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Abstract 

 

This paper discusses the modeling of cracking in quasi-brittle materials using isotropic and 

orthotropic damage constitutive laws. A mixed strain/displacement finite element formulation is 

used, taking advantage of its enhanced precision and its enforced interelemental strain continuity. 

On the one hand, this formulation avoids the spurious mesh dependency of the computed solution 

associated to standard elements and does not require the use of tracking techniques. On the other 

hand, it greatly alleviates the spurious stress locking associated to the use of orthotropic models 

on standard finite elements. 

The performance of several isotropic and orthotropic damage constitutive laws is assessed 

through an extensive comparison with analytical solutions, numerical tests and experimental 

evidence reported in the literature. The behavior of the different damage models in terms of crack 

surface, collapse mechanism and force displacement curves is investigated performing 3D 

analyses in several conditions including Mode I, Mixed Mode and Mode III fracture.  

When performing the appraisement of planar, bending and twisting cracks, the enhanced accuracy 

of the mixed formulation allows for a distinct assessment of the several damage models 

considered. Aspects related to the behavior of damage models, such as the influence of Poisson’s 

ratio, the shape of the damage surface and the adoption of isotropic and orthotropic models are 

investigated and noteworthy conclusions are drawn. 
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1 Introduction 

 

Classical orthotropic crack models developed in the early 1970s for the modeling of cracking in 

concrete were largely abandoned in the late 1990s due, among others, to issues of spurious stress 

locking that made their use unreliable [1, 2]. Fixed Crack [3] and Rotating Crack Models [4, 5], 

as well as Multiple Fixed Crack [6, 7] and Microplane Models [8, 9], were proposed in the three 

in-between decades. For more details on those crack models the review of references [1, 10-15] 

is suggested. Spurious stress transfer brings in spurious energy dissipation and the associated 

stress locking during the cracking process and hamstrings the formation of realistic failure 

mechanisms. These serious hindrances are partly avoided by adopting isotropic damage models, 

where the inadequacy of the kinematical description of standard finite elements does not show in 

the stress field [2, 16-19]. Nowadays, isotropic damage has been adopted as a standard practice 

in the modeling of quasi-brittle materials.  

Regretfully, the adoption of isotropic models is far from solving the problem of FE modeling of 

cracking. On the one hand, it is well established that the standard FE formulation produces mesh-

biased results in many situations, due to its local lack of convergence in quasi-singular situations 

[20, 21]. On the other hand, an isotropic description of damage is not adequate for certain 

applications. For example, orthotropic models are needed in cyclic loading problems to take 

microcrack closure-reopening (MCR) effects into account [22]. 

Recently, mixed finite elements have been reexamined by [20, 21, 23-25] to deal with cracking 

problems. Mixed finite element formulations have proved to be a remedy for spurious mesh 

dependency and lack of convergence of the computed solution when using standard finite 

elements. The use of mixed FE formulations for solid mechanics problems results in an 

improvement over standard finite element formulations in terms of computed stress and strain 

fields accuracy both in linear and nonlinear scenarios. In mixed formulations, the strain is 

approximated independently from the displacement field, instead of being obtained from local 

discrete differentiation at element level. In this way, more accurate stress and strain fields are 

quantified, resulting in a more precise computation of the nonlinear behavior, particularly for low 

order FE. This is decisive in the numerical solution of strain localization problems, as mesh-bias 

independent outcomes are obtained without the need of auxiliary crack tracking techniques. 

The mixed finite element technology has proved to be able to solve many of the problems related 

to standard elements. In [25], quasi-brittle cracks were modelled in 2D and 3D using several 

isotropic models. The use of an independent approximation for the strain field enforces the 

continuity of strains in the computed solution, whereas strains are inter-element discontinuous in 

standard FE. Strain continuity is crucial in alleviating the spurious stress locking that made the 

use of orthotropic models unpractical in the past decades. The enhanced accuracy of mixed finite 

elements allows now to reconsider the use of orthotropic damage constitutive laws in cracking 

models.  

Therefore, the objectives of this paper are: (1) to assess the performance of several isotropic and 

orthotropic damage models to solve cracking problems in mode I, mixed mode and mode III 

loading, (2) to show that different models, and even the isotropic and orthotropic versions of the 

same model, produce different crack patterns for a given loading, (3) to demonstrate the capability 

of the mixed finite element formulation in successfully incorporating orthotropic damage models, 

as a consequence of their enforced strain continuity and enhanced accuracy. To attain these 

objectives, an exhaustive validation of the models is performed using theoretical results and 

experimental data from the literature. 
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The outline of this paper is as follows: in section 2, the isotropic and orthotropic damage 

constitutive laws considered in this article are presented, to be used in conjunction with the mixed 

finite element formulation summarized in section 3. Section 4 presents numerical simulations 

performed in 3D where the performance of the constitutive laws is examined. Finally, the 

conclusions of the study are presented.  

 

2 Isotropic and orthotropic constitutive damage models 

 

In this section, the several constitutive damage models considered in this article are described. 

Using Voigt’s convention, the strain and stress tensors, 𝜺 and 𝝈, are expressed as vectors [26]. In 

3D analysis the strain vector 𝜺 = (휀𝑥 , 휀𝑦, 휀𝑧, 𝛾𝑥𝑦, 𝛾𝑦𝑧, 𝛾𝑥𝑧)
𝑇

 has 6 components. Correspondingly, 

the stress 𝝈 is also a vector with 6 components, 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧)
𝑇

. The stress 𝛔 and 

the strain 𝜺 are linked through the constitutive equation: 

𝛔 = 𝐃𝑠𝜺 (1) 

where 𝐃𝑠 is the secant constitutive matrix, which has to be symmetric and positive semidefinite 

from thermodynamic considerations. In damage models 𝐃𝑠 is a function of a set of internal 

variables 𝒅 that describe the degradation of the material such that 

𝐃𝑠 = 𝐃𝑠(𝒅) (2) 

The material parameters of the damage models used in the paper are those standard for isotropic 

materials with tensile failure: undamaged Young’s modulus 𝐸 and Poisson’s ratio 𝜈, tensile 

strength 𝑓𝑡 and fracture energy 𝐺𝑓. The Drucker-Prager criterion requires also the specification of 

the compressive strength 𝑓𝑐.  
 

2.1 Isotropic damage models 
 

In isotropic damage, the secant constitutive matrix 𝐃𝑠 of equation (2) can be written as  

𝐃s = (1 − 𝑑)𝐃0 = (1 − 𝑑)

(

 
 
 

𝐷11 𝐷12 𝐷13
𝐷21 𝐷22 𝐷23
𝐷31 𝐷32 𝐷33

𝟎

𝟎

𝐺12
𝐺13

𝐺23)

 
 
 

 (3) 

where 𝑑 is the internal damage index and 𝐃0 is the elastic constitutive matrix for homogeneous 

materials such that 

𝐷11 = 𝐷22 = 𝐷33 =
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 

𝐷12 = 𝐷21 = 𝐷13 = 𝐷31 = 𝐷23 = 𝐷32 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
 

𝐺12 = 𝐺13 = 𝐺23 =
𝐸

2(1 + 𝜈)
 

(4) 
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where 𝐸 and 𝜈 are the undamaged elastic values of Young’s modulus and Poisson’s ratio 

respectively. 

The damage index 𝑑 is an internal variable that measures the loss of stiffness of the material and 

it ranges 0 ≤ 𝑑 ≤ 1. 

From equations (1) and (3), the constitutive equation of an isotropic damage model can be written 

as 

𝛔 = (1 − 𝑑) 𝐃0𝜺 = (1 − 𝑑) �̅� (5) 

where the effective stress �̅� is introduced as �̅� = 𝐃0𝜺, corresponding to the hypothesis of strain 

equivalence [21]. 

The damage criterion, 𝔽, is defined as 

𝔽(𝜎𝑒𝑞 , 𝑟) = 𝜎𝑒𝑞(�̅�) − 𝑟 ≤ 0 (6) 

where 𝜎𝑒𝑞(�̅�) is the equivalent effective stress, and 𝑟 is the current stress-like damage threshold. 

For tensile cracking the initial value of the damage threshold is taken as the tensile strength of the 

material, 𝑟0 = 𝑓𝑡.  

From the Kuhn-Tucker optimality and consistency conditions, the current value of the damage 

threshold is explicitly updated as 

𝑟 = max  (𝑟0,max𝜎𝑒𝑞(�̂�))     �̂� ∈ [0, 𝑡] (7) 

This guarantees the irreversibility of damage and the positiveness of the dissipation [21]. The 

evolution of the damage index is defined by the exponential function 

𝑑 = 𝑑(𝑟) = 1 −
𝑟0
𝑟
exp(−2𝐻𝑆 (

〈𝑟 − 𝑟0〉

𝑟0
)) (8) 

where 𝐻𝑆 is the positive softening parameter, which controls the rate of material degradation. 

