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Abstract. This study proposes a continuous-time automated operational modal analysis 

approach for conducting system identification of wind turbine blades. A vibration-based 

monitoring system consisting of low-cost microcontrollers and acceleration sensors was 

designed and deployed in a reduced scale wind turbine mock-up. Vibration data was collected 

during a long period of time under different environmental and operational conditions and 

considering several artificially induced damage scenarios. The combined deterministic-

stochastic subspace identification method and clustering techniques were used to 

automatically identify the modal parameters of wind turbine blades. Natural frequencies, 

damping ratios, and mode shapes of several modes were successfully identified, and the 

effects of temperature, rotating speed, added masses, and damage conditions on the identified 

modal parameters are comprehensively discussed. 

 

1 INTRODUCTION 

Wind turbines (WTs) are exposed to harsh environmental and operational conditions, 

making crucial to develop appropriate inspection and maintenance strategies. Complex load 

characterization, summed to extreme environmental and operational variables (EOV) generate 

unexpected failures in wind turbines, where wind turbine blades (WTBs) are critical 

components that have shown a high failure rate [1], and their early damage diagnosis and 

prognosis is desirable.   

In the last decades, vibration-based structural health monitoring (SHM) has gained special 

interest for damage detection purposes in buildings [2], bridges [3], WTs [4] [5] [6], and other 

structures. However, a limited number of studies have focused on damage detection of WTBs 
[7] [8]. Among different strategies for vibration-based SHM, operational modal analysis 
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(OMA) is desired, since changes in modal properties can reflect damage progressions through 

vibration derived from the environment and operational sources without interrupting the 

power generation of the WTs.  

Some studies have utilized acceleration data and stress resultant damage detection 

techniques, which required actuators to excite the blade. However, these techniques were 

found to be inapplicable in certain cases [9]. Experiments under stationary laboratory 

conditions have been performed by Ou et al. [10] using vibrations and strain sensors to 

describe varying temperature, ice accretion-resembling mass, and damage conditions. Signal 

processing techniques using Power Spectral Density (PSD) analysis and statistical analysis 

based on Frequency Response Functions (FRF) have been employed [10], while other studies 

have used state-space identification methods, being the stochastic subspace identification 

(SSI) algorithm widely employed [11]. 

This study presents a continuous-time automated modal analysis on the blades of an 

operational small-scale wind turbine exposed to different operational and environmental 

variables. The combined deterministic-stochastic subspace identification (DSI) method is 

used to estimate the modal properties of the blades. By using clustering algorithms, the study 

shows frequency and damping variations along different ambient temperature, pitch angle, 

mass addition, and damage progression under varying rotational speeds of the WT to better 

understand the effect of these variables on the modal properties of the WTBs.  

2 METHODOLOGY OVERVIEW 

2.1 Experimental setup and monitoring system 

An experimental WT was developed to control the operational variables. The test 

specimen, depicted in Figure 1, is composed by a 3-meter-tall steel tube with a 1 hp motor, a 

1:10 reduction gearbox, and a frequency regulator. Three 2.4 meters glass-fiber/epoxy-resin 

blades are bolted with 10 equally spaced bolts to a hexagonal steel hub.   

 
Figure 1: Experimental wind turbine mock-up 
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Acceleration measurements were collected by a monitoring device placed at the center of 

the hexagonal hub. Solar panels and a battery system were used to power a recording device 

for acceleration and temperature data collection and transmission. Two blades were 

instrumented with three ADXL345 accelerometers each. The sensors had an amplitude range 

of ±16 g and a sensitivity of 4 𝑚𝑔/𝐿𝑆𝐵. Acceleration data were recorded at a sampling 

frequency of 200 Hz and with alternating 10-minute measurement windows. Sensor 

deployment and blade characteristics are depicted in Figure 2. 

