Introduction

Why breaking the 500 UMS barriers?

• We already reached the limit
• It’s the way that technology history is going (aeronautics, automotive, railway, etc...)
• It’s a new business lead for shipyards
• It’s a new business without limit
• It’s money saving for customers (less petrol and corrosion)

Swedish frigate Visby
L= 72 m, 640t, 40 knots

Siem car carrier
L= 200 m
4 decks in composite

Ocean Eagle
L= 43 m
238 nm with 1t of fuel
Regulatory Framework

Classification societies’ rules

• BV: NR396, NR500, NR546, NR600, NI590, NI603, NI613
• LLOYDS: Rules and Regulations for the Classification of Special Service Craft
• RINA: RSE.06/E, RES.22/E, RES.23/E, RES.24/E, naval ships

International regulations

• SOLAS, Chapter II-2
 • MSC/Circ. 1002 – Guidelines on alternative design and arrangement for fire safety
 • MSC.1/Circ.1455 Guidelines for the approval of alternatives and equivalents as provided for in various IMO instruments
 • MSC.1/Circ.1574 Interim guidelines for use of fibre reinforced plastic (FRP) elements within ship structures: Fire safety issues

Register for free at https://www.scipedia.com to download the version without the watermark
FibreShip Strategy

CATEGORY I
Light Commercial Vessels
- Container Vessel

CATEGORY II
Passengers transportation & Leisure
- Representative ROPAX

CATEGORY III
Special Services
- Representative Fishing Research Vessel

Common general basis:
- Structure
- Fire
- Production

Register for free at https://www.scipedia.com to download the version without the watermark
Register for free at https://www.scipedia.com to download the version without the watermark.
Breakout session 3 – Engineering

Development of performance criteria and project guidelines

- Based on:
 - Existing rules and regulations
 - Finite Element Analysis including thermo-mechanical computations
 - Model scale/full scale tests

SCI PEDIA

Register for free at https://www.scipedia.com to download the version without the watermark
Breakout session 3 – Engineering

• Global and local loads effects

• Flexibility

• Joining technics: bonding, hybrid connections...

• Fatigue

Register for free at https://www.scipedia.com to download the version without the watermark
Breakout session 3 – Engineering

SCIPEDIA

- Global and local loads effects
- Flexibility
- Joining technics: bonding, hybrid connections, ...
- Fatigue
- Crashworthiness
- Slamming, whipping...
- ...

Register for free at https://www.scipedia.com to download the version without the watermark
Breakout session 3 – Engineering

Register for free at https://www.scipedia.com to download the version without the watermark
Breakout session 3 – Engineering

Register for free at https://www.scipedia.com to download the version without the watermark
FIRE SAFETY ISSUES
Fire Safety Issues – Regulatory context

✓ Fire safety objectives (SOLAS Chap. II-2, Reg. 2):
 • Prevent the occurrence of fire and explosion
 • Reduce the risk to life caused by fire
 • Reduce the risk of damage caused by fire to the ship, its cargo and the environment
 • Contain, control and suppress fire and explosion in the compartment of origin
 • Provide adequate and readily accessible means of escape for passengers and crew

✓ Functional requirements
 • Division of the ship into main vertical and horizontal zones by thermal and structural boundaries
 • Separation of accommodation spaces from the remainder of the ship by thermal and structural boundaries
 • Restricted use of combustible materials
 • Containment and extinction of any fire in the space of origin
 • Protection of means of escape and access for fire fighting

✓ General statements available for SOLAS vessels and High Speed Crafts (HSCs – 2000 HSC Code)
Fire Safety Issues – Regulatory context

✓ However, SOLAS vessels and HSCs are not submitted to the same prescriptive requirements

✓ Compliance with SOLAS & Fire Test Procedures Code (2010) regarding fire safety:

 • SOLAS vessel: SOLAS Chap. II-2 & 2010 FTP Code, Annex 1, Section 3
 • HSC: SOLAS Chap. X & 2010 FTP Code, Annex 1, Section 11

✓ Common basis:

 • **Non-combustible material** is a material which neither burns nor gives flammable vapours in sufficient quantity for self-ignition when heated to approximately 750°C (according to 2010 FTP Code)

 • **Combustible material** is any material other than a non-combustible material

 • **Steel or other equivalent material** means any non-combustible material which, by itself or due to insulation provided, has structural and integrity properties equivalent to steel at the end of the applicable exposure to the standard fire tests (e.g. aluminium alloy with appropriate properties)
Fire Safety Issues – Regulatory context