In FE simulations of quasi-brittle failure [20, 24] following the smeared (or crack band) approach, 

the softening parameter is linked to the material fracture energy 𝐺𝑓, which is a property of the 

material, in the following way: 

𝐻𝑆 =
�̅�𝑆𝑏

1 − �̅�𝑆𝑏
 (9) 

where 𝑏 is the bandwidth of the smeared crack and �̅�𝑆 is the inverse of the material length ℒ 

�̅�𝑆
−1
= ℒ =

2𝐸𝐺𝑓
(𝑓𝑡)

2
 (10) 

𝑓𝑡 being the tensile strength and 𝐸 the Young’s modulus. In this work, the bandwidth of the 

localized cracks is taken as 
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𝑏 = (1 − 𝜏𝜀)2ℎ + 𝜏𝜀ℎ = (2 − 𝜏𝜀)ℎ (11) 

where ℎ is the finite element size and 𝜏𝜀 is the stabilization parameter with value 0 ≤ 𝜏𝜀 ≤ 1. 

This is consistent with the approximation adopted for the discrete strain field in the mixed 

formulation, see equation (38). 

 

Damage criteria 

 

This article centers in the assessment of the relative performance of several damage models. 

Consequently, the effective equivalent stress 𝜎𝑒𝑞(�̅�) is defined through different criteria. 

Specifically, the Beltrami, Modified Beltrami, Positive Beltrami, Rankine and Drucker-Prager 

criteria are considered. 

 Beltrami 

𝜎𝑒𝑞(�̅�) = √(�̅�1)
2 + (�̅�2)

2 + (�̅�3)
2 − 2𝜈(�̅�1�̅�2 + �̅�1�̅�3 + �̅�2�̅�3) (12) 

where �̅�1, �̅�2 and �̅�3 are the major principal stresses and 𝜈 is the Poisson ratio. 

The Beltrami criterion considers effective (ordered according to their value) tensile and 

compressive stresses equally; therefore, this criterion is adequate only for materials with similar 

tensile and compressive strength.  

Beltrami’s equivalent stress in equation (12) is the one used in the Simo and Ju damage model 

[27] and it is defined as 𝜎𝑒𝑞 = √2Ψ0 = √�̅�𝐃0
−1�̅� where Ψ0 is the Helmholtz free energy per unit 

of volume of the undamaged material.  

The criterion is similar to the well-known Von Mises criterion, where 

𝜎𝑒𝑞(�̅�) = √(�̅�1)
2 + (�̅�2)

2 + (�̅�3)
2 − (�̅�1�̅�2 + �̅�1�̅�3 + �̅�2�̅�3) (13) 

but is not purely isochoric.  

 Positive Beltrami 

𝜎𝑒𝑞(�̅�) = √(〈�̅�1〉)
2 + (〈�̅�2〉)

2 + (〈�̅�3〉)
2 − 2𝜈(〈�̅�1〉〈�̅�2〉 + 〈�̅�1〉〈�̅�3〉 + 〈�̅�2〉〈�̅�3〉) (14) 

where 〈·〉 are the Macaulay brackets, such that 〈𝑥〉 = 𝑥    𝑖𝑓  𝑥 ≥ 0,     0    𝑖𝑓  𝑥 < 0.  

This criterion is introduced to consider only damage under tensile (positive) stresses, so that 

damage is driven by the positive part of the Helmholtz free energy 𝜎𝑒𝑞 = √2Ψ0
+ = √�̅�+𝐃0

−1�̅�+ 

being �̅�+ the vector that contains the positive part of the effective stresses, �̅�+ =

(〈�̅�1〉 〈�̅�2〉 〈�̅�3〉 0 0 0)𝑻. 
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 Modified Beltrami 

A modification of the Beltrami model is considered in reference [28], in which Poisson’s effect 

is accounted for differently in the evaluation of the equivalent stress and the computation of the 

constitutive matrix. The equivalent stress is 

𝜎𝑒𝑞(�̅�) = √(�̅�1)
2 + (�̅�2)

2 + (�̅�3)
2 (15) 

The secant constitutive matrix is similar to that in equation (3): 

𝐷11 = 𝐷22 = 𝐷33 =
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 

𝐷12 = 𝐷21 = 𝐷13 = 𝐷31 = 𝐷23 = 𝐷32 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
 

𝐺12 = 𝐺13 = 𝐺23 =
𝐸

2(1 + 𝜈)
 

(16) 

and the term 𝜈 is defined as 𝜈 = (1 − 𝑑)𝜈. 

A modified positive Beltrami criterion can also be defined. 

 Rankine 

𝜎𝑒𝑞(�̅�) = 〈�̅�1〉 (17) 

where �̅�1 is the major principal effective stress. This criterion is also introduced with the objective 

of taking into account only tensile damage. 

 Drucker-Prager 

𝜎𝑒𝑞(�̅�) =
3

3 + tan𝜙
(√3𝐽2 + tan𝜙

𝐼1
3
) (18) 

where 𝐼1 and 𝐽2 are the first and second effective stress invariants, which are expressed in terms 

of the principal stresses as 

𝐼1 = (�̅�1 + �̅�2 + �̅�3) 

𝐽2 =
1

6
[(�̅�1 − �̅�2)

2 + (�̅�2 − �̅�3)
2 + (�̅�3 − �̅�1)

2] 
(19) 

and 𝜙 is the internal friction angle of the material. The friction angle 𝜙 can be related to the 

uniaxial tensile and compressive strengths, 𝑓𝑡 and 𝑓𝑐, as 

tan𝜙 = 3 
𝑓𝑐 − 𝑓𝑡
𝑓𝑐 + 𝑓𝑡

 (20) 

This criterion is appropriate for materials with different strengths for traction and compression 

and subjected to mixed mode loading. 
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2.2 Orthotropic damage models 

 

In this article, orthotropic damage models with 3 independent damage indices, one for each 

principal direction of effective strain and stress, are also considered. Such symmetric orthotropic 

models are formulated using the hypothesis of energy equivalence [22, 29-31]. Equation (2) can 

be particularized for the orthotropic damage models as 

𝐃𝑠 = 𝐃𝑠(𝒅) = 

(

 
 
 
 

𝐷11(𝑑1) 𝐷12(𝑑1, 𝑑2) 𝐷13(𝑑1, 𝑑3)

𝐷21(𝑑1, 𝑑2) 𝐷22(𝑑2) 𝐷23(𝑑2, 𝑑3)

𝐷31(𝑑1, 𝑑3) 𝐷32(𝑑2, 𝑑3) 𝐷33(𝑑3)
𝟎

𝟎

𝐺12(𝑑1, 𝑑2)

𝐺13(𝑑1, 𝑑3)

𝐺23(𝑑2, 𝑑3))

 
 
 
 

 
(21) 

such that 

𝐷𝑖𝑖 = (1 − 𝑑𝑖)
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
     ;      𝑖 = 1,3 

𝐷𝑖𝑗 = √(1 − 𝑑𝑖)(1 − 𝑑𝑗)
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
     ;      𝑖, 𝑗 = 1,3     𝑖 ≠ 𝑗 

𝐺𝑖𝑗 = √(1 − 𝑑𝑖)(1 − 𝑑𝑗)
𝐸

2(1 + 𝜈)
     ;      𝑖, 𝑗 = 1,3     𝑖 ≠ 𝑗 

(22) 

where 𝐸 and 𝜈 are the undamaged initial elastic values of Young’s modulus and Poisson’s ratio. 

Note that the secant matrix 𝑫𝑠 is symmetric. 

The damage indices 𝑑1, 𝑑2 and 𝑑3 are linked to each of the principal directions of effective stress, 

�̅�1, �̅�2 and �̅�3, respectively. For evaluating the damage indices 𝑑𝑖; 𝑖 = 1,3, damage threshold 

functions, 𝑟𝑖, and equivalent stresses 𝜎𝑒𝑞,𝑖 are evaluated in each direction independently.  

The damage criteria are 

𝔽𝑖(𝜎𝑒𝑞,𝑖  , 𝑟𝑖) = 𝜎𝑒𝑞,𝑖(�̅�) − 𝑟𝑖 ≤ 0 (23) 

Damage thresholds are evaluated as 

𝑟𝑖 = max  (𝑟0,max𝜎𝑒𝑞,𝑖(�̂�))     �̂� ∈ [0, 𝑡] (24) 

similarly to equation (7). The corresponding damage indices 𝑑𝑖 are calculated as 

𝑑𝑖 = 𝑑𝑖(𝑟𝑖) = 1 −
𝑟0
𝑟𝑖
exp(−2𝐻𝑆 (

〈𝑟𝑖 − 𝑟0〉

𝑟0
)) (25) 

where 𝐻𝑆 is the parameter evaluated according to equations (9)-(11). 

