimized
with respect to the costs. Instead, required electricity is ordered as late as possible, regardless of the
electricity prices. Sánchez-Martín et al. [18] describe a two-stage approach to EV charging with trading
on the electricity market: In the first stage, electricity is traded on the day-ahead market based on
forecasts of EV staying patterns. In the second stage, deviations from the forecasts are handled by
trading on the intraday market. Sánchez-Martín et al. assume the intraday electricity market prices for
the different delivery periods to be constant and they do not consider that previously bought electricity
can be resold. In practice, the price for a certain delivery period can vary over the time, what can make
the reselling of energy profitable.

In the present work, we assume a scenario where the operator or aggregator of multiple charging
stations can receive energy from two different sources: from the energy supplier for an invariant
price and from the intraday electricity market. Technically and legally such a scenario can be realized.
However, this requires the approval of the energy supplier, for example, in exchange for an extra
fee. Energy bought from the intraday market can be resold before it is delivered. In this way it is
not only possible to benefit from periods of low market prices, but additionally, to gain profit from
changes in the prices without the need for speculating on them. The trading decisions are solely based
on currently available information. No forecasts of charging demands or prices are used. Since it is
assumed that the charging stations belong to the control area of the energy supplier, no balancing
charges have to be considered.

We formulate the problem of cost-optimal scheduling of EV charging and energy trading for
the described scenario in the form of a mixed-integer linear program (MILP). In a simulation study,
the proposed approach for reducing the costs for EV charging is evaluated on data from the German
intraday market and is compared to a baseline scenario without the possibility of reselling energy
and to a scenario completely without trading on the energy market. Additionally, we investigate
how a reduction of the lead time and the trading unit of the intraday market affect the potential cost
savings, since such a reduction may happen in the future. Furthermore, we discuss practical aspects of
a realization of the proposed approach, including an evaluation of the compute intensity.

The rest of the paper is organized as follows: Section 2 explains the German intraday market.
In Section 3, the problem is described more in detail and a MILP formulation of it is presented. Section 4
discusses the simulations and its results. Section 5 discusses aspects regarding a realization of the
proposed approach and finally, Section 6 provides a conclusion and outlook.

2. The Intraday Electricity Market

The German EPEX SPOT intraday market allows the trading of electricity on an hourly, as well as
on a 30-min and 15-min basis. The latter means, that electricity for 96 delivery periods (corresponding
to 0:00–0:15, 0:15–0:30, and so on) can be traded. The trading for the 15-min periods of a day starts at
4 p.m. on the previous day and each period can be traded until 30 min before the start of the period.
The trading unit is 100 kW, corresponding to 25 kWh of energy for 15-min trades.

The trading is done by placing buy or sell orders for certain amounts of electricity, certain delivery
intervals and certain maximum and minimum prices, respectively, on the market. Orders that are
fulfilled, are removed from the market. The trading is continuous, meaning that whenever two active
orders match each other, the corresponding transaction is immediately processed. Orders can be
partially processed. For example, if a buy order A for 1000 kW matches a sell order B for 600 kW, then
600 kW are traded and the quantity of the order A is updated to 400 kW.

Since the market offers are not accessible free of charge, we assume a simplified model of the
market in the present work: On the EPEX SPOT website [19], statistics about transactions are available
for each delivery period. This includes the minimum, maximum, and average price of the transactions
so far. Furthermore, the price of the last transaction is provided and is updated at intervals of around
10 min. We assume that this “last price” is a fixed price for buying and selling electricity at the
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corresponding point in time. This simplification is not far from reality, since shortly before, there
existed buy and sell offers with this price on the market.

Figure 1 exemplarily illustrates the workings of the intraday market under the
simplifying assumptions.

Market at 9:00 am

Delivery Price [€/MWh]

10:00–10:15

10:15–10:30

10:30–10:45

10:45–11:00

...

...

20.50

31.36

33.21

26.21

...

...

Market at 9:15 am

Delivery Price [€/MWh]

10:00–10:15

10:15–10:30

10:30–10:45

10:45–11:00

...

