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Abstract

The paper discusses the formulation of high-order accurate time-
stepping schemes for transient convection-diffusion problems to be
combined with finite element methods of the least-squares type for
a stable discretization of highly convective problems. Padé approxi-
mations of the exponential function are considered for deriving multi-
stage time integration schemes involving first time derivatives only,
thus easier to implement in conjunction with C? finite elements than
standard time-stepping schemes which incorporate higher order time
derivatives. After a brief discussion of the stability and accuracy prop-
erties of the multi-stage Padé schemes and having underlined the sim-
ilarity between Padé and Runge-Kutta methods, the paper closes with
the presentation of illustrative examples which indicate the effective-
ness of the proposed methods.
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1 INTRODUCTION

A great deal of effort has been devoted in recent years to the development of
finite element methods for the numerical approximation of transport prob-
lems involving convective and diffusive processes. It is well-known that the
standard Galerkin finite element method is not ideally suited to deal with



the spatial discretization of convection dominated transport problems. Many
different ideas and approaches have been proposed to overcome the deficien-
cies of the Galerkin approach in highly convective situations, see for instance
the recent book by K.W. Morton® for a comprehensive review of the various
strategies proposed to deal with highly convective transport.

In the particular case of truly transient problems, which is of interest
in the present paper, the basic issue is not merely a question of achieving
a stable and accurate spatial approximation of the governing convection-
diffusion equation, another equally important aspect being to ensure an ad-
equate coupling between the spatial approximation provided by the finite
element method and the time discretization.?”® In this respect, it has been
shown that the combination of a standard Galerkin spatial discretization
with classical, second-order accurate, time-stepping schemes, such as the
Lax-Wendroff, leap-frog, and Crank-Nicolson methods, fails to produce sat-
isfactory numerical results when convection dominates the transport process.
Actually, the above low-order time integration methods properly combine
with linear finite elements in convection problems only for small values of
the time step, thus severely undermining the utility of such time integration
schemes in practical applications.

Moreover, two other important issues motivate the use of high-order inte-
gration schemes. On one hand, the high order spatial approximation afforded
by the Galerkin method based upon linear elements should not be degraded
by the use of a low order temporal approximation. It is in fact well known
(as first pointed out by Swartz® and Thomée and Wendroff” in 1974) that the
Galerkin approximation to the unsteady convection equation on a uniform
mesh of linear elements offers the advantage of increasing to fourth-order the
spatial accuracy. This is a free gift due to the presence of a consistent mass
matrix in the Galerkin method. On the other hand, the computational cost
of transient problems is directly related to the size of the time step. Thus,
increasing the order of the time-stepping algorithm allows to use larger time
steps maintaining the overall accuracy (which, obviously, must be compara-
ble to the spatial accuracy). For instance, moving from order 2 to 4 in the
time integration scheme implies an increase of the time step size by a factor
of 1/v/At (where At is the time step employed in the second order method).
This can only be done if the properties of the higher order algorithm (for in-
stance, stability) are not degraded. Here, high-order implicit time-stepping
schemes are proposed which adequately combine with C° finite elements in
convection dominated problems because of their simultaneous A-stability and
high order accuracy.

Due to the coupling effects between space and time discretizations, meth-
ods for developing time-accurate finite element methods for highly convective



problems must clearly go beyond the concept of properly adding diffusion to
the under-diffusive Galerkin method, which was the key to the success in
steady state situations. In the transient case, the overall truncation error
of numerical schemes incorporates the effects of both the spatial and the
temporal discretizations and this must be taken into account when gener-
alizing the Galerkin finite element method for truly transient problems. In
particular, by contrast with the steady state case, the truncation error in the
discretization of the linear, one-dimensional convection equation cannot be
expressed in the form of a diffusion operator. Here, the overall truncation
error depends upon the particular time-stepping method used in combination
with finite elements’3™® and it generally involves both even and odd spatial
derivatives of the unknown, thus simultaneously affecting the dissipative and
the dispersive properties of the numerical schemes.

In the present paper, a study has been made of high order time-stepping
methods with the view of identifying schemes that could possibly be used
for a time accurate finite element solution of transient problems describing
convective-diffusive transport. Both explicit and implicit methods are con-
sidered.

To be easily implemented in combination with C° finite elements, high-
order time-stepping schemes for the convection-diffusion equation should not
involve higher-order time derivatives. This is the case for multi-stage schemes
emanating from Padé approximations to the exponential function,®? as well
as for the intimately related Runge-Kutta methods.!%!? Schemes involving
first time derivatives are indeed easier to implement for solving unsteady
convection-diffusion problems than, for instance, the standard third- and
fourth-order accurate Taylor-Galerkin schemes which imply the substitution
of the higher order time derivatives with spatial derivatives.!> Moreover,
some of the implicit methods to be discussed in the present paper possess
the interesting property of unconditional stability in application to hybrid
parabolic-hyperbolic equations and are thus of great interest for solving tran-
sient convection-diffusion problems using time increments much larger than
permitted by the Courant stability limit of explicit methods.

Section 2 is devoted to the derivation of explicit and implicit multi-stage
time integration schemes obtained from Padé approximations to the expo-
nential function. Such schemes are combined with a least-squares type finite
element method free of any extra adjustable parameter (only the usual ones
associated with the time and space discretization, At and h, are employed)
with the view of producing stable approximations of highly convective prob-
lems.

Section 3 gives a brief overview of the properties of explicit and implicit
Padé methods as regards numerical stability and phase and damping re-



sponses. After underlining in Section 4 the similarities between Padé schemes
and Runge-Kutta methods, numerical results are presented in Section 5 to
confirm the accuracy and stability properties of some of the multi-stage meth-
ods considered in the paper. In particular, a new two-dimensional Burgers
test problem is presented for which the analytical solution has been devised,
thus allowing a direct assessment of the numerical results.

Finally, Section 6 presents the main conclusions of the present study.