The orthotropic model laid out here falls within the rotating crack approach; “fixed” orthotropic 

damage models may also be considered [22].  
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The equivalent stress in each direction 𝜎𝑒𝑞,𝑖(�̅�), according to the several criteria, are 

 Beltrami 

𝜎𝑒𝑞,1 = √(�̅�1)
2 + (�̅�2)

2 + (�̅�3)
2 − 2𝜈(�̅�1�̅�2 + �̅�1�̅�3 + �̅�2�̅�3) 

𝜎𝑒𝑞,2 = 0 

𝜎𝑒𝑞,3 = 0 

(26) 

so that damage affects only the direction of the maximum principal stress.  

 Rankine 

𝜎𝑒𝑞,𝑖 = 〈�̅�𝑖〉 (27) 

Like in its isotropic form, the orthotropic Rankine damage model is only sensitive to tensile 

stresses, but considers each principal direction indepently. 

 Drucker-Prager 

𝜎𝑒𝑞,𝑖 = {

3

3 + tan𝜙
· (√3𝐽2 + tan𝜙

𝐼1
3
)         𝑖𝑓 �̅�𝑖 ≥ 0

0                                                              𝑖𝑓 �̅�𝑖 < 0

 (28) 

In this criterion, damage only evolves in the directions where the corresponding principal stress 

is positive.  

 

3 Mixed FE for strain localization 

 

In this section, the adopted mixed finite element formulation is introduced. This formulation is 

presented in detail in reference [25]. For more details, references [20, 21, 24, 32] are suggested.  

The mixed finite element formulation here presented fits into the continuous approach, as the 

crack is represented at constitutive level using the damage models detailed in Section 2. 

Therefore, the separation between the two opposite sides of the crack is modelled through 

continuous (linear) displacement and strain fields [25]. 

In the considered mixed FE formulation, the variational form of the nonlinear solid mechanics 

problem is cast in terms of the displacement 𝒖 and the strain 𝜺 fields. Matrix and vector notation 

based on Voigt’s convention for symmetric tensors is adopted, as customarily used in FE literature 

and in codes. Writing the problem in matrix form, 𝒖 and 𝜺 are expressed in Voigt’s convention 

as vectors. Details of the algebraic system of equations are given in [25].  

The strain and displacement fields are locally related through the compatibility equation [26] 

𝜺 = 𝓢𝒖 (29) 

where 𝓢 is the differential symmetric gradient operator. Correspondingly, the stress vector 𝝈 and 

the body forces vector 𝐟 are linked through Cauchy’s equilibrium equation of a body, written in 

matrix form as  
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𝓢𝑇𝝈 + 𝐟 = 𝟎 (30) 

where 𝓢𝑇 is the differential divergence operator, adjoint to the 𝓢 in (29). The stress vector 𝛔 and 

the strain vector 𝜺 are linked by the constitutive equation: 

𝛔 = 𝐃𝑠𝜺 (31) 

where 𝐃𝑠 is the secant constitutive matrix.  

Pre-multiplying equation (29) by the secant constitutive matrix 𝐃𝑠 and substituting equation (31) 

into equation (30) results in the mixed system of equations 

−𝐃𝑠𝜺 + 𝐃𝑠𝓢𝒖 = 𝟎 (32) 

𝓢𝑇(𝐃𝑠𝜺) + 𝐟 = 𝟎 (33) 

The system of equations (32)-(33) is the strong form of the mixed 𝜺/𝒖 formulation, completed 

with the proper boundary conditions. 

The corresponding weak form in (34)-(35) is obtained by multiplying equation (32) by an 

arbitrary virtual strain 𝛿𝜺 and multiplying equation (33) by an arbitrary displacement vector 𝛿𝒖. 

The system is then integrated over the spatial domain and the Divergence Theorem is used in the 

right hand side of the second integral operation. The resulting variational form is 

−∫ 𝛿𝜺𝑇𝐃s𝜺 dΩ
Ω

+∫ 𝛿𝜺𝑇𝐃s𝒮𝒖 dΩ
Ω

= 0   ∀𝛿𝜺 (34) 

∫ (𝓢𝛿𝒖)𝑇(𝐃𝑠𝜺)dΩ
Ω

= ∫ 𝛿𝒖𝑇𝐟 dΩ
Ω

+∫ 𝛿𝒖𝑇 �̅� dΓ
Γ𝑡

   ∀𝛿𝒖 (35) 

The mixed problem to be solved is to find the unknowns 𝒖 and 𝜺 that verify the system of 

equations composed by (34) and (35) and that verify the boundary condition 𝒖 = 𝟎 on Γ𝑢 given 

the arbitrary virtual displacement 𝛿𝒖, which vanishes on the Dirichlet boundary Γ𝑢 and arbitrary 

virtual strain 𝛿𝜺. Note that this variational problem is symmetric if 𝐃s is symmetric. 

 

The FE discrete form of the mixed problem is obtained by discretizing the domain in FE, so that 

Ω =∪ Ω𝑒, and substituting the displacement 𝒖 and the strain 𝜺 with the FE discrete 

approximations �̂� and �̂� defined element-wise as 

𝒖 ≅ �̂� = 𝑵𝑢𝑼 (36) 

𝜺 ≅ �̂� = 𝑵𝜀𝑬 (37) 
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where 𝑼 and 𝐄 are vectors containing the values of the displacements and the strains at the nodes 

of the finite element mesh. 𝑵𝑢 and 𝑵𝜀 are the matrices containing the interpolation functions 

adopted in the FE approximation. 

To ensure solvability (i.e. uniqueness) and stability of the solution in the system of equations, the 

interpolation functions in (36)-(37) must satisfy the Inf-Sup condition. This requirement is not 

fulfilled if equal interpolations are used for strains and displacements. In such case, the solution 

is unstable, and spurious oscillations may appear in the discrete displacement field. To be able to 

circumvent the strictness of the Inf-Sup condition and to use linear approximations both for 

displacements and strains a stabilization procedure is necessary to provide stability to the mixed 

discrete formulation. The stabilization procedure consists in the modification of the discrete 

variational form using the Orthogonal Subscales Method, introduced within the framework of the 

Variational Multiscale Stabilization methods and adopted herein. 

The basic idea of the stabilization procedure is to substitute the approximation of the discrete 

strain in equation (37) by the following stabilized discrete field 

𝜺 ≅ �̂� = 𝑵𝜀𝑬 + 𝜏𝜀(𝑩𝑢𝑼−𝑵𝜀𝑬) = (1 − 𝜏𝜀)𝑵𝜀𝑬+ 𝜏𝜀𝑩𝑢𝑼 (38) 

where 𝜏𝜀 is a stabilization parameter with value 0 ≤ 𝜏𝜀 ≤ 1. Note that for 𝜏𝜀 = 1, the strain 

interpolation of the standard irreducible formulation is recovered: 

𝜺 ≅ �̂� = 𝑩𝑢𝑼 (39) 

where 𝑩𝑢 is the discrete strain-displacement matrix defined as 𝑩𝑢 = 𝓢𝑵𝑢. For a given FE mesh, 

the use of different stabilization parameter values yields slightly different results. However, the 

consistency of the stabilization technique guarantees convergence to the unique solution upon 

mesh refinement. Additional details are given in reference [25]. 

The resulting algebraic system of equations reads: 

[
−𝑴𝝉 𝑮𝝉
𝑮𝝉
𝑇 𝑲𝝉

] [
𝑬
𝑼
] = [

𝟎
𝑭
] (40) 

such that 𝑴𝝉 = (1 − 𝜏𝜀)𝑴, 𝑮𝝉 = (1 − 𝜏𝜀)𝑮 and 𝑲𝝉 = 𝜏𝜀𝑲 with  

𝑴 = ∫ 𝑵𝜺
𝑻𝐃𝐬𝑵𝜺 dΩ

𝛺

 (41) 

𝑮 = ∫ 𝑵𝜺
𝑻𝐃𝐬𝑩𝒖 dΩ

𝛺

 (42) 

𝑲 = ∫ 𝑩𝑢
𝑇𝐃s𝑩𝑢 dΩ

𝛺

  (43) 

𝑭 = ∫ 𝑵𝒖
𝑻𝒇 dΩ

𝛺

+∫ 𝑵𝒖
𝑻�̅� dΓ

𝛤𝑡

 (44) 
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where [𝑬 𝑼]𝑇 is the array of nodal values of strains and displacements. 𝑴 is a mass like 

projection matrix, 𝑮 is the discrete gradient matrix, 𝑲 is the standard stiffness matrix and 𝑭 is the 

vector of external nodal forces.  

In the system (40), the nodal values 𝑬 can be formally eliminated to write the solution in terms of 

the nodal displacements 𝑼 only, as follows. From the first equation in (40), the nodal values for 

the strains 𝑬 can be obtained as  

𝑬 = 𝑴−𝟏𝑮𝑼 (45) 

which can be substituted into the second equation to yield 

𝑼 = (𝑮𝝉
𝑇𝑴𝝉

−𝟏𝑮𝝉 +𝑲𝝉)
−𝟏
𝑭 (46) 

This defines 𝑲𝑚𝑖𝑥 = 𝑮𝝉
𝑇𝑴𝝉

−𝟏𝑮𝝉 +𝑲𝝉 as the stiffness matrix of the enhanced mixed FE 

formulation. Note that this definition is only formal, as 𝑲𝑚𝑖𝑥 cannot be assembled in an element-

by-element fashion, nor it needs to be considered explicitly. 