...

22.60

30.02

33.21

24.00

...

...

Figure 1. Illustration of the (simplified) workings of the intraday electricity market.

There are different electricity prices for each full quarter of an hour of the day and the price for an
individual quarter can change until 30 min before the quarter starts. In the given example, it would
be for instance possible to buy at 9:00 a.m. energy for the delivery period 10:00–10:15 at a price of
20.5 euros per MWh. At 9:15 a.m., it is possible to resell the purchased energy at a price of 22.6 euros
per MWh. If the energy is not resold until 9:30 a.m., it has to be consumed between 10:00 a.m. and
10:15 a.m.

3. Problem Formulation

We consider an operator of multiple charging stations with a certain maximum charging power
Pmax, each. The day is divided into T scheduling intervals t = 1, . . . , T of length ∆t. Distributed over
the day, N EVs arrive at the charging stations and want to charge. Each EV n has a start interval sn in
which it starts charging, an energy requirement En and a deadline interval fn by which the required
energy has to be charged. The deadline interval must not be earlier than the earliest possible deadline
f e
n = sn + b En

Pmax ·∆t c. We assume fn < T for all EVs n. The energy for charging the arriving EVs can
be either received from the energy supplier at a fixed price psupl or can be bought from the intraday
market. Additionally, it is possible to resell energy on the energy market. The goal is to compute at the
start of each interval t with Nt > 1 connected EVs a cost-optimal schedule of the charging rates for
the connected EVs in the intervals t to T, including the decision how much of the charged energy is
bought from the intraday market and how much energy is resold. The resulting decisions for trading
on the intraday market are immediately implemented. This is illustrated in Figure 2.

The left hand side shows the schedule for two EVs at the beginning of an interval t. For the
intervals t to t + 3, a portion of the charged energy is received from the intraday market. For interval
t + 4, the complete energy is received from the energy supplier since the intraday market price is high.
The right hand side shows the schedule at the beginning of the next interval t + 1. The energy bought
in interval t is now available for the charging in intervals t + 1 to t + 3. However, since the market
prices changed compared to interval t, it is decided to resell the energy that was previously bought for
interval t + 3 and to compensate this by buying energy for interval t + 4. The charging plans for the
two EVs are adjusted accordingly.
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Figure 2. Schedule of the charging of two EVs at the start of two subsequent intervals t and t + 1.

As described in Section 2, the trading on the intraday market has to be done in units u of 100 kW
(respectively 25 kWh for 15-min trades). Furthermore, trades have to be done with a lead time L of at
least 30 min before delivery. These constraints have to be regarded by the scheduling.

The scheduling problem in a certain interval tc can be formulated as MILP as follows:

min
T

∑
t=tc

(
Psupl,t · psupl + Pbuy,t · ptc

market,t − Psell,t · ptc
market,t

)
∆t (1)

s.t.
fn

∑
t=tc

Pn,t · ∆t = En,tc ∀n = 1, . . . , Ntc (2)

0 ≤ Pn,t ≤ Pmax ∀n = 1, . . . , Ntc , t = tc, . . . , T (3)
Ntc

∑
n=1

Pn,t = Pavail,t + Psupl,t + Pbuy,t − Psell,t ∀t = tc, . . . , T (4)

Psell,t = St · u ∀t = tc, . . . , T (5)

Pbuy,t = Bt · u ∀t = tc, . . . , T (6)

St ≤ Sellt ·
Pavail,t

u
∀t = tc, . . . , T (7)

Bt ≤ (1− Sellt)
Ntc ,t · Pmax − Pavail,t

u
∀t = tc, . . . , T (8)

Stc+k = Btc+k = 0 ∀k = 0, · · · , L (9)

Sellt ∈ {0, 1}, St ∈ N, Bt ∈ N ∀t = tc, . . . , T (10)

Psupl,t ≥ 0, Psell,t ≥ 0, Pbuy,t ≥ 0 ∀t = tc, . . . , T (11)

The nomenclature used for the MILP formulation can be found in Table 1.
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Table 1. Nomenclature.