 
Figure 2: Accelerometer layout in instrumented WTBs 

2.2 Automated modal identification 

Modal identification of the WTBs was conducted using the DSI algorithm, an input-output 

system identification method [12]. The method estimates the modal parameters of the WTB 

from an equivalent linear time-invariant (LTI) state space (SS) model. Discrete-time LTI-SS 

model as described by Astroza et al. [13] can be expressed as:  

 

𝒙𝑘+1 = 𝑨𝒅 ⋅ 𝒙𝑘 + 𝑩𝒅 ⋅ 𝒖𝑘 + 𝒘𝑘

    𝒚𝑘 = 𝑪𝒅 ⋅ 𝒙𝑘 + 𝑫𝒅 ⋅ 𝒖𝑘 + 𝒗𝑘,
 

(1) 

where 𝐱𝑘 ∈ ℝ𝑛 = state vector, and 𝑛 denotes the model order, 𝐲𝑘 ∈ ℝ𝑙 = measured output 

vector (i.e., 𝑙 = number of outputs), 𝐮𝑘 ∈ ℝ𝑚 = input vector (i.e., 𝑚 = number of inputs), 

𝐀 ∈ ℝ𝑛 × 𝑛 = state matrix, 𝐁 ∈ ℝ𝑛 × 𝑚 = input matrix, 𝐂 ∈ ℝ𝑙 × 𝑛 = output matrix, 𝐃 ∈
ℝ𝑙 × 𝑚 = direct feed-through matrix, 𝐰𝑘 ∈ ℝ𝑛 and 𝐯𝑘 ∈ ℝ𝑙 = process and measurement noise 

vectors, respectively, and k denotes the discrete time instant [12].  

The N4SID algorithm was used to estimate the state sequence recovered directly from the 

input-output data. COM-ALT algorithm was used to solve matrixes A, B, C and D [12]. From 

the relationship between the discrete- and continuous-time state matrices (i.e., 𝐀𝐝  =  e𝐀𝐜⋅𝛥𝑡 

where 𝐀𝐜 = continuous-time state matrix and 𝛥𝑡 = sampling time), it can be shown that their 

eigenvectors (𝚿) are identical, while the eigenvalues of 𝐀𝐜 and 𝐀𝐝 (𝜆𝑖 and 𝜇𝑖, respectively) 

[13] satisfy Eq. (2): 

𝜇𝑖 = 𝑒𝜆𝑖Δ𝑡 ⇒ 𝜆𝑖 =
ln(𝜇𝑖)

𝛥𝑡
 

(2) 

From the eigenvalues and eigenvectors of the discrete-time state matrix (𝐴𝑑) and the discrete-

time output matrix (𝐶𝑑), the natural frequencies (𝑓𝑖), damping ratios (𝜉𝑖), and mode shapes 

(𝜙𝑖) of the system can be obtained as expressed in Eq. (2) to Eq. (4). 
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𝑓𝑖 =
√𝜆𝑖  𝜆𝑖

∗

2𝜋
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(2) 

𝜉𝑖 =
−(𝜆𝑖 + 𝜆𝑖

∗)

2√𝜆𝑖  𝜆𝑖
∗

=
−Real(𝜆𝑖)

|𝜆𝑖|
 

(3) 

𝚽 = 𝐂𝐝 𝚿 = [𝛟1, 𝛟2, … , 𝛟n ] (4) 

The identification process was performed using independent 10-minute-long vibration data 

windows, referred to as datasets. The root sensor (S1) was considered as input data and the 

remaining sensors located in the blade (S2 and S3) as output response data (see Figure 2).  

Spurious and physical (i.e., normal) mode classification is needed for continuous-time 

mode tracking. This classification is conducted based on mean phase collinearity (MPC) (Eq. 