2 MULTI-STAGE APPROACH TO PADE
APPROXIMATIONS

Consider the convection-diffusion equation

%+a-Vu:yV2u+f, (1)
ot
equipped with appropriate initial and boundary conditions. Here, a desig-
nates the convection velocity, v is the diffusion coefficient, and f a source
term.

The task of integrating forward in time the above convection-diffusion
equation amounts to devise an approximation to the evolution operator

E(At) @ u(t™) — u(t™)

which allows to transport the numerical solution at a given time t" = n At
to the next time station "' = " + At. Now, from the forward Taylor
series development
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= exp (At%) u”, (2)

one notes that the evolution operator E(At) is given by the exponential func-
tion in the above relationship. It is, therefore, apparent that time-stepping
schemes of various orders of accuracy can be devised in the form of Padé
approximations®?'2 to the exponential function. Padé approximations to
e®, where in the present context z = AtZ, are shown in Table 1 in which

ot
classical explicit and implicit time integration methods are easily recognized.
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2.1 Limitations of one-step Padé methods

Explicit time-stepping schemes correspond to Padé approximants R,  in
Table 1. Among these conditionally stable methods, approximant Ry, the
Lax-Wendroff method, and the third-order scheme R3  have been widely used
in the numerical simulation of convective transport problems. The classical
implementation of these methods consists of replacing the successive time
derivatives in Eq.(2) by all the terms left in Eq.(1), in particular, the spatial
derivatives. Then, the time-discrete scheme is discretized in space using, for
instance, the standard Galerkin finite element method.

In application to pure convection, approximant Ry does not properly
combine with linear elements when a consistent “mass” matrix is used. Its
numerical stability in 1D is in fact governed by a restricted Courant con-
dition, namely ¢* < 1/3 where ¢ is the Courant number, as compared to
¢? < 1 for central finite differences. By contrast, the combination of approx-
imant R3o and linear finite elements leads to the one-step Taylor-Galerkin
method?® which is stable in 1D for ¢? < 1, thus indicating that the finite
element equivalent of the Lax-Wendroff finite difference method is a third
order method.

As regards to implicit schemes, the unconditionally stable methods corre-
sponding to approximation R, ; (the Crank-Nicolson scheme), as well as the
fourth-order method derived from approximant R, (the Harten/Tal-Ezer
method!”) have also been widely used for solving convective transport prob-
lems. Here again, the time derivatives in Padé approximants are replaced by
space derivatives to formulate the temporal discretization. The time-stepping
schemes so obtained are non-dissipative in pure convection. They must there-
fore be combined with a Petrov-Galerkin formulation, such as the SUPG,!®
the Galerkin/Least-squares,'® or the Taylor/Least-squares®:??> methods in
order to obtain a stable spatial representation.

When applied to purely convective problems, the above one-step Padé
methods are clearly limited to a third order time accuracy in the case of
explicit schemes and to a fourth order accuracy when an implicit method is
employed. In fact, they are based on the substitution of time derivatives with
spatial derivatives; thus, Padé schemes of higher accuracy would incorporate
third and higher order spatial derivatives, which would prevent the use of C°
finite elements for space discretization. Furthermore, the process of replacing
time derivatives with spatial derivatives becomes very much involved in the
case of multidimensional nonlinear problems.

The situation is even worse when it comes to solving mixed convection-
diffusion problems, since the presence of second spatial derivatives in the
governing equation further reduces the applicability of one-step Padé meth-



ods. It follows that time-stepping schemes of higher accuracy for convection-
diffusion equations should involve first time derivatives only to allow their
combination with the standard finite element method.

2.2 Multi-stage approach

With the view of integrating convection-diffusion equations forward in time
using first time derivatives only, we shall now look at ways of reproducing
higher-order Padé approximations through a multi-stage process. Explicit
methods will be considered first; then, multi-stage schemes corresponding to
implicit Padé approximations will be examined. This is followed in Section
3 by the presentation of a summarized account of the accuracy and stability
properties of the various multi-stage Padé schemes.

2.2.1 Explicit multi-stage methods

Padé approximants R, in the first row of Table 1 yield fully explicit time-
stepping schemes of the type:

1 1
u"t = Eau = u + Atu} + §At2u?t + 6At3u;;t +o o (3)

To avoid second and higher-order time derivatives which are difficult to
express in terms of the spatial derivatives using the governing convection-
diffusion equation, a multi-step approach to the explicit schemes derived
from the R, , approximations has been proposed in the literature.

Second-order method

As far as the second order approximant Ryy is concerned, a two-step
approach has first been suggested by Richtmyer in the finite difference context
(see reference 14). Here, we write the two-step version of the scheme in the
form

untr o= 4 s At (1)
1
Wl =y 4+ Aty

which emanates from the following nested factorization of Padé approxima-
tion RZ,O:

1, 1
1+x+§x:1+x(1+§x> (5)

Third-order method
Similarly, for Padé approximation Rs3,, a three-stage approach has been
suggested to produce a third-order method involving first time derivatives




only. This corresponds to the following factorization of I3 :

1+az+%x2+éx3:1+x(1+%x(1+%x)) (6)
which produces the three-stage scheme
uts = un + s At uy
unts = un 4 s At u?Jr% (7)
u"t = "+ At u?+%

This third-order explicit scheme has been employed in references 15 and 16
in the finite element solution of incompressible flow problems.

Fourth-order method

The above procedure is easily generalized to higher order Padé approx-
imants. For instance, the explicit Padé approximation R, can be trans-
formed into a four-stage method through the following factorization:

L bo 4 oa® 4 i 4 ot = 14 (1+1 (1+1 (1+1))) (8)

which produces the four-stage explicit method

1
utt = w4 pAtup
1 n+i
utts = w4 zAtu,
n+3 n 1 n+3 (9)
u"tr = " + ALy,
1
n+1 n n+y
u u" + Atu,

As will be seen in Section 3, this method does possess the same stability
and accuracy properties as the classical fourth-order explicit Runge-Kutta
method.