 

4 Numerical simulations 

 

In this section, five sets of numerical simulations are performed using the isotropic and orthotropic 

damage models and the mixed FE formulation presented earlier. Numerical simulations are 

compared to theoretical or experimental solutions reported in the literature. The simulations are: 

1. Willam’s test 

2. Traction tests on solid and hollow cylindrical specimens 

3. Mixed mode bending tests 

4. Mixed mode shearing-tension tests 

5. Torsion test on a solid cylindrical specimen 

Simulations 2 to 5 have been performed using 3D finite elements. No tracking technique is used 

in any of the cases. A stabilization parameter 𝜏휀 = 0.1 is used in all the simulations. 

Calculations are performed with an enhanced version of the finite element program COMET [33]. 

Pre- and post-processing are done with GiD [34], developed at CIMNE (International Center for 

Numerical Methods in Engineering).  

 

4.1 Willam’s Test 

 

Willam’s numerical test is used to highlight the difference between the isotropic and orthotropic 

damage models under shear loading. The test was proposed in reference [10] and it is regularly 

used to assess the performance of nonlinear damage constitutive laws [1, 31, 35-37]. 

The test examines the behavior of the isotropic and orthotropic damage models when the principal 

directions of strain rotate. The Rankine criterion is adopted in all cases. 
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The test is performed with a single quadrilateral 2D element in plane stress conditions. The 

material properties are shown in Table 1. The loading is applied in two stages via increments of 

displacements. In the first stage, a uniaxial displacement is imposed in the horizontal X direction; 

as a consequence, deformation occurs in the X and Y directions, due to Poisson’s effect. This 

leads to strains with an incremental ratio of ∆휀𝑥𝑥: ∆휀𝑦𝑦: ∆𝛾𝑥𝑦 = 1:−𝜈: 0. The first stage ends 

when the stress 𝜎𝑥𝑥 reaches the value of the uniaxial tensile strength. In the second stage, 

displacements are imposed such that the incremental ratio of strains is ∆휀𝑥𝑥: ∆휀𝑦𝑦: ∆𝛾𝑥𝑦 =

1: 1.5: 1 until the complete failure of the material. Note that in the second stage of the test the 

principal directions of strain change, as the ratio 휀𝑥𝑥: 휀𝑦𝑦: 𝛾𝑥𝑦 changes at each step.  

A constitutive model is said to pass Willam’s test if (a) the predicted maximum principal stress 

does not exceed the uniaxial tensile strength and (b) all computed stress components tend to zero 

asymptotically [35, 37]. 

Young’s Modulus 30·109 Pa 

Poisson’s Ratio 0.2 

Tensile Strength 3.0·106 Pa 

Fracture Energy 200 J/m2 
 

Table 1. Material parameters of Willam’s test 

 

 

Figure 1. Imposed 𝜺𝒙𝒙, 𝜺𝒚𝒚 and  𝜺𝒙𝒚 during Willam’s test 

 

 

Figure 2. Evolution of the angle (degrees) of the maximum principal strain with respect to the           

X direction 

 



 

13 

 

 

Figure 3. Computed maximum principal stress in Willam's test 

 

Isotropic vs orthotropic damage 

 

Figure 1 shows the evolution of strains during Willam’s test. The two stages of the test can be 

easily identified. The rotation of the principal directions of strain that occurs during the process 

is depicted in Figure 2. In the first stage, the principal directions of strain are aligned with the axis 

of the element. In the second stage, strains rotate and the angle of the maximum principal strain 

with respect the X direction tends asymptotically to 58.28º, which corresponds to the limit case 

휀𝑥𝑥: 휀𝑦𝑦: 𝛾𝑥𝑦 = 1: 1.5: 1. 

In Figure 3 the evolution of the maximum principal stress for the two constitutive laws is shown. 

In the isotropic case, the principal stress decreases asymptotically to zero after reaching the peak. 

In the orthotropic case, a second peak of stresses appears shortly after the occurrence of the first 

one. After that, the major principal stress also decreases asymptotically to zero.  

In Figure 4, the evolution of the 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜏𝑥𝑦 is depicted. For isotropic damage, there is a 

single damage index affecting the evolution of all the stresses components 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜏𝑥𝑦. On 

the contrary, with orthotropic damage, components 𝜎𝑥𝑥 and 𝜎𝑦𝑦 behave in a much more 

independent way, as each principal direction of stress is affected by a different damage index.  

Figure 4 also shows the rotation of principal directions of strain and stress. In the first stage, 𝜎𝑦𝑦 

and 𝜏𝑥𝑦 are zero and the maximum principal stress 𝜎1 is in the direction of 𝜎𝑥𝑥. In the second 

stage, the ratio between 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜏𝑥𝑦 is constantly changing, making the principal directions 

of stresses 𝜎1 and 𝜎2 to continuously rotate. 

Figure 5 shows the evolution of the angle of the maximum principal stress with respect the X 

direction for the isotropic and orthotropic cases. As it can be observed, the two results are 

overlapping, demonstrating that in the two damage models the strains and stresses are coaxial. It 

should be noted that the angle of the maximum principal stress tends asymptotically to the same 

angle as the one corresponding to strains in Figure 2. 

The two models pass the Willam’s test according to the aforementioned criteria. 
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Figure 4. Evolution of 𝝈𝒙𝒙, 𝝈𝒚𝒚 and  𝝉𝒙𝒚 stresses in Willam’s test for the                                             

(a) isotropic and (b) orthotropic models 

 

 

Figure 5. Evolution of the angle (degrees) of the maximum principal stress with respect to the          

X direction 

 

 

 

(a) 

(b) 
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4.2 Traction test on solid and hollow cylindrical specimens 

 

The numerical analysis of cylindrical concrete specimens subjected to axial straining is 

performed. The objective of this example is to test the behavior of several damage models with 

regard to their sensitivity to Poisson’s ratio. 

Computations are performed with the Beltrami and Modified Beltrami criteria. First, a 

comparison is performed between the isotropic versions of the models. Afterwards, the 

orthotropic Beltrami model is also employed. 

Two cases are considered. In the first one, the cylinder is solid, and in the second one, the cylinder 

is hollow. The cylinder has a 50 mm radius and is 450 mm long in the solid case and 500 mm 

long in the hollow case. The thickness of the hollow specimen is 5 mm. A small hole of 5 mm 

radius has been introduced in the middle of the specimens to fix the occurrence of fracture. The 

material properties are shown in Table 2. Simulations are performed with different Poisson’s ratio 

values. Opposite increments of vertical displacement are applied at the top and bottom surfaces 

of the specimen.  

Case Solid Hollow 

Young’s Modulus 38·109 Pa 38·109 Pa 

Tensile Strength 2.3·106 Pa 3.0·106 Pa 

Fracture Energy 80 J/m2 80 J/m2 
 

Table 2. Material parameters of the traction test 

 

                       

Figure 6. Meshes used for the analyses of the traction test for the                                                         

(a) solid and (b) hollow specimens 

In both cases, the specimens are discretized with fully unstructured meshes of tetrahedral 

elements, shown in Figure 6. For the solid specimen the elements have a size of 6 mm, resulting 

in a mesh of 21,986 nodes; in the hollow specimen, the elements are of 5 mm, ensuing a mesh of 

15,823 nodes.  

 

 

(a) (b) 
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Influence of Poisson’s ratio 

 

Figure 7 shows the computed crack surfaces in the solid specimen obtained with the Beltrami 

criterion for different values of Poisson’s ratio, plotted as the isolevel surface of the norm of 

vertical displacements. Corresponding results, also with the Beltrami criterion, are shown in 

Figure 8 for the hollow specimen.  

It can be seen that different values of Poisson’s ratio produce crack surfaces at different angles 

with the horizontal plane (orthogonal to the axial stress). This angle has been theoretically 

computed for Beltrami’s criterion in reference [28] depending on the value of Poisson’s ratio for 

plane stress and plane strain behavior. The solid specimen behaves closely to plane strain 

conditions while the hollow case behaves similarly to plane stress conditions. Table 3 compares 

the expected theoretical angles and the computed ones for each case. It can be seen that the 

computed results are very close to the expected theoretical solutions. 

Figure 9 shows the force-displacement curves for both the solid and the hollow specimens 

computed with the Beltrami criterion for several Poisson’s ratio values. It can be seen that the 

results in terms of dissipated energy depend on Poisson’s ratio. Note that the load capacity of the 

specimens differs very little from the values corresponding to perfectly brittle failure (18.06 kN 

and 4.48 kN for the solid and hollow specimens, respectively) and are quite independent of 

Poisson’s ratio. Contrariwise, the dissipated energy increases with the Poisson’s ratio, as the 

failure mechanism and the corresponding crack surface varies.  