Symbol Description

T Number of scheduling intervals per day
∆t Length of a scheduling interval in hours
Pmax The maximum charging power in kW
u Trading unit of the intraday market in kW
L Lead time of the intraday market in number of intervals
tc The current scheduling interval
Nt The number of EVs connected in interval t
Nt,k The number of EVs connected in intervals t and k
fn Deadline of the n-th connected EV
En,t Energy requirement of the n-th connected EV in interval t
psupl Electricity price for energy from the supplier in money units per kWh
pk

market,t Intraday market electricity price for delivery interval t at time k in money units per kWh
Psupl,t Power received from the energy supplier in interval t in kW
Pbuy,t Power bought on the intraday market for delivery in interval t in kW
Psell,t Power sold on the intraday market for delivery in interval t in kW
Pavail,t Available power (i.e., power bought in previous intervals) for interval t in kW
Pn,t Charging power for the n-th connected EV in interval t in kW
St Number of trading units sold for delivery interval t
Bt Number of trading units bought for delivery interval t
Sellt Flag indicating if energy is sold for delivery interval t

Constraint (2) ensures that the energy required by all connected EVs is charged by their deadlines.
Constraint (4) expresses that the energy charged in an interval has to be bought from the supplier
or from the intraday market, or has to be already available because it was bought from the intraday
market in a previous time step t < tc. Pavail,t denotes the power that was already bought for interval
t and that is not resold so far. Constraints (5) and (6) ensure that the power traded on the intraday
market is a multiple of the trading unit u. The constraints (7) and (8) set the upper bounds for the
number of trading units sold and bought on the intraday market. The upper bound for the sold energy
is the amount of available energy. The energy bought for an interval t must not exceed the energy
that can be consumed at the maximum by the EVs connected in interval t minus the already available
energy for interval t. The usage of the binary variable Sellt in (7) and (8) ensures that energy is not
bought and sold simultaneously for the same interval. The lead time is regarded by constraint (9).

In simulations, we evaluated the charging of EVs with trading on the intraday electricity market
according the given MILP formulation. This is discussed in the following section.

4. Simulation Study

4.1. Use Case

The charging of multiple EVs on 35 different days is simulated. For the intraday market prices,
we use data obtained from the EPEX SPOT website on 35 days between January and April 2018. Since
in Germany several taxes and levies have to be paid for electricity, we add 10 euro cent per kWh
(7 cent renewable energy apportionment, 2 cent taxes and 1 cent additional levies) to the intraday
market prices. For the price psupl for electricity from the energy supplier, we assume 15 euro cent
per kWh, which is at the time of writing (2018) a realistic electricity price for industrial consumers in
Germany [20].

We simulated the charging for different numbers (10, 20, 50 and 100) N of EVs per day. Each EV
has a battery capacity of 120 kWh. The arrival times of the EVs are chosen normally distributed with a
mean of 12 p.m. (interval 48) and a standard deviation of two hours (8 intervals). The initial states
of charge of the EVs are drawn uniformly distributed from [0.3, 0.7] and it is assumed that all EVs
have to be fully charged. The deadline interval of an EV n is set to the earliest possible deadline, plus
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two hours (8 intervals): fn = f e
n + 8. In the simulations, a maximum charging power Pmax of 50 kW

is assumed.
Three scenarios are investigated in the simulation study: The main scenario as described in

Section 3, a baseline scenario in which reselling energy to the intraday market is not possible, and a
scenario without trading on the electricity market. The optimization problem in the baseline scenario
is analogous to that in the main scenario (Equations (1)–(11)) with the exception that the number St

of sold trading units is set to 0 for all intervals t. In the scenario without trading on the electricity
market, all the charged energy has to be obtained from the energy supplier resulting in electricity costs
of ∑N

n=1 En · psupl for the charging on a day.
As solver for the MILP problems, SCIP (Solving Constraint Integer Programs) version 5.0.0 [21] is

used in the study.