Spatial representation

In the above multi-stage schemes, the spatial discretization of the vari-
ous time-discretized equations can be performed according to standard finite
element procedures. Let us write a typical stage equation corresponding to
Eq.(1) with assumed Dirichlet boundary conditions in the form

un+a _ un

a At
Denoting by ¢ € H{({2) an appropriate weighting function, and introducing

the scalar product (¢, ) = [, 1 ¢ df2, the weak form associated with Eq.(10)
reads

= up"? = —a - Vu™? 4 VI 4 s (10)

n+a n
(%#ﬁ) +a(u"p) = (", ) (11)
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where
a (u”+ﬂ,go) = (a : Vu“+5,<,0) + (Z/Vu“+’3,V<,0) . (12)

The spatial discretization of the weak form (11) then produces the system of
equations governing the updated values u™™® of the unknown. At this point
it should be clear that the boundary conditions of the convection-diffusion
problems must be enforced at each stage of the time integration procedure.
The above explicit multi-stage methods are only conditionally stable and
their stability properties shall be briefly discussed in Section 3.

2.2.2 Implicit multi-stage methods

We shall now consider implicit multi-stage methods for the convection-diffusion
equation emanating from Padé approximations in Table 1 corresponding to
m # 0. Actually, not all implicit methods with m # 0 are unconditionally
stable in application to the linear convection—diffusion equation. As discussed
in Section 3, only those approximations which are on or below the diagonal in
Table 1, i.e., the R,, ,,, with m > n, do possess interesting stability properties.

Due to space limitation, we shall limit ourselves to illustrate the derivation
of multi-stage implicit Padé schemes for the fourth-order approximant R
and the sixth-order one Rj33;. Multi-stage schemes corresponding to other
implicit approximants are derived along similar lines.”

Fourth-order method
The implicit method corresponding to Ry o reads

x .172 x .172
l— >+ =]u" =(1+%+=|u" 13
( 2+12>” <+2+12>”’ (13)

and produces the well-known fourth-order scheme of Harten and Tal-Ezer:”

"t = "+ > (ut + ut“) + 0 (utt — utt“) (14)
To avoid second time derivatives, we rewrite expression (13) in the following

factorized form:
x

(1 — 3(1 — g)> "t = (1 + 3(1 + %)) u” (15)

from which the following 4-stage method incorporating two explicit stages



and two implicit ones can be deduced:

1 At
. utte =" 4 SFuyf

explicit stages ) il

u"tr = " + %ut 6

+3 1 At , n+1 (16)
- utte — = —Fu
implicit stages Ap ntd 1
uttt = Sy 0wt

Note that the two implicit stages in (16) are coupled and thus require a
simultaneous solution.
The weak forms associated with the above explicit stages are given by

(Wh,g) = (W) + L) - alu”, o) -
(W*3,0) = (u",9) + L5, 9) = a(u"*5, )]
We associate the following incremental unknowns
Aun—l—% un-i—% _ un-i—%
AU = { Ayn+! } = { gt (18)
with the implicit stages in Eq.(16), which then become
AU = AtA AU, + F, (19)
where
A - 1 l 2 —1]
611 1 |’
(20)

After substitution of the time derivatives in Eq.(19) by the original equa-
tion, Eq.(1), (i.e. substituting time derivatives with spatial derivatives) we
obtain the following weak form corresponding to the two implicit stages

(AU, ¢) — 0(AU, @) — l(Af,¢) — (F,¢) = 0, (21)
where
HAU,p) = Atfgcp.A [~a VAU + vv2AU] 42,
UAf.@) = At [ o-AAfdL, 22)
A frt+g n+2 _ rn+g
Af = { A;"“ } - { §n+1_;n+% }’

10



2
and @ € (H{(12)) .

A more compact formulation of the multi-stage Ry 2 scheme can be ob-
tained through a fourth-order generalization of Simpson’s integration rule.’
The result reads as follows:

1
AU Aﬁun+% u"ts —
- Ayntl! - umtt — un-{—%

uy (23)
- ale el
241 -1 8 5 t
u?+1

and the associated weak form is again given by Eq.(21) with the following
definitions

7 1 An+% n+%_ n
A5 2] e

) (24)
F = %{ }(—a-Vu“ + vV2u® + f7).
1
Sixth-order method
Considering now approximation Rj 3, it produces the time scheme
r  a? x? r  a? x?
1 — — _ = — n+l = 1 — — — n 25
( 2 " 10 120)” (+2+1o+120>”’ (25)

which reads

un—i—l —un 1 At AtQ
T = () g (o) + g (v i) (26)

Scheme (26) is sixth-order accurate in the time step A¢. To implement it us-
ing first time derivatives only, the following nested factorization of expression
(25) is introduced

(15050 ) = (o (fue ) o

This leads to a multi-stage version of Rjz3 involving three explicit stages

11



followed by three implicit ones:

n+Lt _ .n At n
Utz = ut + Uy
. . 1
explicit stages< y"ts = " + % ?Jr“
1 n+
W=t Sy (28)
11
umte — gt = f;u;”’l
. o . 4 =
implicit stages ¢ ¢"t5 — 2t = —%u;&”
4
n+<
un+1 — % : 5 + U/n+2

The weak forms associated with the explicit stages of the multi-stage R3 3
scheme are as follows

(W™=, 0) = (u,9) + 2L[(f*, 0) — a(u”, )]
(W3, 0) = (u", ) + A", 9) — a(u™t 3, )] (29)
(W"3,0) = (u" ) + A5, ) — a(u"3, )]

As before, we associate incremental unknowns with the implicit stages. Here,
they are defined by

Aun+% ,UITL+% _ uTL‘F%
11 11 4

AU = Aynt p = vt —u"ts 5. (30)
Aun-i-l un—i—l _ un+%

In this manner, the implicit stages can be written as in Eq.(19) with

3 _1

10 5 U
A = r 7 _ L

60 60 12

1 1 1

(31)

(—a SVutts 4 pViants 4 f“+%) )

Again, substituting the time derivatives by the original equation, Eq.(1), the
weak form corresponding to the three implicit stages is Eq.(21) with