The results computed with the Modified Beltrami criterion in Figure 10 are nearly identical for 

all values of Poisson’s ratio, showing a horizontal crack surface. This result was also theoretically 

derived in reference [28]. It is to be expected as the influence of Poisson’s ratio in the formulation 

of the modified model is very much reduced (see equations (15) and (16)). 

 
Poisson’s ratio: 0.00 

   
Poisson’s ratio: 0.15 

 
Poisson’s ratio: 0.30 

 
Poisson’s ratio: 0.45  

 

Figure 7. Crack surfaces of the traction test, solid specimen, with the Beltrami criterion for several 

Poisson’s ratio values 
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Poisson’s ratio: 0.00 

 

 
Poisson’s ratio: 0.15 

 

 
Poisson’s ratio: 0.30 

 
Poisson’s ratio: 0.45 

 

Figure 8. Crack surfaces of the traction test, hollow specimen, with the Beltrami criterion for 

several Poisson’s ratio values 

 

 

 

Table 3. Theoretical and computed angles of the crack surfaces in the traction test 

 

 

 

0.00 0.00° 0° 0.00 0.00° 0° 0.00

0.15 21.17° 19° 10.25 22.79° 23° 0.92

0.30 28.71° 29° 1.01 33.21° 33° 0.63

0.45 33.85° 34° 0.44 42.13° 40° 5.03

Computed Angle 

Hollow Specimen
Error (%) Error (%)Poisson's ratio

Theoretical Angle 

Plane Strain

Computed Angle 

Solid Specimen

Theoretical Angle 

Plane Stress
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Figure 9. Force-displacement curves of the traction test computed with the Beltrami criterion for 

(a) the solid specimen and (b) the hollow specimen 

 

 
Poisson’s ratio: 0.0 

 
Poisson’s ratio: 0.45 

 
Poisson’s ratio: 0.0 

 
Poisson’s ratio: 0.45  

 

Figure 10. Crack surfaces of the traction test, with the Modified Beltrami criterion 

 

Isotropic vs orthotropic models 

 

In this section, the results obtained with the isotropic and orthotropic Beltrami models are 

compared. As it can be seen in the computed crack surfaces of Figures 11 and 12, and in Table 4, 

the crack surface angles are different. Compared to the isotropic results of Figures 7 and 8, the 

orthotropic damage crack surfaces have an angle which is systematically and significantly smaller 

for the same Poisson’s ratio value. Although no theoretical confirmation is available, this 

difference is attributed to the reduction of the effective Poisson’s effect in orthotropic models. 

(a) 

(b) 
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Poisson’s ratio: 0.00 

 

 
Poisson’s ratio: 0.15 

 

 
Poisson’s ratio: 0.30 

 

 
Poisson’s ratio: 0.45 

Figure 11. Crack surfaces of the traction test, solid specimen, computed with the orthotropic 

Beltrami criterion 

 
Poisson’s ratio: 0.00 

 

 
Poisson’s ratio: 0.15 

 

 
Poisson’s ratio: 0.30 

 

 
Poisson’s ratio: 0.45 

 
Figure 12. Crack surfaces of the traction test, hollow specimen, computed with the orthotropic 

Beltrami criterion 

 

 

Table 4. Computed angles of the crack surfaces for the isotropic and orthotropic Beltrami damage 

models in the traction test 

 

4.3 Mixed mode bending test 

 

In this section, a notched beam subjected to a mixed mode bending test is considered. The 

experimental tests were first carried out by Arrea and Ingraffea [38] and then repeated by Gálvez 

and Cendón [39]. Reference [39] also performed numerical simulations with a cohesive interface 

method. Other numerical results are reported in [40-43]. Reference [40] considers a localization 

limiter to regularize the problem. In [41] an adaptive particle meshless method was used, while 

in [42] the boundary element method was employed. In [43] an interface finite element approach 

was adopted.  

0.00 0° 0° 0° 0°

0.15 19° 10° 23° 16°

0.30 29° 14° 33° 22º

0.45 34° 26° 40° 29º

Isotropic Beltrami 

Hollow Specimen

Orthotropic Beltrami 

Hollow Specimen
Poisson's ratio

Isotropic Beltrami 

Solid Specimen

Orthotropic Beltrami 

Solid Specimen
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This example is intended to assess the performance of the Rankine and Drucker-Prager criteria in 

mixed mode cracking situations. For comparison purposes, three different sets of beams with 

various geometries and properties were tested in [39]. The geometry of the three sets of beams is 

shown in Figure 13. In the A set, the beam thickness is 0.102 m and the notch 𝑎 is 0.070 m long. 

In the B and C sets, the beam is 0.152 m thick and the notch 𝑎 is 0.0824 m long. The different 

properties of the sets are shown in Table 5.  

 

Figure 13. Geometry of the mixed mode bending test (m) 

 

Set A B C 

Young’s Modulus 23.4·109 Pa 24.8·109 Pa 24.8·109 Pa 

Poisson’s Ratio 0.21 0.18 0.18 

Tensile Strength 4.6·106 Pa 4.0·106 Pa 3.7·106 Pa 

Fracture Energy 75 J/m2 125 J/m2 130 J/m2 

Compressive Strength 60.7·106 Pa 45.5·106 Pa 43.4·106 Pa 
 

Table 5. Material properties of the mixed mode bending test 

 

 

Figure 14. FE mesh used for the mixed mode bending test 

The problem is solved using an arc-length algorithm controlling the crack mouth sliding 

displacement (CMSD) at the notch. For this example, 3D hexahedral elements are used, resulting 

in a fully structured mesh of 31,634 nodes and elements of 3 mm, shown in Figure 14. 

First, a comparison between the isotropic and orthotropic Rankine models is performed to assess 

their ability to reproduce mixed mode I and II failure. Then, a comparison is made between the 

isotropic and orthotropic Drucker-Prager models. Finally, the relative performance of the mixed 

and standard FE formulations is addressed. 
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Rankine isotropic vs orthotropic models 

 

Figure 15 shows damage contour fills for the sets A and C computed with the Rankine criterion. 

It can be seen that the results for the isotropic and orthotropic models are quite similar. 

Crack trajectories are compared in detail in Figure 16 for all three sets. There, it can be seen that, 

for the A set, the computed crack paths with the different models are all very similar. In addition, 

they are all inside the experimental range of reference [39]. For the B and C sets, the results of 

the Rankine isotropic and orthotropic models are also very close, but none of them give results 

inside the experimental range.  

The crack surface in the 3D analyses is depicted in Figure 17, plotted as an iso-level surface of 

the X-displacements. There, the crack surfaces of the different criteria considered for modeling 

set C can be observed. 

In Figure 18, the force-CMSD curves are shown for each set. It can be seen that the isotropic and 

orthotropic models are very close and correlate very closely with the experiments.  

 

 

Figure 15. Damage contour fills of the mixed mode bending test, sets A and C, for the Rankine 

criterion with (1) isotropic damage and (2) orthotropic damage 

 

 

Figure 16. Crack paths compared to experimental results of the mixed mode bending test for the 

Rankine criterion (a) set A, (b) set B and (c) set C. 

(a) (b) (c) 

A1 

A2 

C1 

C2 
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Figure 17. Crack surfaces of the mixed mode bending test, set C, for the Rankine criterion with     

(a) isotropic and (b) orthotropic damage 

 

 

(a) 

(b) 
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Figure 18. Force-CMSD curves of the mixed mode bending test for Rankine’s model and sets A, B 

and C 

 

 

B 

C 

A 
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Rankine vs Drucker-Prager damage criteria 

 

In the following, the use of the Drucker-Prager damage criterion has been considered. The 

corresponding isotropic and orthotropic models are used, as detailed in Section 2. In the 

orthotropic Drucker-Prager laws, see equation (28), damage only evolves in the directions where 

the corresponding principal stress is positive.  

  

Figure 19. Crack paths compared to experimental results of the mixed mode bending test for the 

Drucker-Prager criterion (a) set A, (b) set B and (c) set C. 

The crack paths of all three sets are included in Figure 19 for the isotropic and orthotropic 

Drucker-Prager models. It can be seen how isotropic and orthotropic models produce very similar 

results in terms of crack path. The crack surfaces are inside the experimental ranges for all three 

sets A, B, and C. Similar results were reported in the numerical simulations performed by [39], 

where a cohesive interface method was used.  

In Figure 20 the computed crack surfaces of all three cases of unit C can be observed. The results 

captured with the Drucker-Prager orthotropic constitutive laws are very similar to the 

corresponding isotropic damage. Computed results show good agreement with the experimental 

surface reported in [38]. The Drucker-Prager criterion is also considered to perform better than 

Rankine’s for mixed mode fracture in references [25, 32]. 

Figure 21 shows the force-CMSD curves of the three sets computed with the isotropic and 

orthotropic Drucker-Prager criteria. All the computed results are almost overlapping and in good 

agreement with the experiments.  