4.2. Simulation Results

Figure 3 shows the average daily costs of charging different numbers of EVs per day for the
three considered scenarios. The lead time and trading unit in the main and baseline scenario are set
according to the current policies of the German intraday market. One can see that the trading on the
intraday market can notably decrease the costs compared to purchasing all the energy from the energy
supplier. With 100 EVs per day, the average costs in the main scenario are about 77 euros lower than in
the scenario without energy market trading. This is a cost reduction of about 8.6%. The maximum cost
reduction over the 35 considered days is 278 euros. The costs in the main scenario are lower than those
in the baseline scenario. However, the differences (see Figure 4) are small. With 100 EVs per day the
average daily costs in the main scenario are about 5.7 euros (0.7%) lower than those in the baseline
scenario. The reason the difference is comparatively small is not that only little energy is resold. This
can be seen in Figure 5, which shows the power bought and sold in the main scenario for the different
delivery intervals averaged over the 35 considered days with 100 EVs.

10 20 50 100

EVs

0

100

200

300

400

500

600

700

800

900

C
o
st

s 
[e

u
ro

]

Main Base No Trade

Figure 3. Costs arising from charging different numbers of EVs per day averaged over 35 days.
The costs are shown for the three considered scenarios. A lead time of 30 min (2 intervals) and a trading
unit of 100 kW is assumed for the intraday market trading.
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Figure 4. Average daily savings with the main scenario compared to the baseline scenario for a lead
time of 2 intervals and a trading unit of 100 kW.
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Figure 5. Energy market transactions and power purchased from the energy supplier in the main
scenario for the different delivery intervals of the day averaged over 35 days with a lead time of
2 intervals, a trading unit of 100 kW and 100 EVs.

One can see that a high amount of energy is resold. On average, a power of 7.6 MW (or an energy
of 1.9 MWh, respectively) is sold per day. However, the average savings resulting from this selling
are only 5.7 euros. The variance of the electricity price for an individual delivery interval is too small
to achieve higher savings. Additionally, the trading unit and lead time constraints might obstruct
higher savings.

To investigate the impact of the trading unit on the costs, we repeated the simulations with trading
units of 25, 50, and 75 kW. The average daily savings with these trading units compared to a trading
unit of 100 kW are shown in Figure 6 for the main and the baseline scenario for different numbers of
EVs per day. With an increasing number of EVs per day, the savings tend to decrease because with a
higher number of EVs it is easier to fulfill the constraint of a trading unit of 100 kW. Furthermore, in
most cases the savings are higher for the baseline scenario than for the main scenario. However, all in
all one can say that decreasing the trading unit has only a minor impact on the charging costs.
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Figure 6. Average daily savings with trading units of 25, 50 and 75 kW compared to a trading unit of
100 kW.

In a further study, the effect of decreasing the lead time is investigated. Figure 7 shows the savings
obtained by setting the lead time to 0 and 1 interval(s) (0 and 15 min, respectively) compared to a lead
time of 2 intervals (30 min). The trading unit is set to 100 kW. One can see that a decrease of the lead
time yields a notable reduction of the costs in the main scenario. For the baseline scenario, there are
only minor savings. Figure 8 shows the average daily savings with the main scenario compared to the
baseline scenario with a lead time of 0 intervals and a trading unit of 100 kW.
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Figure 7. Average daily savings with lead times of 0 and 1 interval(s) compared to a lead time of
2 intervals. The trading unit is set to 100 kW.
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Figure 8. Average daily savings with the main scenario compared to the baseline scenario for a lead
time of 0 intervals and a trading unit of 100 kW.

With 100 EVs per day, the costs in the main scenario are about 15 euros lower than in the baseline
scenario. This corresponds to a cost reduction of about 1.8%. Compared to the scenario without trading
on the intraday market, the costs are around 88 euros (10.2%) lower in the main scenario.

