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Abstract. An improved Rigid Body-Spring model (RBSM) for in-plane analyses is here proposed.
The approach has been developed starting from the model presented by Casolo [4], according to which
a continuum plate is discretized in an assembly of rigid quadrilateral elements connected by elastic-
plastic springs. In the proposed model, not only the elements that share one edge are connected, as it
usually happens in RBSMs, but also the elements that share only one node, that are the elements on
the diagonals. These elements are connected through an axial spring fixed to their centers of gravity.
The spring stiffnesses have been obtained through the equivalence of the stored strain energy for a plane
stress state. These, for an isotropic material, results to be function of the Young’s modulus (E) and of the
Poisson’s ratio (ν). Thanks to the addition of the diagonal springs, this quadrilateral RBSM is capable of
modeling isotropic materials with a Poisson’s ratio different from zero. The effectiveness of the proposed
computational method was proved comparing the elastic solution with a Finite element code for an uni-
axial tensile test.
About the failure response, on one hand, the addition of the diagonal springs introduces a new direction
in which the failure condition is verified, reducing the intrinsic anisotropy of the failure response, typical
of the discrete approaches [5, 14]. On the other hand, the new springs increase the complexity of the
model and the spring constitutive behavior is no longer directly related to the material uni-axial behavior.
In this work, the spring post elastic response was defined considering the mode I fracture energy of
the material. In the end, the model was applied to the study of a concrete notched beam in a three
point bending test. The results have been compared with the experimental one find in the literature.
The analyses were executed with a dynamic explicit solver and different tensile spring behaviors were
compared to highlight the importance of considering a bi-linear softening law for modeling the failure
response of quasi-brittle materials like concrete.

1 INTRODUCTION

Over the last decades many authors have developed discrete computational approaches for their capabil-
ity of dealing with crack propagation problems, especially in brittle materials [2, 15, 4, 8]. They are all
based on the same idea of discretizing a solid in particles interacting among them according to specific
rules. An idea that was first developed by Hrennikoff [11] with a lattice model, but that has even more
ancient origins in Navier’s molecular model for solid mechanics [3]. If, on one hand, each discrete ap-
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proach has been successfully and widely applied to some problems according to its peculiarities, on the
other hand, some of them showed some limits especially dealing with isotropic materials. In fact, due
to the discrete nature of the interactions and depending on the model topology some discrete approaches
have an intrinsic fixed Poisson’s ratio or show an isotropic elastic response only for a specific Poisson’s
ratio [19, 13]. This problem emerged already in the Navier’s molecular model, that was characterized by
only one constant, differently from what was suggested by the experimental evidence for the isotropic
materials [3]. About the post-elastic response, according to the simplicity principle that characterize the
discrete approaches, the failure criterion are usually bond based, i.e. the failure of the bond only depends
on the bond state and stretch. This leads to an intrinsic anisotropy of the failure surfaces, that only the
increase of the directions of interaction can reduce [12, 9, 14].
Among the discrete approaches the plane RBSM developed by Casolo [4] (RBSMc) was here investi-
gated. This model is characterized by a simple mechanistic structure, with quadrilateral rigid elements
interacting through normal and shear springs fixed on their sides. It has been widely applied to the study
of a complex material like masonry [18, 7, 6], exploiting the possibility of defining a perfect correspon-
dence between the spring constitutive behavior and the material uni-axial and shear responses, thanks to
its simple mechanistic structure. But, even if the model has two independent constants (the normal and
the shear spring stifnesses), it shows an isotropic elastic response only for materials with a null Poisson’s
coefficient, i.e. it has only one independent constant for isotropic materials, as observed in quadrilateral
lattice models. Furthermore the limited number of interactions leads to a considerable anisotropy of the
failure surfaces working with isotropic materials [5].
In this study, the effects, on the RBSM properties, of the addition of a new interaction between the el-
ements on the diagonals are investigated. After the presentation of the new model topology (RBSMd),
the model elastic parameters, i.e. the spring stiffnesses, were obtained and the model elastic response
analyzed. Subsequently, the failure response of the new model was compared with the original one. In
the end, the model was applied to the study of a mode I crack propagation problem in a concrete notched
beam, comparing different tensile springs behaviors, to evaluate the model capability of dealing with
failure analyses of isotropic quasi-brittle materials.