(5)) and mean phase deviation (MPD) (Eq. (6)) indexes with a threshold value λ = 0.7 as 

suggested by Fan et al. [14] 

𝑀𝑃𝐶(𝜙𝑗) =
‖Re(�̃�𝑗)‖

2

2
+

1
𝜖𝑀𝑃𝐶

Re(�̃�𝑗
𝑇)Im(�̃�𝑗)(2𝜖𝑀𝑃𝐶

2 + 1) sin 𝜃𝑀𝑃𝐶 − 1

‖Re(�̃�𝑗)‖
2

2
+ ‖Im(�̃�𝑗)‖

2

2  (5) 

𝑀𝑃𝐷(𝜙𝑗) =

∑ 𝑤𝑜arccos |
Re(𝜙𝑗𝑜)V22 − Im(𝜙𝑗𝑜)V12

|𝜙𝑗𝑜|√V12
2 + V22

2
|

𝑛𝑦

𝑜=1

∑ 𝑤𝑜
𝑛𝑦

𝑜=1

, ∑ 𝑤𝑜 ≠ 0

𝑛𝑦
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 (6) 

 

Then, class grouping is done by similarities in frequency, damping ratio, MPC and mode 

shape resemblance using the modal assurance criterion (MAC) values (Eq. (7)). The 

generated classes are then removed if the classified modes are not properly identified in at 

least 10% of the total number of model orders considered in the identification algorithm. 

Thresholds values for natural frequency, damping ratio, MPC, and MAC are defined as 1%, 

20%, 90%, and 98%, respectively. 

|𝑓
𝑘

− 𝑓𝑚|

𝑓
𝑘

≤ 𝑇𝑓  ,
|𝜉
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𝜉
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|𝑀𝑃𝐶𝑘 − 𝑀𝑃𝐶𝑚|

𝑀𝑃𝐶𝑘

≤ 𝑇𝑀𝑃𝐶  , 

 𝑀𝐴𝐶𝜙𝑖,𝜙𝑗
=

|𝜙𝑖𝜙𝑗|
2

‖𝜙𝑖‖2
2‖𝜙𝑗‖

2

2   ,    1 − 𝑀𝐴𝐶(𝜙𝑘, 𝜙𝑚) ≤ 𝑇𝑀𝐴𝐶     

(7) 

Once the modes are classified from the datasets, the mean values of the identified normal 

modes are compared with existing continuous-time clusters and merged by comparing the 

mean values of the continuous time cluster frequency, damping ratio, MPC, and mode shape, 

with the corresponding average results values for every clustered normal mode value of the 

real time window, where mode shape is compared by MAC index. Clustering merging 

thresholds used are 2%,100%, 97% and 98% respectively for continuous-time clustering.  

If more than one clustered normal mode of the dataset is eligible for the same cluster and 

merged, using normalized value for frequency and MAC ratio, the nearest distance (Eq. (8)) 

to the cluster will remain, while the others are neglected.  
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𝐷𝑖𝑗 =
|𝑓

𝑘
− 𝑓𝑚|

𝑓
𝑘

 + 1 − 𝑀𝐴𝐶(𝜙
𝑘

, 𝜙𝑚) 
(8) 

2.3 Experimental data 

Different cases were considered to assess EOV over one of the wind turbine blades. The 

cases consider healthy state as reference and go through pitch variations, mass additions, and 

progressive damage done in the blade (Table 1). Location of added massed and artificially-

induced damage (i.e., cuts) are summarized in Figure 3. Vibration data was collected during 

several days, so the blade was exposed to a wide and representative temperature variations 

and ambient conditions.  

 
Figure 3: Location of added masses and damage induced in the WTB. 

Table 1: Testing protocol and rotating speeds considered in the experiments. 

Case  Description    Rotating speed 

R Healthy state    15rpm 30rpm 45rpm 60rpm 

M1 Added Mass m1=m2=125g    15rpm  45rpm  

M2 Added Mass m1=m2=250g   15rpm  45rpm  

P1 Pitch angle 18°    15rpm   60rpm 

P2 Pitch angle 54°    15rpm 30rpm   

P3 Pitch angle 90°    15rpm 30rpm   

D1 Crack 1: l1 = 2 cm         15rpm 30rpm 45rpm 60rpm 

D2 Crack 1: l1 = 5 cm      Crack 2: l2 = 2 cm        15rpm  45rpm  

D3 Crack 1: l1 = 5 cm      Crack 2: l2 = 2 cm      Crack 3: l3 = 2 cm       15rpm  45rpm  