Afn-i—% fn+i_ fn+%
Af =q Afrtts o= q frie - s (32)
Afn+1 fn+1 _ fn-i—%

12



3

and ¢ € (H(IJ(Q)) . In this case, we can also find a more compact formu-
lation of the multi-stage scheme using a generalization of Simpson’s rule, it
yields the following three-stage sixth-order method:

Au"*’“ un-i—a _ un
AU = Aunth Y = B ynte
Ayl untl — o tB
11+v5 25—+v5 25—-13v5 V65-1 uy’

upte

= 55| —2v5  14V5 14v5 25 e

t
Vh—1 25—-13v5 25—+/5 11++/5 up !
(33)
where o = (5—1/5)/10 and 8 = (5 ++/5)/10. The weak form corresponding
to this more compact multi-stage scheme is also determined by Eq.(21) with

49 —13v5 12(2—-+5) V51
A = & 26v/5 12v/5 —2v/5

61 — 13v/5 36 11++/5
Afn+o¢ fn+a _ fn
Af — AfnJrB — fn+B o fn+a (34)
Afn—i—l fn—l-l o fn+,3

12(5 — V/5)
F = £ 24/5 (—a-Vu" + vV2u® + 7).
12(5 — v/5)

Remarks:

1. When using the above high-order accurate implicit methods in com-
bination with finite elements for spatial discretization, the dimension
of the system of semidiscrete equations to be solved at each time step
is, as we have seen, increased (doubled for the fourth-order method,
tripled for the sixth-order one) with respect to traditional second or-
der methods, such as the Crank-Nicolson scheme. This is unfortunately
the price to pay to obtain methods which are simultaneously high order
accurate and A-stable. However these high-order time schemes permit
the use of larger time-step values for an identical global time accuracy.

2. When dealing with pure convection problems it is generally possible
to express the second time derivative of the unknown in terms of spa-
tial derivatives. It follows that multi-stage schemes incorporating both

13



first and second time derivatives can be employed for solving problems
describing purely convective transport. In this respect, approximation
Ry 5 can be used directly in pure convection problems, as shown in
references 3,4 where scheme (14) is used directly in combination with
linear elements for spatial discretization.

3. If we admit second derivatives, the sixth-order approximation Rj3 3 can
also be specialized to deal with pure convection problems. The result
of its factorization in the form

X X Z‘Q x x I2
20 Ze 5 et = 1+ 20+ 245 ar 35
( 5 5+60)>“ <+2(+5+60)>“ (35)

is a four-stage method including two explicit phases and two implicit
ones as follows:

n+i n At, n At? n

u™s = w4+ ZFup 4+ Soug
1 n+x

utr o=t + Gy T (36)
4 2

uts = gyt — —%tu?H + —AGS upt!

ntl ntl | At nt3

u = w2 4 Sy,

2.3 Least-squares spatial discretization of implicit Padé
schemes

So far, a conventional Galerkin formulation has been tacitly assumed for the
spatial representation of the convection-diffusion equation. As is well known,
this fails to produce stable results when convection dominates the transport
process, especially when the Galerkin finite element method is combined with
a non-dissipative time integration scheme, such as the R, , Padé methods
(see Section 3). A Petrov-Galerkin form of the method of weighted residu-
als should therefore be introduced to avoid unphysical oscillatory results in
problems characterized by a high value of the Péclet number. In the present
context of purely transient problems, a modified weighting of the residual
of the convection-diffusion equation can be obtained using a least-squares
approach, as first suggested by Carey and Jiang?! for second order time-
stepping schemes and subsequently generalized by Park and Liggett?? for
third and fourth order methods. The weighting function does not depend
on any new adjustable parameter. In fact, the added diffusion depends on
the time step employed in the integration scheme. In this Section, the above
least-squares formulation is generalized to the case of an A-stable multi-stage
Padé scheme.

14



2.3.1 Least-squares formulation of the Padé scheme

The strong form corresponding to Eq.(21) is given by Eq.(19) in which the
time derivative is replaced with spatial derivatives. This gives

F(AU) = R (37)
where
F(AU) = [I+ AtA(a-V-vV?)| AU
R = AtAAf + F (38)
The least-squares problem associated with Eq.(37) is defined by
F"FAU) = F' R (39)

where F* is the adjoint operator of F. The weak form corresponding to this
relationship is given by

(F*"F(AU),¢) = (F'R,¢). (40)

Furthermore, in view of the property of adjoint operators, Eq.(40) can be
transformed to

(F(AU), F(¢)) = (R, F(¢)), (41)

Now, replacing in this relationship operators F and R from their defini-
tion in Eq.(38) yields the following expression for the weak form associated
with the least-squares formulation of the multi-stage implicit Padé problem:

(AU + At Ala- VAU —vV2AU] , o+ At Ala - Ve —vV39))

= (F+AtAAf, o+ At Ala- Ve —vV3p))
(42)

At this point it is clearly apparent that the Padé-Least squares formula-
tion naturally introduces modified weighting functions that possess the same
tensorial structure as the SUPG and Galerkin/Least-squares weighting func-
tions, but without any adjustable parameter (apart from the usual ones: At
and h) in the linear combination of the standard Galerkin weighting function
and the added functions.

As with other Petrov-Galerkin formulations, the added terms to the stan-
dard Galerkin weighting function are assumed to only affect the element
interiors and Eq.(41) is, therefore, rewritten in the form

(F(AU), ) + MY [ F(AU)-Ala- Ve - 1V3p] d0 =

(R, @) + AtZ/Q R-Ala Vo - vVg| 0, (43)

15



with index e ranging from 1 to the number of elements in the finite element
discretization of (2. For rectangular bilinear elements in 2D or trilinear el-
ements in 3D, one has that V?p = 0 within each element. This is also the
cases with linear triangles and tetrahedra. However, this term cannot be ne-
glected if higher-order elements are used. It is important to notice that the
previous equation is obviously consistent with the high-order time integra-
tion schemes developed. It differs from the standard Galerkin one by terms
proportional to Af. Namely,

AtZ/ [F(AU) - R]- Ala- Ve - vV3| d2.