In Figure 22 the evolution of the maximum principal stresses is depicted as the crack propagates 

in set A for the isotropic Rankine and Drucker-Prager models. Stresses concentrate at the tip of 

the crack making it to progress, following the path shown in Figure 19. Different damage 

criterions introduce different equivalent stresses and, therefore, they produce different crack 

paths. The Rankine and Drucker-Prager criterions produce similar but not identical crack 

trajectories, the crack corresponding to the latter being more curved. This is a direct consequence 

of the (slight) difference between the two different criteria for mixed stress states. The elastic 

principal stresses near the crack tip can be observed in Figure 23. 

(a) (b) (c) 
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Figure 20. Crack surfaces, mixed mode bending test, set C, for the Drucker-Prager criterion with 

(a) isotropic (b) orthotropic damage and (c) a photo of the crack surface in the experiment of [38] 

(a) 

(b) 

(c) 
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Figure 21. Force-CMSD curve of the mixed mode bending test for the Drucker-Prager model, sets 

A, B and C 

A 

B 

C 
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Figure 22. Stress evolution and crack propagation, in the set A, for the isotropic (a) Rankine        

and (b) Drucker-Prager models 

 

 

Figure 23. Elastic principal stresses near the crack tip 

 

Comparison with standard FE 

 

In this bending problem, isotropic and orthotropic models performed very similarly both for the 

Rankine and Drucker-Prager criteria. In this section, results for set C computed with standard 

finite elements are reported to show the relative improvement of the mixed formulation. 

(a) 

(b) 
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Figure 24. Damage contour fills of the mixed mode bending test, set C, computed with standard FE 

(black crack path) vs mixed FE (blue crack path) with (a) isotropic Rankine, (b) orthotropic 

Rankine, (c) isotropic Drucker-Prager and (d) orthotropic Drucker-Prager models 

 

Figure 25. Crack paths compared to experimental results of the mixed mode bending test, set C,  

for (a) isotropic and (b) orthotropic Rankine models 

In Figure 24 the damage contour fills computed with standard FE, for the Rankine and Drucker-

Prager criteria, using isotropic and orthotropic damage, are compared to the results obtained 

with mixed FE. These are to be compared to Figure 15, where the corresponding results for the 

mixed formulation are given. 

Details of the computed crack paths are given in Figures 25 and 26. It can be seen how the Rankine 

criterion also yields unsuitable results, outside the experimental range with standard FE. The 

mixed FE crack paths produce results slightly closer to the experiments. The Drucker-Prager 

model, on the other hand, results in crack paths which are also inside the experimental range when 

using standard finite elements. When using isotropic damage, the computed crack paths are very 

close, while when employing orthotropic models, they are different, especially in the last stages 

of the simulation. 

(a) (b) 

(a) (b) 

(c) (d) 
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Figure 26. Crack paths compared to experimental results of the mixed mode bending test, set C,  

for (a) isotropic and (b) orthotropic Drucker-Prager models 

 

  

Figure 27. Maximum principal stress of the mixed mode bending test, set C, computed with 

standard FE with (a) isotropic Rankine, (b) orthotropic Rankine, (c) isotropic Drucker-Prager and 

(d) orthotropic Drucker-Prager 

Figures 27 and 28 show the maximum principal stresses computed with standard and mixed FE, 

respectively. For isotropic damage, Figures 27a and 27c, stresses concentrate at the tip of the 

crack causing it to progress while the material unloads in the crack path as the material is 

damaged. With standard FE and orthotropic damage, Figures 27b and 27d, severe stress 

(a) (b) 

(a) (b) 

(c) (d) 
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oscillations appear along the sides of the crack. With mixed FE, Figure 28 orthotropic models 

produce similar results to isotropic damage in terms of the stress field. No stress oscillations 

appear along the crack path. No trace of spurious stress transfer can be appreciated with the 

isotropic models, neither in the solution computed with standard or mixed FE, nor in the 

orthotropic solution computed with mixed FE. Contrariwise, severe spurious stresses are evident 

for the standard orthotropic damage along the crack path. 

 

  

Figure 28. Maximum principal stress of the mixed mode bending test, set C, computed with mixed 

FE with (a) isotropic Rankine, (b) orthotropic Rankine, (c) isotropic Drucker-Prager and              

(d) orthotropic Drucker-Prager 

For the mixed formulation, results are very similar regardless of whether isotropic or orthotropic 

models are used, both in terms of the computed crack paths (Figures 16 and 19) and force-CMSD 

curves (Figures 18 and 21). This does not happen with standard FE, as can be seen in the crack 

paths of Figures 25 and 26 or in the computed force-CMSD curves of Figures 29 and 30.  

(a) (b) 

(c) (d) 
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Figure 29. Force-CMSD curve of the mixed mode bending test for set C with                                     

(a) isotropic and (b) orthotropic Rankine models 

Using isotropic damage models, the standard FE formulation is well-known to produce unrealistic 

mesh-biased results in many situations, so as to make it unreliable. Using orthotropic damage 

models, the discontinuous approximation of the strain field and the meagerness of the kinematic 

description of low order standard FE produces strain oscillations and spurious stresses that make 

their implementation unpractical. 

The above problems are greatly alleviated by the enhanced kinematical description of the mixed 

𝜺/𝒖 finite elements.  

 

 

 

(a) 

(b) 
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Figure 30. Force-CMSD curve of the mixed mode bending test for set C with                                    

(a) isotropic and (b) orthotropic Drucker-Prager models 

 

4.4 Mixed mode shearing-tension test 

 

The numerical analysis of a mixed mode shearing-tension test is considered. The specimen was 

experimentally tested by Nooru-Mohamed [44] and numerical simulations were made in 

references [45-50]. A tracking algorithm was considered in references [46-47, 49-50], while in 

[48] a sequentially linear analysis to non-proportional loading was done. In reference [45], the 

performance of several local and nonlocal models is addressed.  

(a) 

(b) 
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Figure 31. Geometry of the mixed mode shearing-tension test (m) 

 

Young’s Modulus 30.0·109 Pa 

Poisson’s Ratio 0.2 

Tensile Strength 3.0·106 Pa 

Fracture Energy 60 J/m2 

Compressive Strength 6.0·107 Pa 
 

Table 6. Material properties of the mixed mode shearing-tension test 

The objective of this example is to assess the performance of the Drucker-Prager criterion in 

computing mixed mode cracking.  

The geometry of the specimen is shown in Figure 31. The thickness of the specimen is 0.05 m. 

The loads are applied in two stages. In the first one, vertical tensile forces 𝑃 are kept to zero while 

the horizontal shear forces 𝑃𝑠 are incremented until a certain value. In the second stage, the loads 

𝑃𝑠 are kept constant and the loads 𝑃 are incremented until failure occurs. The tests are performed 

under several loading conditions: in unit 4a, 𝑃𝑠 reaches a value of 5 kN, in unit 4b 𝑃𝑠 gets to 10 

kN and in 4c, 27.5 kN. The load is applied in the specimen through contact with a rigid steel 

frame. In the numerical simulation, the load is applied in the first stage as horizontal forces and 

in the second stage via increments of vertical displacements to accurately capture the post-peak 

behavior.  

The simulation is performed using the isotropic and orthotropic Drucker-Prager damage 

constitutive models. The material properties for the mixed mode shearing-tension test are shown 

in Table 6.  

For this example, 3D hexahedral elements are used, resulting in a fully structured mesh of 23,748 

nodes and elements of 2 mm, shown in Figure 31. 
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Figure 32. Crack trajectories of the mixed mode shearing-tension test, units 4a, 4b and 4c, for the 

isotropic and orthotropic Drucker-Prager models 
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Figure 33. Crack surfaces of the mixed mode shearing-tension test, units 4a, 4b and 4c, for the 

isotropic and orthotropic Drucker-Prager models 
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Figure 34. Force-displacement curves of the mixed mode shearing-tension test                                  

for units 4a, 4b and 4c 
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Isotropic and orthotropic Drucker-Prager models 

 

Figure 32 shows the crack trajectories of the mixed mode shearing-tension test computed with the 

isotropic and orthotropic Drucker-Prager models for units 4a, 4b and 4c. The results computed 

with both the isotropic and orthotropic damage models are very similar. It can be seen that they 

are also rather resembling to the experiments for all the units. The computed results present the 

polar symmetric behavior expected for the intended loading and boundary conditions of the test. 

It should be noted that the experimental results lack this polar symmetry. There are several 

possible reasons for this, as it has been noted in [44]. Note that the computed crack paths are 

halfway between the upper and the lower cracks in the experiment. 

Figure 33 also shows the crack surfaces resulting from the 3D analysis, with isotropic and 

orthotropic damage, plotted as an iso-level surface of the norm of displacements and the three 

pieces in which the specimen breaks. Both models produce lifelike crack surfaces. 

Figure 34 shows the force-δ displacement curves for all three units. It can be seen that in all the 

specimens the experimental peak load is significantly lower than the computed one. This behavior 

has been systematically observed in all the solutions computed in references [47-50]. This may 

be due to the relative lack of symmetry of the experiment, resulting in slightly different crack 

paths and correspondingly different force-displacement curves. The isotropic and orthotropic 

models produce almost overlapping force-δ displacement curves. 