D4 Crack 1: l1 = 5 cm      Crack 2: l2 = 5 cm      Crack 3: l3 = 5 cm       15rpm 30rpm 45rpm 60rpm 

D5 Crack 1: l1 = 10 cm      Crack 2: l2 = 8 cm      Crack 3: l3 = 5 cm       15rpm  45rpm  

D6 Crack 1: l1 = 10 cm      Crack 2: l2 = 8 cm       Crack 3: l3 = 10 cm       15rpm 30rpm 45rpm 60rpm 

3 RESULTS AND DESCUSSION 

This section analyzes the effects of temperature, rotating speed, pitch angle of the blade, 

added masses, and progressive damage on the first flapwise mode of the WTB. The first 

flapwise mode of the WTB can be used as indicator of health of state of the WTBs as stated 

by Jaramillo et al. [15]. Identifying mode variations due to EOV is required to accurately 

isolate the effects of damage on the changes of the modal properties. 
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3.1 Effect of rotating speed 

To analyze the effects of the rotating speed, all other variables must be kept as constant as 

possible. To this end, the healthy condition without added masses and with 0° pitch angle is 

considered (i.e., case R in Table 1). To minimize the variability of the temperature, a subset of 

the data is analyzed, so similar temperature ranges are considered for the different rotating 

speeds (see Figure 4a). Table 2 summarizes the number of datasets considered in this analysis. 

A large number of datasets are obtained for different rotating speeds. Figure 4b shows the 

histogram (i.e., distribution) of the identified natural frequency of the first flapwise mode of 

the WTB for different rotating speeds. It can be observed that as the speed increases, the 

natural frequency also does. It is noted that higher rotating speeds increase the deformation of 

the blade, which in turn increases its stiffness due to nonlinear geometry effects. Figure 4c 

shows the histogram of the identified damping ratios of the first flapwise mode of the WTB 

for different rotating speeds. Slight increase of the damping ratio as rotating speed increases is 

observed at lower rotating speeds (≤45 rpm), while a significant increment can be noted at 60 

rpm.  

 
Table 2: Datasets considered in the identification process at the undamaged state of the blade for different 

rotating speeds in a similar temperature range. 

Rotating speed (rpm) 15 rpm 30 rpm 45 rpm 60 rpm 

# of timeseries 342 549 461 65 

 

 
Figure 4: Temperature and system identification results of case R (i.e., healthy with pitch angle 0°) used to 

analyze the effect of rotating speed, (a) histogram of temperature values, (b) histogram of identified natural 

frequency of the first flapwise versus rotating speed, (c) histogram of identified damping ratio of the first 

flapwise mode versus rotating speed. 

3.2 Effect of temperature 

To study the influence of temperature, the healthy case of the WTB is considered (i.e., case R 

in Table 1) using all the timeseries recorded. Table 3 summarizes the datasets considered in 

the analysis. All datasets recorded were considered to obtain the widest temperature range of 

temperatures possible and considered separately at different rotating speeds. Figure 5a 

through Figure 5d show linear regressions adjusted to the identified frequencies of the first 

flapwise mode of the blade versus temperature with high square correlation index along the 

different rotational speeds. It can be noticed that at higher temperatures the tendency is to 
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decrease the identified frequency of the first flapwise mode. Additionally, steeper slopes can 

be noted when increasing rotating speeds. Figure 5e through Figure 5g shows linear 

regressions adjusted to the identified damping ratio of the first flapwise mode of the blade 

versus temperature with high square correlation index for rotational speeds higher than 15 

rpm. As seen in Figure 5e, a linear regression is not able of properly fitting the relationship at 

15 rpm, where other factors seem to be more important than temperature at that rotating 

speed. On the other hand, linear behavior is observed at higher speeds (≥30 rpm), where at 

higher rotating speeds, the rise in temperature has a more severe influence in the increase of 

identified damping ratio of the first flapwise mode response that explains the phenomenon 

seen in Figure 4c, previously mentioned. 