This term, however, is of order At"*™*1 where m and n characterize the
Padé approximation R, ,,, because Eq.(37) is already discretized in time and
thus of order n + m.

3 Properties of Padé approximations

3.1 Stability analysis

The spatial discretization of the convection-diffusion equation using finite
elements leads to the following system of differential equations to be solved
at each station of the time integration procedure:

du

i R(u) (44)
where u is the vector collecting the nodal values of the unknown and R(u)
stands for the nodal loads arising from the discretization of the first- and
second-order spatial operators.

In order to discuss the stability of any time-integration method applied to
Eq.(44), we first define the eigenvalues A of the spatial discretization operator
R as

R(v) = \v (45)

where v is the eigenvector associated to the eigenvalue \.

If R(u) corresponds to the spatially discrete form of a diffusion operator,
the eigenvalues are purely real and negative. On the other hand, if R(u)
arises from the discretization of a convection operator, its eigenvalues are
complex with a negative real part if upwind approximations are employed,
whereas the real part is zero and the eigenvalues are purely imaginary when-
ever a central spatial approximation (e.g., the Galerkin projection) is used.
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Figure 1: Stability domain of explicit Padé and Runge-Kutta methods of order s.

The stability of the method is ensured if and only if the time step is such
that the value of the modulus of the amplification factor G = v /u" is
less than unity for all the eigenvalues of the discretization operator R. By
definition, the amplification factor G' of a Padé approximation R, ,, has the
same structure as the approximation itself:

G = Rum(\AL). (46)

It follows that Table 1 contains the amplification factors of all Padé approx-
imations considered herein, provided we pose x = \At.

In situations where diffusive effects are small with respect to the convec-
tive ones, the eigenvalues of R are distributed close to the imaginary axis of
the AAt complex plane. A time integration method whose stability region
encloses part of the imaginary axis is then necessary.

In the frame of explicit methods, the forward Euler first-order scheme, the
stability region of which does not enclose any portion of the imaginary axis
of the AAt complex plane, has therefore to be rejected in favor, for instance,
of higher-order explicit Padé approximations or Runge-Kutta methods. As
shown in Figure 1 from reference 11, explicit methods of higher order do en-
close a portion of the imaginary axis. For example, the fourth-order explicit
Padé method and the equivalent classical fourth-order Runge-Kutta method
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cut the imaginary axis at £2v/2 (see Figure 1) and since their absolute sta-
bility region contains a finite portion of the imaginary axis of the A At plane,
the methods can be used in convection dominated situations. However, even
if an explicit method has a stability domain which encloses part of the imagi-
nary axis, the problem of a maximum allowable time step still remains. This
is actually the case for all explicit methods.

We have to turn to implicit methods in order to reach unconditional
stability. The stability domain then encloses the whole left half-plane of
the AAt complex plane, including the imaginary axis. Some implicit Padé
approximations do possess the interesting property of unconditional stability
or A-stability. As shown in references 10,12, a Padé approximation R, ,, is
unconditionally stable if it satisfies the condition:

m—2 < n <m-<= R,, is A-stable (47)
It follows that the implicit Padé approximations
RO,I, Rl,la RO,Z, R1,2a R2,2a Rl,?n RZ,S, R3,3

are A-stable and therefore potentially interesting for the time integration of
convection-diffusion equations.

Note that these results do no contradict the second Dahlquist barrier
theorem'? because the previous cited implicit Padé approximations for orders
3 or higher are not linear multistep techniques. They have several implicit
stages.

3.2 Phase and damping responses

The accuracy properties of explicit Padé schemes have been discussed else-
where (see for instance references 3 and 4) and will not be considered any
further herein. We shall instead concentrate on the phase and damping re-
sponses of the implicit multi-stage Padé schemes.

To analyze the accuracy properties of such implicit schemes, we consider
their application to the linear convection-diffusion equation

u u 2y
g—t +a g—x =v %, (48)

using a uniform mesh of linear elements of size h. We then substitute a
Fourier mode e into the resulting discrete scheme and, defining the di-
mensionless wave number & = £k h, obtain the eigenvalues of the spatial
discretization operator in the form

A= 9 e, d). (49)
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Here, ¢ = aAt/h is the Courant number and d = v A¢/h? the diffusion
number. The amplification factor G, ,, corresponding to Padé scheme R, ,,
is then given by

Gn,m - Rn,m(g(ga &) d)) (50)

The corresponding quantity for the partial differential equation (48) is
Gewact = ei((s+iW) (51)
where § = d&? and w = c§ are the exact damping and the exact fre-

quency, respectively. To evaluate the accuracy of the Padé schemes beyond
the asymptotic limit At — 0, we introduce the damping 6,,,,,, and frequency
Wnum Of the fully discrete schemes through the relation

Gn’m — e_((snum +iwnum) (52)
which implies
(5num = —1In |Gn,m|
Woum = arg (Gpm) - (53)

On this basis, the frequency response of the schemes can be characterized by
the relative phase error A = wyym/w — 1, and their damping response by
the damping ratio d,um /0.

ex. R22 R33
1.004
O oG
R
] Ri3 ]
] R22 E
4.00 9-6@’5 R23
] R12 ]
] @.4@% Rlz
2.00
] .20 R13
@.@@:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ @.@@E\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\
.00 2.00 4,00 6.00 0.00 2.00 4.00 6.00
w=cE 0=cE

Figure 2: Accuracy of some A-stable Padé approximations for pure convection.
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Figure 4: Accuracy of some A-stable Padé approximations for pure diffusion.

Figures 2 to 4 give a graphical representation of the phase and damping
responses of selected implicit Padé schemes. Recall that the amplification
factor of the schemes is given by the simple relationship (50).