In Scenario 4c, the axial force 𝑃 reverses sign, turning rapidly to be negative, even if the applied 

axial displacement is positive, corresponding to pulling apart of the fixing frames. This behavior 

is peculiar and rather difficult to capture in a numerical simulation. References [47,50] are able 

to capture it, while [48,49] did not include this particular scenario. Figure 34 shows that the 

simulation captures the experimental behavior qualitatively, even if the quantitative difference is 

significant. Note that the value of the normal forces 𝑃 involved in this case is much lower than 

the shear forces 𝑃𝑠. 

 

 

4.5 Torsion test on a solid cylindrical specimen 

 

In this section, the numerical analysis of a cylindrical concrete specimen subjected to a torsional 

load is performed. This example has been included to assess the performance of several isotropic 

and orthotropic damage models in Mode III tearing crack failure.  

The specimen is a cylinder 450 mm long and with a 50 mm radius. A small hole of 5 mm radius 

has been introduced in the middle of the specimen to fix the occurrence of fracture. The material 

properties of the test are shown in Table 7. The load F inducing torsion is applied via increments 

of vertical displacements as shown in Figure 35.  

Young’s Modulus 38·109 Pa 

Poisson’s Ratio 0.0 

Tensile Strength 2.3·106 Pa 

Fracture Energy 80 J/m2 

Compressive Strength 4.6·107 Pa 
 

Table 7. Material parameters of the torsion test 
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Figure 35. Geometry and loading of the torsion test (m) 

To assess the performance of the different constitutive laws compared in this paper, the numerical 

results from the torsion test are compared to an analogous experiment, performed with a piece of 

chalk. The objective of this section is to accurately reproduce the twisting crack surface of the 

chalk shown in Figure 36, produced by pure torsional loading until failure. 

Unlike for the case of uniaxial traction of section 4.2, the influence of Poisson’s ratio in the 

solution of the three dimensional torsion test in terms of crack surface is negligible. 

 

Figure 36. Analogous experiment of torsion test with a piece of chalk 

This example is solved with the mixed FEM using 3D tetrahedral elements. The computational 

domain is discretized with fully unstructured meshes with elements of 6 mm, resulting in a mesh 

of 22,518 nodes, shown in Figure 35.  
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Isotropic models 

 

Figure 37 (top) shows the computed crack surfaces in the specimen obtained with the isotropic 

Beltrami, Positive Beltrami, Rankine and Drucker-Prager criteria, plotted as the level set surface 

of the norm of displacements. 

The Beltrami criterion produces a planar horizontal crack surface. This is accountable to the fact 

that, for pure torsion, this criterion coincides with the Von Mises criterion, that would yield 

exactly such a planar crack in the plane of maximum shear stress. Note that the Positive Beltrami 

and Rankine models produce very similar results, an helicoidal crack, which is explicable by their 

fairly similar formulation. As it has been explained in Section 2, these two criteria are only 

sensitive to tensile stress. Of all the isotropic models considered, the only one that is able to 

reproduce the helicoidal crack with 45º slope that occurs in the piece of chalk is the Drucker-

Prager criterion.  

 

Orthotropic models 

 

Figure 37 (bottom) shows the computed crack surfaces obtained with the orthotropic Rankine and 

Drucker-Prager criteria. In this case, the isotropic and orthotropic Rankine models produce 

noticeably different results, even if they are driven by the same failure criteria. The reason for this 

is that the corresponding inelastic deformations are different. Only the orthotropic Rankine model 

produces the correct slope of 45º for the helicoidal crack. The orthotropic Drucker-Prager model 

performs similarly to its isotropic counterpart.  

All these orthotropic criteria produce slightly different crack surfaces, all similar to the 

experiment, but the one that reproduces better the actual crack of the chalk in Figure 36 is the 

orthotropic Rankine constitutive law, as can be seen in detail in Figure 38. There, the similarities 

of the computed crack surface using this criterion and the test performed with the piece of chalk 

are highlighted.  
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Isotropic Beltrami 

 

 
 

Isotropic Positive Beltrami 

 

 
 

Isotropic Rankine 

 
 

Isotropic Drucker-Prager 

 
 

 
 

Orthotropic Rankine 

 

 
 

Orthotropic Drucker-Prager 

 
 

Figure 37. Crack surfaces of the torsion test, with several failure criteria 
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Figure 38. Different views of the crack surface obtained with the orthotropic Rankine damage 

model 
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5 Conclusions  

 

In this work, the appraisement of planar, bending and twisting cracks in 3D is performed. To this 

end, a mixed finite element formulation is considered and the performance of several isotropic 

and orthotropic damage models is assessed. Several simulations are compared to theoretical and 

experimental results reported in the literature.  

It is concluded that: 

 The mixed finite element formulation is appropriate for solving the problem of quasi-

brittle crack propagation without any mesh bias of the computed solution and without the 

need of any tracking technique.  

 The enhanced accuracy of the mixed FE formulation allows for a transparent assessment 

of the several damage models considered without problems of spurious mesh bias 

associated to standard elements.  

 The mixed FE formulation is fit to accommodate isotropic and orthotropic damage 

models. 

 The enforcement of strain continuity in the mixed 𝜺/𝒖 FE formulation practically 

vanishes the strain oscillations, and corresponding spurious stress transfer, in the crack 

and its vicinity, that pollute solutions obtained with the standard FE formulation. 

 Isotropic and orthotropic damage models are able to compute planar, bending and 

twisting cracks with enhanced accuracy, producing solutions that match the analytical 

results and experiments. 

 Different damage models produce different solutions in terms of crack surface and force-

displacement curves to the same problem (geometry and loading). 

 Differences between isotropic and orthotropic models depend on the actual problem. In 

some cases, significant variations are observed in terms of crack surfaces or force-

displacement curves, while in other cases the models behave similarly.  

 In mode I loading, differences between the isotropic and orthotropic models are caused 

by the Poisson effect.  

 In problems of mixed mode I and II loading, the Drucker-Prager criterion produces 

excellent results in terms of computed crack path and load vs displacement curves. For 

this type of loading isotropic and orthotropic models produce very similar results.  

 In mode III fracture, the Rankine criterion is remarkable when used in its orthotropic 

form. In this case, all the orthotropic damage models yield similar results. 

From these, it is confirmed that the mixed FE formulation largely overcomes the difficulties 

associated both to isotropic and orthotropic damage models when using in the standard FE 

framework. Orthotropic models can be extended to include microcrack closure-reopening (MCR) 

effects, so that cyclic loading can be taken into account.  

It is also noteworthy that all the examples in this paper are solved in 3D and that both tetrahedral 

and hexahedral FE are used. Prism elements can be similarly used, as the proposed FE formulation 

is not restricted to a particular FE integration. 

 

 

 

 



 

43 

 

6 References 

 

 

[1]  J. Rots, "Computational modeling of concrete fracture," Ph.D. Thesis, Delft 

University of Technology, 1988.  

[2]  M. Jirasek and T. Zimmermann, "Analysis of Rotating Crack Model," Journal of 

engineering mechanics, vol. 124, no. 8, pp. 842-851, 1998.  

[3]  Y. Rashid, "Ultimate strength analysis of prestressed concrete pressure vessels," 

Nuclear Engineering and Design, vol. 7, no. 4, pp. 334-344, 1968.  

[4]  R. Cope, P. Rao, L. Clark and P. Norris, "Modelling of reinforced concrete behavior 

for finite element analysis of bridge slabs," Numerical Methods for Nonlinear 

Problems, Pineridge Press, Swansey, pp. 457-470, 1980.  

[5]  Z. Bazant, "Comment on orthotropic models for concrete and geomaterials," 

Journal of Engineering Mechanics, vol. 3, no. 109, pp. 849-865, 1983.  

[6]  R. Litton, "A contribution to the analysis of concrete structures under cyclic 

loading," Ph.D. Thesis, University of California, Berkeley, 1976.  

[7]  R. de Borst and P. Nauta, "Non-orthogonal cracks in a smeared finite element 

model," Engng. Computation, vol. 2, pp. 35-46, 1985.  

[8]  Z. Bazant, "Size effect in blunt fracture: concrete, rock, metal," Journal of 

Engineering Mechanics, vol. 4, no. 110, pp. 518-535, 1984.  

[9]  I. Carol and P. Prat, "A statically constrained microplane model for the smeared 

analysis of concrete cracking," International Conference on Computer Aided 

Analysis and Design of Concrete Structures, vol. 2, pp. 919-930, 1990.  

[10]  K. Willam, E. Pramono and S. Sture, "Fundamental issues of smeared crack 

models," SEM/RILEM, International Conference on Fracture of Concrete and 

Rock, pp. 142-153, 1987.  