Table 3: Datasets considered in the identification process at the undamaged state for temperature influence. 

Rotating speed (rpm) 15 rpm 30 rpm 45 rpm 60 rpm 

# of timeseries 408 570 501 72 

 

 
Figure 5: Temperature and system identification results of case R used to analyze the effect of temperature at 

different rotating speeds, (a, b, c, d) identified natural frequency of the first flapwise mode versus temperature at 

different rotating speeds, (e, f, g, h) identified damping ratio of the first flapwise mode versus temperature at 

different rotating speeds. 

3.3 Effects of pitch angle 

To assess the effect of the pitch angle on the modal properties of the first flapwise mode, 

all other variables (i.e., temperature, rotating speed, added masses, and damage conditions) 

were kept fixed or in similar ranges. Vibration data recorded at similar temperatures were 

considered for different pitch angles (see  Figure 6a to Figure 6c)  and the results are grouped 

for different rotating speeds.  

Table 4 summarizes the number of datasets considered in this analysis. Figure 6d through 

Figure 6f shows the histogram of the identified natural frequency of the first flapwise mode of 

the WTB for different pitch angles at different rotating speeds. Noticeable influence of pitch 

angle is depicted at the considered rotating speeds, where at 15 rpm (see Figure 6d) a 

consistent increase in the natural frequency is observed in cases P1 (i.e., pitch angle=18°), P2 
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(i.e., pitch angle=54°), and P3 (i.e., pitch angle=90°) compared to the refence case (R). Figure 

6g through Figure 6i shows the histogram of the identified damping ratios of the first flapwise 

mode of the WTB for different rotating speeds and pitch angles. No clear effect of the pitch 

angle on the estimated damping ratios can be observed.  

 
Table 4: Datasets used for the different pitch angles cases at different rotating speeds. 

Case label 15 RPM 30 RPM 60 RPM 

R 481 505 65 

P1 6 - 7 

P2 6 6 - 

P3 6 6 - 

 

 
Figure 6: Temperature and system identification results of refence case (i.e., case R) and pitch angle (i.e., cases 

P1, P2 and P3) used to analyze the effect of pitch angle at different rotating speeds, (a, b, c) histogram of 

temperature values versus pitch angle cases, (d, e, f) histogram of identified frequency of the first flapwise mode 

versus pitch angle cases, (g, h, i) histogram of identified damping ratio of the first flapwise mode versus pitch 

angle at different rotating speeds. 

3.4 Effects of added masses 

The influence of added masses was studied by comparing the reference case (R) with those 

cases that included additional masses attached to the WTB (i.e., cases M1 and M2 in Table 1). 

Since temperature distribution  were reasonably close to each other (see Figure 7a and Figure 

7b), the whole dataset, as summarized in Table 5, were used in this analysis. Figure 7c and 

Figure 7d show the histogram of the identified natural frequency of the first flapwise mode of 

the WTB for the cases with added masses at 15 rpm and 45 rpm, respectively. It can be 
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observed that mass addition to the blade has a great influence on the natural frequency of the 

blade, where larger added mass implies lower natural frequency. Compensation effects can be 

noted when comparing 15 rpm to 45 rpm, where frequency decrease is hidden by the higher 

rotating speeds. Figure 7e and Figure 7f shows the histogram of the identified damping ratio 

of the first flapwise mode of the WTB for the cases with added mass at 15 rpm and 45 rpm, 

respectively. Decreases in damping ratio shown in Figure 7e and increases in damping ratio 

seen in Figure 7e are most likely due to temperature effects, while no significant influence of 

mass addition can be reported.   

 
Table 5: Datasets used for the different mass addition cases for considered rotating speeds. 

Case label 15 rpm 45 rpm 

R 455 501 

M1 284 277 

M2 286 266 

 

 
Figure 7: Temperature and system identification results of refence and mass addition cases (i.e., cases R, M1 

and M2) used to analyze the effect of mass addition at different rotating speeds, (a, b) histogram of temperature 

values versus mass addition cases, (c, d) histogram of identified frequency of the first flapwise mode versus mass 

addition cases, (f, g) histogram of identified damping ratio of the first flapwise mode versus mass addition cases 

at different rotating speeds. 