2 RBSM WITH DIAGONAL SPRINGS

In agreement with the RBSM proposed by Casolo, a lamina is discretized in n quadrilateral rigid ele-
ments, each i-element has 3 degrees of freedom (two displacements ui,vi, and one rotation φi) and the
nodes of one element cannot be on the side of another one. Differently from the original model, the ele-
ments interact among them not only if they share one side, but also if they share only one node, i.e. if they
are elements on the diagonals. The elements that share one side interact through four eccentric springs:
two springs are parallel to the side, and will be called shear springs, and two springs are perpendicular
to the side and will be called normal springs. Differently from the original model, in this case also the
shear springs have been split, in order to have one shear spring for each normal spring, necessary for a
coupled failure response. The eccentricity of the springs was defined in agreement with the indications
of Casolo [4], but the influence of this parameter should be deepen in future studies. The elements on
the diagonals interact only through one axial spring that connects their centers of gravity, these springs
will be called diagonal springs. The fundamental cell of the model is composed by the four quarters of
elements around a node and the springs that connect them (see Figure 1). This is the minimum entity of
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Figure 1: Fundamental cell of the rigid body spring model with diagonal springs (RBSMd)

the model that has to be considered to obtain the model parameters.
The spring state is defined in function of the average spring strain ε(b). This is the ratio between the
variation of the spring length, in the spring direction (in agreement with a small displacement theory),
and the distance between the centers of gravity of the connected elements. The average spring strain is
related to the problem degrees of freedom (collected in the vector U) through the [B] matrix:

{ε}= [B]U (1)

The elastic strain energy associated to any spring has the form:

U (b) =
1
2
ε(b)

2
k(b)V (b) (2)

where: k(b) is the spring modulus and V (b) is the volume of pertinence of the spring, that is equal to the
sum of the two quarters of the elements connected by the spring.
The model elastic stiffness matrix is so computed as:

[K] = [B]T [k][V ][B] (3)

where: [k] is a diagonal matrix of the spring moduli and [V ] is the diagonal matrix of the spring volumes.

3 ELASTIC RESPONSE

3.1 Model elastic parameters

The spring elastic moduli k(b) are obtained imposing the equivalence of the stored strain energy over the
fundamental cell volume between the RBSM and the continuum, for any strain state. For an isotropic
Cauchy material it is reasonable to assume that the properties of the normal and shear springs (kn, ks) are
independent from their side orientation. Instead, a different modulus kd is considered for the diagonal
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springs. Expressing the average spring strain in function of the strain tensor components for a generic
homogeneous deformation state and considering the spring strain energies (Eq. 2), the total strain energy
associated to the fundamental cell for square rigid elements 2l wide and s thick is the following:

URBSMd =
1
2

s
[

2kn
ε

2
112l2 +2kn

ε
2
222l2 +

1
2

4ks
ε

2
124l2+

kd
(

ε11 + ε22

2
+ ε12

)2

2l2 + kd
(

ε11 + ε22

2
− ε12

)2

2l2
] (4)

Instead,according to the continuum Cauchy theory, for a plane stress state the strain energy stored in a
volume equal to the fundamental cell one, for an isotropic material, is the following:

Ucontinuum =
1
2

4l2s
(

E
1−ν2 ε

2
11 +

E
1−ν2 ε

2
22 +

2νE
1−ν2 ε11ε22 +4

E
2(1+ν)

ε
2
12

)
(5)

The two energies are equal for any strain state if, and only if, the quantities that multiplies the different
strain components are equal. In this way, the moduli of the model springs are obtained in function of the
Young’s modulus E and of the Poisson’s ratio ν:

kn =
E

1+ν
kd =

4νE
1−ν2 ks =

1−3ν

1−ν2 E (6)