[11]  P. Feenstra, "Computational aspects of biaxial stress in plain and reinforced 

concrete," Ph.D. Thesis, Delft University of Technology, 1993.  

[12]  S. Weihe and B. Kroplin, "Fictitious crack models: a classification approach," 

Aedificatio publishers, Freiburg, 1995.  

[13]  S. Weihe, B. Kroplin and R. De Borst, "Classification of smeared crack modles 

based on material and structural properties," Int. J. Solids Structures, no. 12, pp. 

1289-1308, 1998.  



 

44 

 

[14]  R. Faria, J. Oliver and M. Cervera, "A strain-based plastic viscous-damage model 

for massive concrete structures," International Journal of Solids and Structures, 

vol. 35, no. 14, pp. 1533-1558, 1998.  

[15]  G. Hofstetter and G. Meschke, "Numerical modeling of concrete cracking," 

Springer Science and Business Media, vol. 532, 2011.  

[16]  J. Oliver, M. Cervera, S. Oller and J. Lubliner, "Isotropic damage models and 

smeared crack analysis of concrete," II int. conference on computer aided analysis 

and design of concrete, 1990.  

[17]  M. Cervera, E. Hinton and O. Hassan, "Nonlinear analysis of reinforced concrete 

plate and shell structures using 20-noded isoparametric brick elements," Computers 

and Structures, vol. 25, no. 6, pp. 845-869, 1987.  

[18]  M. Cervera, "An orthotropic mesh corrected crack model," Computer Methods and 

Applied Mechanics in Engineering, vol. 197, no. 17-18, pp. 1603-1619, 2008.  

[19]  M. Cervera, "A smeared-embedded mesh-corrected damage model for tensile 

cracking," International Journal for Numerical Methods in Engineering, pp. 1930-

1954, 2008.  

[20]  M. Cervera, M. Chiumenti and R. Codina, "Mixed stabilized finite element methods 

in nonlinear solid mechanics. Part I: Formulation," Computer Methods in Applied 

Mechanics and Engineering, vol. 199, no. 37-40, pp. 2559-2570, 2010.  

[21]  M. Cervera, M. Chiumenti and R. Codina, "Mixed stabilized finite element methods 

in nonlinear solid mechanics. Part II: Strain localization," Computer Methods in 

Applied Mechanics and Engineering, vol. 199, no. 37-40, pp. 2571-2589, 2010.  

[22]  M. Cervera and C. Tesei, "An energy-equivalent d+/d- damage model with 

enhanced microcrack closure-reopening capabilities for cohesive-frictional 

materials," Materials, vol. 10, no. 4, p. 433, 2017.  

[23]  M. Cervera, M. Chiumenti and R. Codina, "Mesh objective modelling of cracks 

using continuous linear strain and displacement interpolations," International 

Journal for Numerical Methods in Engineering, vol. 87, no. 10, pp. 962-987, 2011.  

[24]  M. Cervera, M. Chiumenti, L. Benedetti and R. Codina, "Mixed stabilized finite 

element methods in nonlinear solid mechanics. Part III: Compressible and 

incompressible plasticity," Computer Methods in Applied Mechanics and 

Engineering, vol. 285, no. 0, pp. 752-775, 2015.  

[25]  M. Cervera, G. Barbat and M. Chiumenti, "Finite element modelling of quasi-brittle 

cracks in 2D and 3D with enhanced strain accuracy," Computational Mechanics, 

vol. 60, no. 5, pp. 767-796, 2017.  

[26]  O. Zienkiewicz, R. Taylor and Z. Zhu, "The finite element method, Vol. 1," 7th 

edition, Amsterdam, Elsevier Butterworth-Heinemann, 1989.  



 

45 

 

[27]  J. Simo and J. Ju, "Strain- and stress-based continuum damage models. I: 

Formulation; II Compatational aspects.," Int. J. Solids Struct., no. 23, pp. 821-869, 

1987.  

[28]  J.-Y. Wu and M. Cervera, "Strain localization analysis of elastic-damaging 

frictional-cohesive materials: Analytical results and numerical verification," 

Materials, vol. 10, no. 4, 2017.  

[29]  G. Voyiadjis, Z. Taqieddin and P. Kattan, "Anisotropic damage-plasticity model for 

concrete," Int. J. Plast., vol. 24, pp. 1946-1965, 2008.  

[30]  J. Courdebois and F. Sidoroff, "Endommagement anisotrope en elasticité et 

plasticité," J. Mec. Theor. Appl., vol. Special Volume, pp. 45-60, 1982.  

[31]  I. Carol, E. Rizzi and K. Willam, "On the formulation of anisotropic elastic 

degradation. I: Theory based on pseudo-logarithmic damage tensor rate; II: 

Generalized pseudo-Rankine model for tensile damage," Int. J. Solids Struct., vol. 

38, no. 4, pp. 491-546, 2001.  

[32]  L. Benedetti, M. Cervera and M. Chiumenti, "3D modelling of twisting cracks under 

bending and torsion skew notched beams," submitted to Engineering Fracture 

Mechanics, 2017.  

[33]  M. Cervera, C. Agelet de Saracibar and M. Chiumenti, "COMET: Coupled 

Mechanical and Thermal Analysis. Data Input Manuel, Version 5.0, Technical 

report IT-308. Available from http://www.cimne.upc.edu," 2002.  

[34]  "GiD: the personal pre and post-processor.," CIMNE, Technical University of 

Catalonia, p. <http://gid.cimne.upc.ed>, 2002.  

[35]  J.-Y. Wu and S.-L. Xu, "An augmented multicrack elastoplastic damage model for 

tensile cracking," International Journal of Solids and Structures, vol. 48, pp. 2511-

2528, 2011.  

[36]  P. Feenstra and R. de Borst, "A plasticity model and algorithm for mode-I cracking 

in concrete," Int. J. Numer. Methods Eng., vol. 38, no. 5, pp. 2509-2529, 1995.  

[37]  P. Pivonka, J. Ozbolt, R. Lackner and H. Mang, "Comparative studies of 3D-

constitutive models for concrete: application to mixed-mode fracture," Int. J. 

Numer. Methods Eng., vol. 60, pp. 549-570, 2004.  

[38]  M. Arrea and A. Ingraffea, "Mixed-mode crack propagation in mortar and 

concrete," Report No. 81-13, Department of Structural Engineering, Cornell 

University, Ithaca, NY, 1982.  

[39]  J. Galvez and D. Cendón, "Simulación de la fractura del hormigón en modo mixto," 

Rev. Int. Met. Num. Calc. Dis. Ing., vol. 18, no. 1, pp. 31-58, 2002.  



 

46 

 

[40]  P. Areias, T. Rabczuk and J. César de Sá, "A novel two-stage discrete crack method 

based on the screened Poisson equation and local mesh refinement," Comput. 

Mech., vol. 58, pp. 1003-1018, 2016.  

[41]  T. Rabczuk and T. Belytschko, "Cracking particles: a simplified meshfree method 

for arbitrary evolving cracks," International Journal for Numerical Methods in 

Engineering, vol. 61, pp. 2316-2343, 2004.  

[42]  A. Saleh and M. Aliabadi, "Crack growth analysis in concrete using boundary 

element method," Engineering Fracture Mechanics, vol. 51, no. 4, pp. 533-545, 

1995.  

[43]  W. Gerstle and M. Xie, "FEM modeling of fictitious crack propagation in concrete," 

J. Eng. Mech., vol. 118, no. 2, pp. 416-434, 1992.  

[44]  M. Nooru-Mohamed, "Mixed-mode fracture of concrete: an experimental 

approach," Ph.D. Thesis, Delft University of Technology, 1992.  

[45]  M. Di Prisco, L. Ferrara, F. Meftah, J. Pamin, R. De Borst, J. Mazars and J. 

Reynouard, "Mixed mode fracture in plain and reinforcement concrete: some results 

on benchmark tests," International Journal of Fracture, vol. 103, pp. 127-148, 

2000.  

[46]  J. Oliver, A. Huespe, E. Samaniego and E. Chaves, "Continuum approach to the 

numerical simulation of material failure in concrete," Int. J. Numer. Anal. Meth. 

Geomech., vol. 28, pp. 609-632, 2004.  

[47]  M. Cervera and M. Chiumenti, "Smeared crack approach: back to the original 

track," Int. J. Numer. Anal. Meth. Geomech., vol. 30, pp. 1173-1199, 2006.  

[48]  M. Dejong, M. Hendriks and J. Rots, "Sequentially linear analysis of fracture under 

non-proportional loading," Engineering Fracture Mechanics, vol. 75, pp. 5042-

5056, 2008.  

[49]  A. Slobbe, M. Hendriks and J. Rots, "Smoothing the propagation of smeared 

cracks," Engineering Fracture Mechanics, vol. 132, p. 147–168, 2014.  

[50]  S. Saloustros, L. Pela and M. Cervera, "A crack-tracking technique for localized 

cohesive-frictional damage," Engineering Fracture Mechanics, vol. 150, pp. 96-

114, 2015.  

 

 