- **SOLAS vessel – SOLAS Chap. II-2 & 2010 FTP Code, Annex 1, Section 3**

Globally:
- **Decks:** A Class (A0, A15, A30 or A60)
- **Bulkheads:** A Class (A0, A15, A30 or A60)
- or B Class (B0 or B15)
- or C Class

Fire Division Classification

<table>
<thead>
<tr>
<th>Fire Division Classification</th>
<th>Material requirement</th>
<th>Fire test duration</th>
<th>Flame tightness (for the whole duration of the test)</th>
<th>Smoke tightness (for the whole duration of the test)</th>
<th>Load bearing structure</th>
<th>Specimen size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A0</td>
<td>60 min</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>A15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B0</td>
<td>30 min</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>B15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal Insulation requirements:

- **Average temperature rise on the unexposed face:**
 - A Class: 140 °C
 - B Class: 140 °C
- **Maximum temperature rise on the unexposed face:**
 - A Class: 180 °C
 - B Class: 225 °C
- **Temperature insulation successful up to:**
 - A Class: 15 min
 - B Class: 15 min

Class “C” class division:
- **No requirement relative to passage of fumes and flames**
- **No requirement relative to temperature rise**
- **Always of non-combustible materials**
Fire Safety Issues – Regulatory context

HSC – SOLAS Chap. X & 2010 FTP Code, Annex 1, Section 11

- Introduction fire-resisting divisions (FRD) and fire-restricting material
- **FRD** are divisions formed by bulkheads and decks which comply with the following:
 - Constructed of non-combustible or fire-restricting materials which by insulation or inherent fire-resisting properties satisfy the requirements:
 - Suitably stiffened
 - A test of a prototype bulkhead or deck in accordance with the 2010 FTP Code (cf. below)
 - Constructed as to be capable of preventing the passage of smoke and flame up to the end of the appropriate fire protection time
 - Where required they shall maintain load-carrying capabilities up to the end of the appropriate fire protection time
 - Shall have thermal properties (cf. table below)

<table>
<thead>
<tr>
<th>Fire Division Classification</th>
<th>Material requirement</th>
<th>Fire test duration</th>
<th>Flame tightness (for the whole duration of the test)</th>
<th>Smoke tightness (for the whole duration of the test)</th>
<th>Thermal insulation requirements</th>
<th>Load bearing structure</th>
<th>Specimen size</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRD</td>
<td>Fire restricting or non-combustible material</td>
<td>30 min</td>
<td>Yes</td>
<td>Yes</td>
<td>Average temperature rise on the unexposed face</td>
<td>Bulkhead : 7 kN/m of width Deck : 3.5 kN/m² of area</td>
<td>Bulkhead : 2.44 m x 2.5 m Deck : 2.44 m x 3.04 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 min</td>
<td></td>
<td></td>
<td>Maximum temperature rise on the unexposed face</td>
<td>140 °C</td>
<td>180 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Temperature insulation successful up to</td>
<td>30 min</td>
<td>60 min</td>
</tr>
</tbody>
</table>
Fire Safety Issues – Regulatory context

✓ HSC – SOLAS Chap. X & 2010 FTP Code, Annex 1, Section 11

• Fire restricting material: material that shall comply with 2010 FTP Code, Annex 1, Part 10

• Different test procedures and criteria for:
 ▪ Surface materials on bulkheads, wall and ceiling lining, including their supporting structure
 ▪ Materials used for furniture and other components

• Examples of criteria:
 ▪ Time to ignition
 ▪ Maximum 30-second sliding average heat release rate
 ▪ Flame spread
 ▪ Smoke production rate
 ▪ Etc.
Selected materials themselves cannot satisfy the actual regulatory context.

What we need to move forward: a new methodology

- Develop a design for each vessel
- Identify the new risks raised by the use of FRP on-board such vessels
- Consider a fire safety engineering approach to develop new performance criteria for FRP materials to prove that SOLAS fire safety objectives and functional requirements can be met
Fire Safety Issues – Development of new performance criteria

✔ What should be assessed?

• Probability of ignition
• Fire growth potential
• Potential generation of smoke and toxic products
• Containment of fire
• Firefighting
• Structural integrity

✔ In accordance with MSC.1/Circ. 1574
Fire Safety Issues – Development of new performance criteria

✓ Examples

• New standards for fire resistance test procedures
• New acceptance criteria for fire resistance tests
• New standards for fire protection effectiveness
• New life safety performance criteria
• New standards for fire detection and firefighting
• ...

PRIVATE & CONFIDENTIAL © Document property of FIBRESHIP
Discussion

Structure & Fire