From the spring moduli expressions, it is evident the role of the diagonal springs, whose modulus is
proportional to the Poisson’s ratio, in agreement with a simple mechanistic structure of the model, that
characterized the original model. But, differently from the original model there is not any constrain on
the Poisson’s coefficient. Anyway, for values of the Poisson’s ratio lower than 0 or bigger than 1/3 the
diagonal spring modulus or the shear one, respectively, become negative, that seems nonphysical.
Considering the original RBSM (RBSMc), i.e. without the diagonal springs, in the RBSM strain energy
there is not any term that multiplies ε11ε22 (Eq. 3.1). Therefore, even if the model has two spring modulus
(Eq. 8), the response is anisotropic if the shear modulus G is different from E/2, i.e. if the Poisson’s
coefficient is not null, as previously introduced.

URBSMc =
1
2

s
[

2kn
ε

2
112l2 +2kn

ε
2
222l2 +

1
2

4ks
ε

2
124l2 +

]
(7)

kn =
E

1−ν2 ks = 2G =
E

1+ν
(8)

3.2 Elastic analyses

The proposed model is here validated comparing the results with a finite element model (FEM) for an
uniaxial traction. A square lamina 1.5 m wide and 0.1 m thick was considered and a distributed volume
load was applied on the edges over an area 0.1 m wide (Figures 2). For both the RBSM and the FEM it
was adopted a similar discretization with square elements 0.1 m wide. About the material properties, the
Young’s modulus was assigned equal to 1.0 GPa and the Poisson’s coefficient was varied between -1 and
0.5. Figure 3 shows the results for ν = 1/3. The RBSM well reproduces the FEM results, with a limited
error. The Poisson’s coefficient estimated as the ratio between the displacements of the points R and
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Figure 2: Geometry of the lamina for the elastic simple traction

Q (see Figure 2) is 0.336, with an acceptable error less than 1%. Figure 4 shows that also for negative
Poisson’s ratio, the model well reproduces the FEM results, even if the diagonal spring modulus is neg-
ative. The numerical estimated Poisson is -0.501 in this case, with an error of the 0.2%. Instead, it was
observed that for Poisson’s ratio bigger than 1/3 some numerical issues arise and the results are disturbed.

4 FAILURE RESPONSE

The addition of the diagonal springs increases the directions of the model in which the failure condition is
checked, and this, according to the literature, should reduce the intrinsic failure anisotropy of the model.
To evaluate this, the failure surface for a simple extension was computed estimating for any direction the
minimum strain (εT f ) necessary to reach the failure condition in at least one spring. For this study, it was
assumed the same failure average spring strain for both the normal and the diagonal springs, equal to the
material elastic limit strain (εE). These springs fail according to a maximum stretch criterion, i.e. they
fail if the average spring strain ε(b) becomes bigger than the failure value εE . Instead, the shear springs
fail only if the associated normal spring fails. The calculus was conducted for both the RBSM with and
without the diagonal springs.
Figure 5 shows how the addition of the diagonal springs reduces significantly the failure anisotropy, as
expected. The maximum error reduces from 100% to 20% for a simple extension, with a maximum
stretch failure criterion.
If, on one hand, the addition of the diagonal springs reduces the failure anisotropy, on the other hand, the
uni-axial response of the model in the side directions does not depend more only on the normal springs
in that directions, but, the response of the normal and diagonal springs is coupled. For this reason, the
spring behavior can not be directly related to the uni-axial material response. Furthermore, in order
to study the failure response of brittle, or quasi-brittle materials, the fracture energy is not preserved
assigning to the springs a perfectly brittle behavior with the failure strain equal to the material failure
strain [20]. In order to eliminate the influence of the element size on the post elastic response, different
strategies are possible: calibrate the spring failure strain on the mode I fracture energy, as it is usually
done in peridynamics [16]; define a softening branch for the spring constitutive behavior, always based
on the material fracture energy [17]. The softening branch can be linear or bi-linear, distinguishing an
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(a) FEM (b) U1 FEM (c) U2 FEM