In the case of pure convection (Figure 2), we note that, as expected,
the frequency response improves with the temporal accuracy of the multi-
stage Padé schemes. We also observe that, for each scheme, there is clearly
an accuracy limit. In practice, this means that there is an upper value of
the Courant number beyond which there is a progressive degradation in the
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phase accuracy. We also note from Figure 2 that the off-diagonal approxi-
mants yield dissipative schemes, while the 2, ,, schemes are non-dissipative.
As a consequence, such schemes are not ideally suited to deal with pure con-
vection problems if centered (Galerkin) approximations are used for spatial
discretization. These methods should therefore be combined with Petrov-
Galerkin methods (such as the SUPG,'® the Galerkin-Least-squares,'® the
Taylor-Least squares®?? | or the present Padé-Least-squares methods) for
the spatial representation.

Figure 3 illustrates the frequency and damping responses for a mixed
convective-diffusive situation characterized by 6 = w. We see that all
schemes exhibit a very good phase accuracy up to w =~ 2 and that there
is a systematic accuracy degradation beyond this value. The same applies
to the damping response, with all schemes being under-diffusive at elevated
frequencies, except Rj33 which is over-diffusive.

Finally, for the case of purely diffusive transport, Figure 4 indicates an
accurate response of all schemes up to 6 = d&? ~ 2. This means that, in
the range of accurate resolution (0 < & < m/4), all schemes can be safely
operated with a value of the diffusion number d of the order of 3. One also
notes that approximants I?; 3 and Rj3 3 are the most accurate in pure diffusion
with an excellent response up to about 6 = 6.

4 Similarities between Padé and Runge-Kutta
methods

The Runge-Kutta methods are multi-stage methods that only make use of
the solution u™ at time t" to compute the next solution u"*!. This is achieved
by computing a number £ of intermediate values of the time derivative of the
unknown u, within the interval At = t"*! —¢*. Applied to the differential

equation

du
il R(u,t) (54)

the most general form of a k-stage Runge-Kutta method is written as fol-
lows: 10712

k

=1
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The associated consistency conditions are!!2

k
Cc; = Zai]’ and Zbl =1 (57)
7j=1

=1

The widely used explicit Runge-Kutta methods are such that a;; = 0 for
j > 4. If this condition is not satisfied, the methods are implicit.

In the explicit algorithms of order n, like the R, Padé approximants
or the explicit Runge-Kutta methods, the amplification factor G(z), where
z = A At (see Eq.(46)), is given by the polynomial

2 n

z z z
G(Z):1+ﬁ+§+"'+H+T(z) (58)

where T'(z) = O(z"!). That is,
G(2) = Ruo(2) + T(2) (59)

The polynomial structure of G(z) in equation (58) indicates why explicit
methods cannot be A-stable. In the multi-stage explicit Padé methods, one
has T'(z) = 0 and the same holds for the explicit n-stage Runge-Kutta meth-
ods of order n.!° Thus, the multi-stage explicit Padé schemes and the n-
stage Runge-Kutta methods of order n are equivalent in application to linear
problems. The only difference resides in the numerical implementation of
the methods. Recall that the maximum order of a n-stage n-order explicit
Runge-Kutta method is 4.

Among the implicit methods, k-stage Runge-Kutta methods of order 2k
are called the Gauss methods. There are other classical families of implicit
Runge-Kutta methods, such as the Radau-IA and Radau-ITA k-stage meth-
ods of order 2k — 1, and the Lobatto-IITA, Lobatto-IIIB and Lobatto ITIC
k-stage methods of order 2k — 2.1%'2 Ag indicated in Table 2 from refer-
ence 12, the various families of Runge-Kutta methods mentioned above are
intimately related to the Padé multi-stage methods in the sense that they
possess identical amplification factors.

Another family of implicit Runge-Kutta methods includes the so-called
diagonally implicit (DIRK) methods. The great advantage of such methods
is the absence of coupling between the various stages (a;; = 0 in Eq.(55) for
i < j), which reduces the size of the systems to be solved at each step of
the time integration procedure. Unfortunately, the accuracy properties of
the DIRK methods in mixed convection-diffusion situations are significantly
inferior to those of the classical implicit Runge-Kutta methods and of the
implicit Padé schemes.”!!
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Implicit RK multi-stage Padé Order Amplification
method method factor
Gauss Ryn 2n Ry (2)
Radau TA Ry_1p 2n — 1 Ry_1(2)
Radau ITA R, 1, 2n — 1 R, 1,(2)
Lobatto ITTA Ry 1n1 2n — 2 Ry 1n-1(2)
Lobatto ITIB Ry 1n1 2n — 2 Ry 1n-1(2)
Lobatto IIIC Ry _on 2n — 2 Ry —2n(2)

Table 2: Relationship between implicit Runge-Kutta methods and multi-stage Padé
schemes.

5 Numerical examples

Numerical tests were performed to assess the performance of selected implicit
Padé schemes of high order in the solution of convection and convection-
diffusion problems. The selected schemes are R; o, Ro9, Ro3 and Rs 3.

5.1 Convection-Diffusion of a Gaussian Profile

To illustrate the performance of the selected high-order Padé schemes and
compare them to standard explicit schemes, consider first the linear convection-
diffusion problem over the spatial interval [0,150] defined by the following
initial and boundary conditions:

2.5 1y
u(z,0) = “Ze 3%
o
u(0,t) = 0
2.5 1
u(150,t) = J—Ie’iL (60)

with X = (v — x¢)/0, 0 = 3.5, L = (150 — xy — t) /o1, 01 = 04/1 4+ 2vt/0?
and z¢ = 20 for Pe = 5 and zy = 60 for Pe = 0.1. A unit convection velocity
is assumed and the calculations were made using a uniform mesh of linear
elements with A = 1.

In Figures 5 to 10, we compare the profiles of the Gaussian obtained at
various time levels with the implicit Padé schemes R, Ry2, R23 and R33
with the three-stage explicit scheme Rz, (3TG) and with the second order
explicit scheme of Peraire?® (TG2Pe). Two values of the Péclet number were
considered, namely Pe = 0.1 and Pe = 5. The results for Pe = 0.1 are at
times ¢t = 0, 2, 6, 24, while they are at times ¢t = 0, 12, 60, 108 for Pe = 5.
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Figure 5: Convection-diffusion of a Gaussian by 3TG'5 and TG2Pe?® with Pe = 5 for
t=0, 12, 60, 108.