3.5 Effect of progressive damage 

To analyze the effect of damage on the modal properties of the WTBs, it is required to also 

analyze the possible variations of the temperature, since data cover a wide range of 

temperatures as can be seen in Figure 8. Table 6 summarizes the number of reference (R) and 

damaged cases datasets (i.e., cases R, D1, D2, D3, D4, D5, and D6 in Table 1). Figure 9a 

though Figure 9d shows the histogram of the identified natural frequency of the first flapwise 

mode of the WTB with different damage cases at different rotating speeds. A considerable 

influence of temperature is observed on the damage cases response from cases R to D3, where 

no visible effects on the frequency distribution are detected along the different rotating 
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speeds. At case D4, the effect of damage begins to be more noticeable, where a decrease in 

the natural frequency can be seen through D6. Figure 9e to Figure 9h show the histogram of 

the identified damping ratio of the first flapwise mode of the WTB with different damage 

cases at different rotating speeds. Effects of temperature and rotating speed are observed, 

while no clear influence of damage in damping ratio can be seen. 

Table 6: Datasets used for the different damage cases for different rotating speeds. 

Case label 15 rpm 30 rpm 45 rpm 60 rpm 

R 455 570 501 72 

D1 481 505 408 65 

D2 140 - 236 - 

D3 193 - 279 - 

D4 453 392 503 146 

D5   - 217 - 

D6 319 359 362 142 

 

 
Figure 8: Histogram of temperature values for reference and damage cases (i.e., cases R, D1, D2, D3, D4, D5 

and D5) used to analyze the effect of damage at, (a) 15 rpm, (b) 30 rpm, (c) 45 rpm, (d) 60 rpm. 

 
Figure 9: System identification results of for reference and damage cases (i.e., cases R, D1, D2, D3, D4, D5 and 

D5) used to analyze the effect of damage, (a, b, c, d) histogram identified natural frequency of the first flapwise 

versus damage cases (e, f, g, h) histogram of identified damping ratio of the first flapwise mode versus damage 

cases at different rotating speeds. 
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4 CONCLUSIONS 

This study analyzes the effects of environmental and operational variables (EOV), added 

masses, and damage on the modal properties of wind turbine blades (WTBs). To this end, a 

monitoring system was developed to record acceleration response data on a 2.4 m long WTBs 

mounted on a wind turbine mock-up. The deterministic-stochastic subspace identification 

(DSI) algorithm and clustering techniques were used to automatically estimate the modal 

properties (i.e., natural frequencies, damping ratios, and mode shapes) of the WTB. The 

results obtained by the continuous-time automated modal analysis system were then 

comprehensively analyzed, specifically, the modal parameters of the first flapwise vibration 

mode of the blade. 

The identification results showed that at higher rotating speeds the natural frequency 

increased. It was observed that the frequency tends to decrease as temperature increased. In 

addition, at higher speeds, the temperature effects tend to be more noticeable than at lower 

speeds. Pitch angle showed greater influence than rotating speed and temperature, with 

frequency values increasing as pitch angle goes from 0° to 54°, while at 90° similar modal 

parameters as those identified at 18° were obtained. Added masses also influence the 

identified natural frequency, with larger added masses decreasing the frequency. Finally, 

artificially-induced damage showed noticeable effects only at final damage states, while when 

smaller cuts were induced on the blades, no significant effects of the natural frequency were 

observed.  

Damping ratio response of the first flapwise mode of the blade was greatly influenced by 

temperature and rotating speeds, while no visible effect was observed for pitch angle 

variations, mass addition, and damage progression. Increases in rotating speed or temperature 

showed an increase in damping ratio, while temperature effects over amping ratio seems not 

greatly influential at 15 rpm, while increasingly considerable at higher rotating speeds.  
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