(d) RBSMd (e) U1 RBSMd (f) U2 RBSMd

Figure 3: Comparison of the deformed shapes and of the displacement maps for a simple traction with
ν = 0.333

(a) FEM (b) U1 FEM (c) U2 FEM

(d) RBSM (e) U1 RBSM (f) U2 RBSM

Figure 4: Comparison of the deformed shapes and of the displacement maps for a simple traction with
ν =−0.5
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Figure 5: Comparison of the failure surfaces for a simple extension, obtained for the original RBSM
(RBSMc) and the new one with the diagonal springs (RBSMd)

initial fracture energy G f from the total fracture energy GF . This is particularly important dealing with
quasi-brittle materials (figure 6).
The spring constitutive behavior is defined assigning a spring force-average spring strain curve. The
spring force f (b) is the quantity work conjugate of the average spring strain, it has the dimensions of a
force multiplied for a length and coherently with the spring energy (Eq. 2) for the elastic case it is equal
to:

f (b) =ε(b) k(b)V (b) (9)

Figure 6: Example of f (b)-ε(b) relations for the model springs.
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Table 1: Concrete mean mechanical properties

Young Modulus E (MPa) 37000
Poisson ratio ν 0.21
Tensile strength fT (MPa) 3.9
Initial fracture energy G f (N/m) 42.6
Total fracture energy GF (N/m) -

5 FAILURE ANALYSIS

5.1 Case study

For the failure analyses it was considered the experimental campaign, conducted by Grégoire et al. [10]
with three point bending tests on concrete notched beams. More in detail, the beam considered for the
analyses is 400 mm height and 50 mm thick with a central notch 80 mm deep (Figure 7). The concrete
material properties are reported in Table 1. Considering that the article only refers to the initial fracture
energy, the total concrete fracture energy was assumed equal to 2.5 times the initial value, considering
the average ratio between these values for concrete [1].

Figure 7: Geometry of the notched concrete beam

5.2 Numerical model

The beam was discretized in 5600 square elements 10 mm wide. About the failure behavior, an unlimited
compressive strength was assigned to the normal and diagonal springs. About the tensile response, the
analysis has been repeated changing 3 different behaviors (Figure 6). Instead, the shear springs only
fail if the coupled normal spring fails. The different tensile curves (Tables 2-3) have been obtained in
function of the material mode I fracture energy, imposing this equal to the model fracture energy for
mode I along the element sides, i.e. the work necessary to breaks the springs interested by the crack
propagation. For the laws with a softening branch, the elastic limit average spring strain was imposed
equal to the material one.
The non linear analyses have been executed with an homemade FORTRAN code with an implemented
explicit algorithm based on the central difference method. To limit the dynamic effects the displacement
in the point A was increased up to 0.4 mm, with a cosine function, over a lapse of time of 0.2 s, deci-
sively bigger than the higher problem vibration period (0.002 s). Furthermore, for stability reasons the
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Table 2: Spring f (b)-ε(b) curve points for the spring tensile response with brittle and a linear softening
laws.

Brittle Linear softening
Normal springs Diagonal springs Normal springs Diagonal springs

Points ε(b) ×103 f (b)
ε(b) ×103 f (b)

ε(b) ×103 f (b)
ε(b) ×103 f (b)

(N·m) (N·m) (N·m) (N·m)
E 0.478 36.58 0.656 53.34 0.105 8.06 0.105 8.57
S 0.479 0.00 0.657 0.00 2.17 0.00 4.09 0.00

Table 3: Spring f (b)-ε(b) curve points for the spring tensile response with a bi-linear softening.