] ]
] c=2 ] c=2
1 d=04 4 d=04

2.50 2.50

8.%/\ @.@@A
0.0 1@@ o0 150. 00 0.0 100. 00 150. 00
1 ]
] ] c=3
] 1 d=0.6

.50 2.50-

2.00 @@@A
0.00 50.00 100. 00 150. 00 0.0 .00 150.00

Figure 6: Convection-diffusion of a Gaussian by R; > and Rs s with Pe =5 at ¢ = 2, 3
for t = 0, 12, 60, 108.
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Figure 7: Convection-diffusion of a Gaussian by Ry 3 and R3 3 with Pe =5 at ¢ = 3, 6
for t = 0, 12, 60, 108.
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Figure 8: Convection-diffusion of a Gaussian by 3TG!® and TG2Pe?° with Pe = 0.1 for
t=0,2,6,24.

The explicit schemes were operated with a time step equal to 90 percent of
their critical value, while the implicit ones used large values of the Courant
number ¢ to appraise their accuracy well beyond the stability limit of the
explicit schemes. The results indicate that the implicit schemes can produce
very accurate answers for large values of the time step. The discontinuous
lines in Figures 5 to 10 correspond to the analytical solution of the problem.

:
1 c=0.5 ] c=0.5
©.50 d=5 0.50+ d=5
L7 e s s B B s s s e B s e e e e @,@@7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0.00 50. 00 100.00 150.00 0.00 50.00 100.00 160. 00
1 ]
] =1 ] c=1
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8.00 = e e 0,00 P e S e
Q.00 50.00 100. 00 150. 00 0.00 50.00 100.00 150. 00

Figure 9: Convection-diffusion of a Gaussian by R; » and R » with Pe = 0.1 at ¢ = 0.5, 1
fort =0, 2, 6, 24.
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Figure 10: Convection-diffusion of a Gaussian by Rs 3 and R3 3 with Pe =0.1atc =1, 2
fort =0, 2, 6, 24.

5.2 Rotating Cosine Hill

This standard test problem considers the convection of a product cosine hill
in a 2D pure rotation velocity field. The initial conditions are

u(x,0) = i [1 4 cos mX1] [1 + cos mX5] if X2 —|—-X22 <1
0 otherwise

where X = (x — xp)/0, Xp and o being the initial position of the center and
the radius of the cosine hill. The advection field is a pure rotation with unit
angular velocity given by a(x) = (—xz9, x1)

A uniform mesh of 30 x 30 quadrilateral elements over the unit square
[—3.3] x [—3, 3] has been employed in the calculations and the standard
Galerkin finite element method has been used for the spatial discretization.

Here again, the implicit methods R, 2, Re9, Ry 3 and R33 are compared
to the explicit schemes 37T'G and TG2Pe. The numerical solutions for the
case xg = (, ¢) and o = 0.2 are shown in Figures 11 and 12. They give the
elevations of the rotating cosine hill after one full revolution. To compare the
accuracy of the various schemes, the maximum and minimum values of the
computed solutions are provided, together with the value of the maximum
Courant number in the finite element mesh. One notes that by contrast with
the explicit schemes the implicit methods can be accurately operated with
quite large time steps. Scheme ;o appears to be the less accurate implicit
A-stable method as could be expected from the accuracy properties shown

in Figures 2-4.
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Figure 13: Solution of 1D Burgers equation by 3TG'5 and TG2Pe?° with Pe = 1 for
t=0,02 04, 0.6, 0.8, 1.0.

5.3 Burgers equation in 1D

One of the main objectives of the A-stable implicit methods is to solve non-
linear stiff problems. As a first nonlinear test, we have solved the Burg-
ers advection-diffusion equation in 1D to appraise the performance of the
high-order Padé schemes with respect to the standard explicit schemes. We
consider the Burgers problem over the spatial interval [0, 1] defined by

U + UUy = VlUgy
u(z,0) = sin(mx)
u(0,t) = wu(l,t) =0 (61)

for Pe = 1 and v = 0.001. A uniform mesh of linear elements of size h = 0.001
has been used.

Figures 13 to 14 show the results obtained with both implicit and explicit
methods and one can appreciate the efficiency of the high order Padé methods
from the test data in Table 3. The Ry 3 and the R33 methods are more than
seven times faster than the TG2Pe method, and more than seventeen times
faster than the 3TG method. The explicit schemes were operated with a time
step equal to 75 percent of their critical value, while Ry 3 and R3 3 used large
values of the Courant number c. Note that in the Ry 3 and R33 methods a
nonlinear system had to be solved at each time station by Newton-Raphson
iteration. Only two iterations were needed to obtain an accuracy in excess
of 1074,

This simple test problem provides a good illustration of the penalization
introduced by the conditional stability of explicit methods when a refined
spatial discretization of convection—diffusion problems is required.
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Figure 14: Solution of 1D Burgers equation by R; > and Ra s with Pe = 1 at ¢ = 3,6
for t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.

method | ¢z d At CPU | Time steps

TG2Pe | 0.072 | 0.072 | 0.000072 | 2215 13809
3TG | 0.0907 | 0.0907 | 0.0000907 | 5216 10998
R12 3 3 0.003 237 335
R12 6 6 0.006 126 170
R22 3 3 0.003 263 335
R22 6 6 0.006 141 170
R23 3 3 0.003 537 335
R23 6 6 0.006 280 170
R33 3 3 0.003 572 335
R33 6 6 0.006 306 170

Table 3: Comparison of implicit Padé schemes and explicit methods for the 1D Burgers
problem.
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Figure 15: Solution of 1D Burgers equation by Ry 3 and R3 3 with Pe = 1 at ¢ = 3, 6
for t = 0, 0.2, 0.4, 0.6, 0.8, 1.0.