5. Discussion of Aspects Regarding a Realization

The realization of the described approach requires the monitoring of the charging stations and
charging processes. Data relevant for the scheduling, like the number of connected EVs, their states of
charge (SoCs) and the intraday market data, has to be transferred to a central scheduler. The intraday
market data can be retrieved over special APIs provided by real time data vendors [22]. To enable a
customer to specify her/his requirements (desired SoC and target deadline), an adequate interface
is required. This can be a user interface at the charging station or in the EV, or a mobile application,
which directly sends the data to the central scheduler. The communication between the controller in
the EV and the charging station can be done over the ISO/IEC 15118 protocol [23]. For the transfer of
data between charging stations and a central back-end, the IEC 62196 standard or the Open Charge
Point Protocol (OCPP) can be used [23]. The latter is an open standard defined by the Open Charge
Alliance—a consortium of different operators and manufacturers of EV charging infrastructure. It does
not only allow the transfer of status information from charging stations to the back-end, but also the
setting of charging profiles for individual charging stations. An overview over different standards for
communication in the context of EV charging can be found in a study by ElaadNL [24].

Another important aspect besides the transfer and availability of input data is the compute
intensity of the optimizations. In each scheduling interval with at least one connected EV, an
optimization has to be performed. Thus, the runtime of an optimization must not exceed the length of
a scheduling interval. The time required for solving a given MILP problem highly depends on the used
solver [25] and the solver’s parameter settings (SCIP has more than 1600 parameters). However, in
order to convey a sense of the compute intensity of the proposed approach, we measured the runtime of
different optimizations on a machine with a Core i5-4460-CPU (3.2 GHz) and 8 GB RAM. The parameter
heuristics/emphasis of SCIP is set to “fast” in the optimizations and all other parameters are left to
their default values. The results of the measurements are summarized in Table 2.
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Table 2. Runtime of the optimizations that have to be performed for the charging scheduling in the
main scenario on one day for different numbers of EVs per day. Shown are the minimum, average and
maximum values over the 35 days. The lead time is set to 2 intervals and the trading unit to 100 kW.

Runtime [s]

EVs Min. Avrg. Max.

10 0.2 0.4 1.7
50 0.4 2.3 6.1

100 0.5 4.1 17.4
200 0.9 6.8 26.0
300 1.2 1118.2 25,816.9

For up to 200 EVs per day, the runtimes are in an acceptable range. With 200 EVs per day the
optimizations of a complete day take on average around 7 s. With 300 EVs per day the runtimes are
significantly higher than with 200 EVs. These runtimes might be too high for a practical realization.
However, as already pointed out, there is potential for reducing the runtimes by choosing other
parameter settings or another solver.

6. Conclusions

In the present work, the charging of electric vehicles with trading on the intraday electricity market
is investigated and a mixed-integer linear programming formulation of the resulting optimization
problem is provided. The proposed approach does not rely on forecasts of future charging demands or
electricity prices. Simulation studies have shown that purchasing energy from the German intraday
market can notably reduce the electricity costs compared to purchasing all the required energy from
the energy supplier. In the considered use case the costs for charging 100 EVs reduce on average
by 72 euros (8%). An additional cost reduction of around 6 euros results from reselling energy on the
intraday market. A reduction of the lead time, which is currently 30 min, would enable further cost
reductions, especially if energy is resold (around 10 euros for 100 EVs per day). A decrease of the
trading unit yields only minor cost reductions.

However, it has to be assumed that the energy supplier charges an additional fee for making it
possible to consume energy simultaneously from the supplier and from the market.

As future work we plan to investigate if the costs can be further reduced by improving the
optimization. By the usage of mixed-integer linear programming it is ensured that all subproblems are
optimally solved. However, usually there are multiple global optima for a subproblem and the choice
of the solution has an impact on the results of the subsequent subproblems. Thus, it is not ensured that
the total costs over a day are optimal. For example, with the help of further constraints, it might be
possible to enforce that solutions are chosen that lead to daily costs lower than those observed in the
described studies.

A further topic of future work can be the tuning of parameters of SCIP in order to increase the
scalability of the optimizations regarding the number of EVs. This can be done with help of tools for
automated parameter tuning like irace [26] or SMAC [27]. The use of irace for the automated tuning of
SCIP parameters on benchmark problems is already described by López-Ibáñez and Stützle [28].
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