Bi-linear softening
Normal springs Diagonal springs

Points ε(b) ×103 f (b)
ε(b) ×103 f (b)

(N·m) (N·m)
E 0.105 8.06 0.105 8.57
U 0.648 2.42 1.190 2.57
S 5.290 0.000 9.940 0.000

time step was fixed equal to 1×10−7

5.3 Results

In this simple I mode crack propagation problem the crack always propagates vertically from the notch,
independently from the tensile behavior assigned to the springs (Figure 8), even if for the same displace-
ment the corresponding crack opening displacement (CMOD) and consequently the crack propagation is
different (Figure 9). In fact, the response curves change significantly. Comparing the force - crack mouth
opening displacement (CMOD) curves, for the different tensile behaviors, with the experimental enve-
lope (Figure 9b), it is evident that the brittle law significantly overestimates the peak load, with an error
bigger than the 100%. The difference in shape is even more evident considering the force-displacement
curve (Figure 9a), with a sudden load drop that is not realistic for concrete. Instead, for both the bi-linear
and linear softening laws the F-CMOD curves are inside the experimental envelope, but for the bi-linear
softening law the curve shape is more similar to the experimental one.

6 CONCLUSIONS

In this study the influence of the addition of the diagonal springs in a plane quadrilateral RBSM was
investigated. First of all, it was proved that the addition of this new interactions extends the range of the
isotropic materials that is possible to model with this discrete approach, at least in the elastic field. In
fact, the proposed model eliminates the constrain of an intrinsic Poisson ratio. Anyway, for a Poisson
ratio bigger than 1/3 some numerical issues arise, because the shear spring modulus become negative.
About the failure response, the addition of a new interaction in a new direction allows to significantly
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Figure 8: Deformed shape for δ = 0.4mm for the case with the bi-linear softening law

(a) F-δ (b) F-CMOD

Figure 9: Comparison of the response curves obtained changing the spring tensile behavior.

reduce the failure anisotropy, in agreement with what has been observed for other discrete models. On
the other hand, even if the model preserve a simple mechanicistic structure like the original one, the cou-
pling between the diagonal springs and the normal one, for an uni-axial traction aligned with the rigid
element sides, prevents to directly relate the spring behavior to the material uni-axial response. For this
reason the fracture energy for mode I of the model was evaluated and set equal to the material one to
obtain the spring tensile responses. This also avoids a mesh sensitivity of the results.
The proposed model was applied, in the end, to the analysis of a concrete notched beam in a three point
bending test. Fixed the fracture energy assigned to the springs, the spring tensile behavior was changed
between brittle, with a linear softening and a bi-linear softening branch. The last case provided the results
closer to the experimental one, proving that in this discrete model, like in cohesive models the tensile
response for modeling concrete has to have a bi-linear softening law.
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[1] Z. Bažant. Concrete fracture models: Testing and practice. Engineering Fracture Mechanics,
69(2):165–205, 2001. cited By 317.

[2] J. Bolander and S. Saito. Fracture analyses using spring networks with random geometry. Engi-

10



V. Tateo

neering Fracture Mechanics, 61(5):569 – 591, 1998.

[3] D. Capecchi and G. Ruta. Strength of materials and theory of elasticity in 19th century italy: A
brief account of the history of mechanics of solids and structures. Advanced Structured Materials,
52, 2015.

[4] S. Casolo. Modelling in-plane micro-structure of masonry walls by rigid elements. International
Journal of Solids and Structures, 41(13):3625–3641, 2004.

[5] S. Casolo and V. Diana. Modelling laminated glass beam failure via stochastic rigid body-spring
model and bond-based peridynamics. Engineering Fracture Mechanics, 190:331–346, 2018.

[6] S. Casolo, G. Milani, G. Uva, and C. Alessandri. Comparative seismic vulnerability analysis on ten
masonry towers in the coastal po valley in italy. Engineering Structures, 49:465–490, 2013.

[7] S. Casolo and F. Peña. Rigid element model for in-plane dynamics of masonry walls considering
hysteretic behaviour and damage. Earthquake Engineering and Structural Dynamics, 36(8):1029–
1048, 2007.
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