5.4 Nonlinear convection-diffusion problem in 2D

As a last test case, we consider the solution of a 2D Burgers problem over
the square domain {2 = [0, 1] x [0, 1] for which an analytical solution can
be devised, thus allowing a direct assessment of the quality of the numerical
results obtained with the high-order Padé schemes.

The problem is defined by the equations

ug + (u,v)-Vu = vVZu

(62)
v + (u,v)- Vv = vV,

which are coupled through their nonlinear convective terms, and by the fol-

lowing initial and boundary conditions:

v(x,y,0) = cos(mx) sin(my)

(
(

u(z,y,0) = sin(rz) cos(my)

u(0,y,t) = u(l,y,t) =0 v(z,0,t) =v(x,1,t) =0 (63)
0.0 = 01 =0 (050 = 5 (Ly1) =
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The analytical solution to the above Burgers problem is given by

¢$ Y ) t
ey t) = 2
x? Y
( / | (64)
D, (x,y,t
t) = —9pY
v(z,y,1) YDy 1)
where
D(w,y,t) = Xn—o Gnm cOS(nTT) cos(mary)e (> Hm*vr’t
Dy(2,y,t) = —T 3 0l) e Gnmn Sin(NTT) cos(mary)e” (WML (65)
Dy (2,y,t) = —T 202 me1 GnmM COS(NTT) sin(mary)e~ (7 tm?)vr*t
and a,, are the coefficients of a double Fourier series defined by
agy = fOI fOI ecos(mc) cos(my)/(2vm) dx dy
Uno = Qoy = 2f01 fOl ecos(mz:) cos(my)/(2vm) COS(TLﬂ'ZL’) dr dy (66)
U = Q. = 4 [y [y €05T2) 0s(m0)/ () o5 (n) cos(mary) da dy.

The problem defined by Eqs.(62) and (63) exhibits various symmetries. For
instance, along a transverse section of the domain one has u(z, x,t) = v(z, z,t)
and u(z,z,t) = —u(l — z,1 — x,t). Moreover, one has u(z,y,t) = v(y,x,t)
and u(x,y,t) = —u(l —z,1 — y,t) over the global domain.

When convection dominates the nonlinear transport, the solution includes
the formation of a shock along the diagonal of the domain passing through the
points (0,1) and (1,0). Since a conventional Galerkin method is used herein
for the spatial representation, the numerical solutions were computed for a
moderate value of the Péclet number in order to avoid unphysical oscillations.

This 2D nonlinear problem is used to confirm the accuracy of the pre-
viously decribed Padé schemes. The knowledge of the analytical solution
allows us to evaluate the maximum error norm over the space and time do-
main (namely, 2x[0, 1]). Figure 16 shows the convergence for R; 5, Ry2, Ro3
and Rs3 as At decreases. Note that, as expected, the high-order accurate
time-stepping schemes studied in the present figure exhibit the theoretical
order of convergence.

The results obtained on a uniform mesh of 30 x 30 bilinear elements with
both explicit and implicit methods are shown in Figures 17 to 24. The results
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Figure 16: Order of convergence for the Ry 2, R2 2, Ra3 and R3 3 schemes.

along the domain diagonal reported in Figures 17 and 18 are compared to the
exact solution which is represented by discontinuous lines. Because a rather
coarse mesh has been employed in the present test problem, the explicit
methods could be operated with rather large time steps (80% of the critical
value) and were found to be competitive with respect to the implicit methods
as regards the computing time needed to complete the problem.
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Figure 17: Solution u(z,z,t) of 2D Burgers problem by R; 2, R 2, R2 3 and Rz 3 with
Pe=333,c=3,d=09for t =0, 0.2, 0.6, 1.

Figure 18: Solution u(z,z,t) of 2D Burgers problem by TG2Pe and 3T'G with Pe = 3.33
for t =0, 0.2, 0.6, 1.
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d=0.9.
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Figure 21: Solution u(z,y,t) of 2D Burgers problem by Rs 3 with Pe = 3.33 for ¢ = 3,
d=0.9.
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Figure 22: Solution u(z,y,t) of 2D Burgers problem by R3 3 with Pe = 3.33 for ¢ = 3,
d=0.9.
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Figure 24: Solution u(z,y,t) of 2D Burgers problem by 3T'G with Pe = 3.33 for ¢ = 0.29,
d = 0.09.
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6 Conclusions

A multi-stage approach to Padé approximations of the exponential func-
tion provides interesting explicit and implicit time-stepping methods of high
order for tracing the transient response of convection—diffusion problems.
Such methods only involve first time derivatives. This is an essential fea-
ture to enable the use of C° finite elements in conjunction with high-order
time-stepping schemes in spite of the presence of a diffusion operator in the
governing partial differential equation.

Moreover, the proposed implicit multi-stage schemes possess A-stability
and good accuracy up to large Courant numbers. They are suited for tran-
sient, problems and maintain their properties independently of the Péclet
number.

The intimate relationship between multi-stage schemes derived from Padé
approximations and Runge-Kutta methods has been underlined.

A least-squares approach which naturally introduces upwind-type weight-
ing functions possessing the tensorial structure required to act only in the
flow direction has been developed to ensure a stable spatial representation of
highly convective situations.

Numerical tests, including an original 2D Burgers problem with analytical
solution, have clearly shown that, when compared to traditional second-order
time-stepping methods, the higher-order schemes permit the use of larger
time-step values to reach a given time accuracy. Implicit methods of high
order appear particularly competitive with respect to the more simple ex-
plicit methods in situations where the solution exhibits localized behaviour,
thus requiring mesh refinement to achieve accurate results. In fact, explicit
methods often break down in such situations due to their restricted condi-
tions of numerical stability. Indeed the cost per time step of the high-order
implicit methods is very much increased with respect to traditional second-
order methods. Nevertheless, the numerical experiments performed so far
indicate that they are definitely competitive with respect to traditional low-
order methods.
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